用户名: 密码: 验证码:
液化场地桩—土动力相互作用p-y曲线模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场地液化是导致桩基桥梁震害的重要原因之一。液化场地桩一土动力相互作用研究是解决液化场地桩基桥梁抗震问题的有效途径。动力p-y曲线分忻方法作为研究桩一土动力相互作用的一个重要方法,为发展基于变形的液化场地桥梁桩基抗震设计方法提供了一般性的技术思路。但是,该法用于液化场地桩土动力相互作用分析的关键在于合理确定砂土动力p—y曲线。然而,已有研究工作更多集中于如何基于砂土的标准静力p-y曲线构建考虑液化效直的p-y曲线,用于实际设计尚缺乏充分的试验与理论依据。事实上,尽管地震中场地未完全液化,但是砂土的力学性能因孔压上升而发生很大变化。如今,对两个重要问题尚缺乏系统研究:其一为如何定量确定液化场地桩一土动力相互作用p-y属性,其二为液化场地桩一土动力相互作用分析中如何合理考虑不同孔压比下砂土p-y曲线属性。
     鉴于上述,本文针对液化场地桩一土动力相互作用p-y曲线的构建方法问题,通过振动台试验且理论分忻相结合,研究可靠的建立液化场地桩一土动力相互作用p-y曲线的技术方法和引入p-y曲线简化模型的液化场地桩一土动力相互作用三维有限元分析方法。同时,考察液化场地桩一土动力相互作用p-y曲线的主要影响因素,提出了基于动力p-y曲线构建其骨干线的修正方法,给出了场地液化前、后砂土p-y曲线简化模型,发展了液化场地桩一土动力相互作用简化分析方法。本文主要研究工作与取得的若干认识如下:
     (1)采用钢筋混凝土单桩一柱墩基础型式,针对表层覆盖粘土层的液化场地,选用输入正弦波的加载方式,成功完成了考虑幅值、频率变化的正弦波输入下液化场地桩一土动力相互作用振动台试验。对同一试验体进行间隔24小时的两次试验,获得了试验开始时地基砂层两种不同相对密度的试验结果(第一次试验的地基砂土为中密砂层,第一次试验结束静置24小时进行第二次试验,第二次试验的地基砂土为密砂层),据此研究了地基中密砂层和密砂层孔压累积过程中液化场地桩一土动力相互作用的机理与规律,归纳了中密砂层和密砂层两种不同场地条件下土层液化的动力特性与桩基桥梁结构动力反应规律,特别剖析了不同相对密度的砂土层对地基、桩基桥梁结构动力的显著影响效应,并为建立考虑砂土中孔压累计过程的液化场地桩一土动力相互作用p-y曲线提供了必要的试验数据。
     (2)直接针对振动台试验,基于梁的基本理论,提出了液化场地桩一土动力相互作用p-y曲线建立方法且给出了相应的验证,据此获得一系列不同振幅、频率的正弦波输入下中密砂和密砂动力p-y曲线,全面归纳了场地液化前、后中密砂和密砂动力p-y曲线的基本特征,初步分忻了孔压、动载频率、砂层相对密度等因素对动力p-y曲线的影响,研究发现了场地液化后中密砂动力p-y曲线出现上“凹”形式的典型特征且相应给出了其砂土液化物理意义的详细解释,并浅析了液化砂土p-y曲线形状对桩一土动力相互作用的影响。
     (3)归纳了饱和砂土两相介质动力耦合作用的三种有限元分析模式,重新推导了u-p形式的控制方程矩阵形式与时间离散、空间离散的数值方法,并获得了三维有效直力动力分析的体系基本方程组。基于Opensees有限元数值模拟平台,直接针对振动台试验,采用推导的u-p形式控制方程的有限元实现形式,引入模拟循环荷载作用下饱和砂土液化动力特性、液化剪胀特性与粘土动力属性的多屈服面弹塑性本构模型,桩采用基于欧拉一伯努利梁理论建立的梁一柱单元模拟,桩一土动力相互作用采用考虑体积效应的刚性连接单元处理,建立试验受控条件下液化场地桩一土动力相互作用三维有限元分析模型与相应的计算方法。通过桩基桥梁结构动力反直、场地液化动力特性(特别是孔压)、液化对桩基和自由场地动力响直的影响、中密砂土的剪胀效应等数值模拟与振动台试验结果比较分忻,验证了建立的有限元分析模型与相应的计算方法的正确性,可以很好模拟砂土相对密度不同的液化场地桩一土动力相互作用。
     (4)采用建立三维有限元分析模型与相应的计算方法,针对液化场地桩一土桥梁结构动力相互作用,输入正弦波进行反复的数值模拟,据此获得了不同幅值1Hz正弦波输入下液化场地桩一土动力相互作用p-y曲线,研究了孔压比、桩径、砂土相对密度等主要因素对砂土动力p-y曲线的影响情况。以0.2m桩径建立的三维有限元分析模型为基准,分段建立了不同孔压比下土反力的桩径影响因子与桩径之间经验公式。通过分时段考虑孔压比的途径,建立了对应各时段不同孔压比下砂土的动力p-y曲线簇,引入土的应力一应变关系曲线骨干线的构建思路,提出了以孔压比为基本控制参量的中密砂动力p-y曲线骨干线的修正方法。
     (5)建立了不同孔压比下砂土动力p-y曲线骨干曲线簇初始刚度的经验公式。鉴于此,根据构建不同孔压比下砂土动力p-y曲线骨干曲线簇,分段建立了以孔压比为基本控制变量且能够体现场地液化前、后曲线形式转变的砂土p-y曲线简化模型,给出了具体的模型表达式与参数取值方法。考虑到工程设计的需要,选取API规范推荐的循环荷载作用下饱和砂土极限土反力作为简化模型的极限土反力。(6)根据对桩一土动力相互作用宏单元基本理论和构建宏单元力学元件的分析,得出液化场地桩一土动力相互作用宏单元中宜采用串联辐射阻尼形式且不宜采用裂缝单元组合形式的一般认识。鉴于此,通过弹簧单元、阻尼单元、塑性单元的合理组合,构建了液化场地桩一土动力相互作用分析的宏单元模型,给出了模型计算参数的合理确定方法与具体表达式,特别融入了新建砂土p-y曲线简化模型,很好考虑了砂土液化对桩一土动力相互作用土弹簧的影响。直接针对振动台试验,基于非线性文克尔地基梁模型,采用构建的宏单元模型,考虑桩周参振土的质量惯性力、上部结构的惯性力、土的辐射阻尼等效应,研究并建立了液化场地桩一土一桥梁结构动力相互作用简化分忻方法,通过振动台试验与有限元分忻方法验证了简化分忻方法的正确性,给出了简化分析方法的实施步骤。选用土的多屈服面塑性模型,饱和砂土采用u-p形式模拟的一维非线性有限元计算程序,实施自由液化场地动力分析,得到土层位移和孔压比时程作为数值分析模型外部输入。最后,采用简化分析方法,进行了桩径、桩土初始刚度比、上部结构配重等参数对液化场地桩一土动力相互作用影响的分忻,获得了若干重要认识,为实际桥梁桩基抗震设计提供一定参考。
Liquefaction is one of the main reasons of earthquake-induced damage to the pile-supported bridge. The study on dynamic pile-soil-structure interaction is the key to solve this problem in liquefying ground. Dynamic p-y curve method provides an effective way to investigate dynamic pile-soil interaction, and a technical approach to develop a base-displacement seismic design method for bridge pile foundation in liquefying ground. The most important step before application in analyzing dynamic pile-soil interaction is to determine the reasonable p-y curves of liquefying sand. However, the previous studies concern more about how to develop dynamic p-y curves for liquefying sand based on static p-y curve, which seems lack of experimental support and theoretical basis for seismic design. In fact, notwithstanding that the sand isn’t fully liquefied, the properties of sand have changed a lot as a result of the increase of pore pressure. At present, the following two questions need to be systematically researched: one is how to determine dynamic p-y properties of liquefying ground quantificationally, the other is how to consider the effect of pore pressure ratio on p-y curve for analyzing of pile-soil interaction in liquefying ground.
     In view of the above-mentioned factors, the establishing procedure of p-y curves is proposed and three-dimensional finite element method (3D FEM) to investigate dynamic pile-soil interaction in liquefying ground based on shaking table tests. On the other side, the main factors affecting p-y curves are also studied and a modified method is proposed for the backbone curve of dynamic p-y curves, based on which it provided the modified model for pre-liquefaction and post-liquefaction and developed the modified dynamic pile-soil interaction model in liquefying ground. The main content and understandings obtained are as follows:
     Firstly, a series of large-scale shaking table tests for dynamic pile-soil-bridge structure interaction in liquefying ground were conducted successfully corresponding to liquefying ground covered with clay layer at surface and adopting reinforced concrete single pile-pier under sine waves with different amplitudes and frequencies. The same test had been conducted twice at the interval of 24 hours to obtain different conditions of relative density of sand. The sand was of medium-dense sand in the first test while it was dense sand in the second test. Based on the tests, the mechanism and the law of dynamic pile-soil interaction in liquefying ground are studied in the accumulation process of pore pressure in medium-dense sand and dense sand, this paper concluded the dynamic behavior of sand and pile foundation-supported bridge structure under two different ground conditions of medium-dense and dense sand, and specially analyzed the remarkable effect of different relative density sand on the dynamic behavior of pile foundation and bridge structure. Meanwhile, the tests provided the necessary test data for developing p-y curves of dynamic pile-soil interaction in liquefying ground in view of the accumulation process of pore pressure.
     Secondly, the method of developing p-y curves of dynamic pile-soil interaction in liquefying ground was proposed and verified according to beam theory from the results of shaking table tests. A series of dynamic p-y curves of medium-dense and dense sand were obtained under sine waves with different amplitudes and frequencies. Based on the above results, this study comprehensively concluded the basic features of p-y curves in pre-liquefied and post-liquefied state and preliminarily analyzed the effects of pore pressure, dynamic load frequency and sand relative density on dynamic p-y curves, a concave-up form of p-y curve for the medium-dense sand in post-liquefied state was discovered, the detailed physical meanings of liquefaction were explained, subsequently, the effects of p-y curves form of liquefying sand on dynamic pile-soil interaction were discussed.
     Thirdly, three finite element analysis models about dynamic coupling effect of saturated sand were summarized. Some governing equations of u-p formulation, and numerical method of time and spatial discrete were anew derived, and the basic equations group of 3D effective stress dynamic system were obtained. Based on OpenSees finite element numerical simulation platform, aiming at the finished shaking table tests, and adopting finite element manifestation of u-p formulation governing equation, a 3D finite element model and its solution approach was developed to investigate dynamic pile-soil interaction by introducing plastic multi-yield surface constitutive model which can take dynamic properties and shear dilatation of saturated sand and clay under cyclic loading into consideration. The pile linked with soil by rigid connector element, which could consider volume effect in the model, was simulated by beam-column element according to the theory of Euler-Bernoulli beam. The correctness of finite element model and calculation method was verified, according to the comparative analysis between numerical simulation and shaking table tests, including dynamic response of pile and bridge structure, dynamic characteristics especially pore pressure of liquefying ground, the effects of liquefaction on dynamic response of pile and free ground and the dilatation effect of medium-dense sand, which can effectively simulate pile-soil interaction in liquefying ground with different relative density.
     Fourthly, a series of numerical simulation from 3D finite element analysis method were conducted under a series of sine waves to investigate dynamic pile-soils-bridge structure interaction and the effects of pore pressure ratio, pile diameter, relative density of sand on dynamic p-y curves in liquefying ground, obtaining some dynamic p-y curves under sine waves with different amplitudes and frequency of 1Hz. An impact factor formulation of pile diameter was established based on different pore pressure ratios relative to the response of 0.2m pile diameter from three-dimensional finite element method. A series of p-y curves corresponding to different pore pressure ratios were obtained by dividing pore pressure ratio time histories into several segments, and a modified method of backbone curves of dynamic p-y curves taking pore pressure ratio as a control factor was proposed by adopting the establishing approach for backbone curves of stress-strain curve.
     Fifthly, an empirical formulation of initial stiffness of backbone curves cluster for dynamic p-y curves was provided under different pore pressure ratios. In light of the above-mentioned research, according to the backbone curve cluster of dynamic p-ycurves taking pore pressure ratio as the controlling variable, a simplified p-y curve model reflecting the form transformation of p-y curves between pre-liquefaction and post-liquefaction state was established piece-wisely, then the concrete expression of model and the evaluation technique of the parameters were presented. Besides, by considering the need of engineering design, the ultimate resistance of saturated sand under cyclic loading from API was selected as the ultimate resistance of simplified model.
     Finally, it’s concluded that employing radiation damping in series rather than gap element in the macroelement will be better for dynamic pile-soil interaction via analyzing theory and mechanical components of macroelement. As for the above-mentioned conclusions, the macroelement of dynamic pile-soil interaction in liquefying ground was established by combining spring element, damping element and plasticity element reasonably, and by providing the calculation parameters and formulations. Herein, one thing to be noted was that the macroelement combines the new p-y model of medium-dense sand which well considered of the effects of liquefaction on soil springs in dynamic pile-soil interaction analysis. Through adopting the new-built macroelement, a simplified analysis method was investigated and established based on nonlinear Winkler foundation beam theory aiming at shaking table test, which considered the effect of lumped soil mass, inertial force from superstructure and radiation damping on dynamic response of the system. Finite element method was adopted to carry out numerical analysis and the reliability of the simplified model was verified by comparison between results from shaking table tests and calculations. Subsequently, the procedure of analyzing dynamic pile-soil interaction in liquefying ground was provided. A dynamic analysis of free liquefying ground was implemented based on the nonlinear finite element program which coupled fluid and solid for saturated sand in u-p formulation adopting multi-yield surface plastic constitutive model, the displacement and pore pressure ratio time histories obtained from numerical calculation were taken as the boundaries of the model. Finally, the effects of pile diameter, initial stiffness ratio between pile and soil and superstructure mass on dynamic pile-soil interaction was conducted by employing the proposed modified model, and some important understandings were obtained which aimed at providing significant reference for seismic design of bridge pile foundation.
引文
1范立础,韦晓.桩一土一结构动力相互作用试验研究现状.大型复杂结构的关键科学问题.大连理工大学.1999:170~178
    2张建民,张嘎.土体与结构物动力相互作用研究进展.岩石力学与工程学报.2001,20(1):854~865
    3陈国兴.土体一结构体系地震性能研究.哈尔滨建筑工程学院学报.1994,27(5):11~18
    4项海帆.21世纪世界桥梁工程的展望.土木工程学报.2000,33(3):1~6
    5陈文化,门福录,景立平.有建筑物存在的饱和砂土地基液化振动台模拟实验研究.地震工程与工程振动.1998,18(4):54~60
    6阎贵平,项海帆.具有单排桩基梁式桥墩的实用延性抗震验算方法研究.土木工程学报.1993,26(2):48~51
    7孙利民,范立础.阪神地震日本桥梁抗震设计规范的改订.同济大学学报.2001,29(1):60~64
    8景立平,陈文化,葛立臣.考虑非线性的建筑物地基地震液化简化分析方法.地震工程与工程振动.2001,21(2):121~125
    9桩基工程手册编写委员会.桩基工程手册.中国建筑工业出版社.1995:1~8
    10刘惠珊.桩基抗震设计探讨一日本阪神大地震的启示.工程抗震.2000,(3):27~32
    11熊建国.土一结构动力相互作用问题新进展(I,II).世界地震工程.93,3:22~29,1993.4:17~25
    12刘恢先.唐山大地震震害.地震出版社.1986:76~194
    13 A. Pamuk. Physical Modeling of Retrofitted Pile Groups including Passive SiteRemediation against Lateral Spreading. Ph.D. Dissertation, Rensselaer PolytechnicInstitute. 2004: 1~9
    14 G. A. Ross, H. B. Seed, R. R. Migliaccio. Bridge Foundation Behavior in AlaskaEarthquake. Journal of The Soil Mechanics and Foundation Division, ASCE. 1969,95(3): 1007~1036
    15栾茂田,聂影,郭莹.大连饱和粘土动力特性研究.大连理工大学学报.2009,49(6):907~912
    16中国科学院工程力学研究所.海城地震震害.地震出版社.1979:47~79
    17刘惠珊.1995年阪神大地震的液化特点.工程抗震.2001,(1):22~26
    18 P. J. Meymand. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay. Ph.D. Dissertation, University of California,Berkeley. 1998: 2~15
    19 J. C. Horne. Effects of Liquefaction-Induced Lateral Spreading on Pile Foundations .Ph.D. Dissertation, University of Washington. 1996: 1~6
    20刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究.岩土工程学报.2003,24(2):142~14
    21凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展.地震工程与工程振动.2002,22(4):51~59
    22T. J. Weaver. Behavior of Liquefying Sand and CISS Piles during Full-Scale Lateral Load Tests. Ph.D. dissertation, University of California, San Diego. 2001: 2~6
    23李雨润.液化土层中桩基横向动力响直研究.中国地震局工程力学研究所博士论文.2006:11~14
    24戚春香,王建华.液化土中水平承载桩动这p-y曲线研究.中国海洋平台.2007,22(3):1~7
    25李雨润,袁晓铭,梁艳.桩-液化土相互作用p-y关系分忻.地震工程与工程振动2008,28(3):155~171
    26李辉,赖明,白绍良.土—结动力相互作用综述.重庆建筑大学学报.1999,21(4):112~116
    27中华人民共和国铁道部.铁路工程抗震设计规范(GB50111-2006).中国铁道出版社.1989
    28中华人民共和国交通部.公路工程抗震设计规范(JTJ004-89).人民交通出版社1989
    29重庆交通科研设计院.公路桥梁抗震设计细则(JTG/TB02-01-2008).人民交通出版社.200
    30杨昌众.桩基础桥梁等场地判别和地震反应计算等实用简化方法.同济大学博士论文.1987:1~12
    31黄雨,郝亮.液化地基中桩的破坏机理研究进展.工程地质学报.2008,16(2):184~189
    32陈文化,孙巨平,徐兵.砂土地震液化的研究现状及发展趋势.世界地震工程.1999,15(1):16~24
    33程泽坤.基于p-y曲线法考虑桩土相互作用的高桩结构物分忻.海洋工程.1998,16(2):73~81
    34石兆吉,王兰民.土壤动力特性-液化势及危害性评估.地震出版社.1999:58~120
    35汪闻韶.土液化特性中的几点发现.岩土工程学报.1997,2(3):56~60
    36李学宁,刘惠珊,周根寿.液化层减震机理研究.地震工程与工程振动.1992,12(3):84~91
    37李雨润,袁晓铭,梁艳.桩-液化土相互作用p-y曲线修正计算方法研究.岩土工程学报.2009,31(4):595~599
    38朱斌,陈仁朋,陈云敏.埋置框架的横向动力特性研究.振动工程学报.2002,15(4):425~429
    39范敏,解明雨,邬瑞锋.土-桩-结构相互作用体系的非线性地震反应分忻.地震工程与工程振动.1985,5(3):7~11
    40赵成刚,尤昌龙.饱和砂土液化与稳态强度.土木工程学报.2001,34(3):90~96
    41 H. Matlock, W. B. Ingram, A. E. Kelley, et al. Field Tests of the lateral-loadBehavior of Pile Groups in Soft Clay. The 2th Offshore Technology Conference,Houston, Texas. 1980, 5: 163~174
    42 M. Novak. Dynamic Stiffness and Damping of Piles. Canadian Geotechnical. 1974,11(4): 574~598
    43 M. Novak, T. Nogami. Soil-Pile Interaction in Horizontal Vibration. EarthquakeEngineering and Structure Dynamics. 1977, 5(3): 263~281.
    44 M. Novak, F. Aboul-Ella. Impedance Functions of Piles in Layered Media. Journalof Geotechnical Engineering. 1978, 104(6): 643~661
    45 M. Novak, M. Sheta. Approximate Approach to Contact Effects of Piles. DynamicResponse of Structures: Experimentation, Observation, Prediction and Control.American Society of Civil Engineers. 1991: 53~79
    46 M. Novak. Piles under Dynamic Loads. The 2nd International Conference on RecentAdvances in Geotechnical Engineering and Soil Dynamics, Saint Louis Missouri.1991, 3: 2433~2456
    47 T. Nogami, et al. Time Domain Response of Dynamically Loaded Single Pile.Journal of Engineering Mechanics. 1988, 114(9): 1512~1525
    48 T. Nogami, K. Konagi, J. Otani. Nonlinear Pile Foundation Model for Time Domain Dynamic Response Analysis. The 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan. 1988, 3: 593~598
    49 T. Nogami. Soil-Pile Interaction Model for Earthquake Response Analysis of Offshore Pile Foundations. The 2nd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, Saint Louis Missouri. 1991, 3: 2133~2137
    50 T. Nogami, J. Otani, K. Konagi. Nonlinear Time Domain Numerical-Model for Pile Group under Transient Dynamic Forces. The 2nd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics. 1991, 3: 881~888
    51 T. Nogami, J. Otani, K. Konagai, et al. Nonlinear Soil-Pile Interaction Model for Dynamic Lateral Motion. Journal of Geotechnical Engineering. 1992, 118(1): 89~96
    52 M. H. El Naggar, M. Novak. Nonlinear Model for Dynamic Axial Pile Response. Journal of Geotechnical Engineering. 1994, 120(2): 308~329
    53 M. H. El Naggar, M. Novak. Effect of Foundation Nonlinearity on Modal Properties of Offshore Towers. Journal of Geotechnical Engineering. 1995, 121(9): 660~668
    54 M. H. El Naggar, M. Novak. Nonlinear Lateral Interaction in Pile Dynamics. Soil Dynamics and Earthquake Engineering. 1995, 14(3): 141~157
    55 E. Rojas, C. Valle, M. P. Romo. Soil-Pile Interface Model for Axially Loaded Single Piles. Soils and Foundations. 1999, 39(4): 35~45
    56 JRA. Specifications for Highway Bridges. Japan Road Association. 1980
    57 AIJ. Recommendations for Design of Building Foundations. Architectural Institute of Japan. 1988
    58 S. Nomura, Y. Shamoto, K. Tokimatsu. Soil-Pile-Structure Interaction During Liquefaction. The 2nd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, Saint Louis Missouri. 1991, 1(1): 743~750
    59 K. Tokida, H. Matsumoto, H. Iwasaki. Experimental Study of Drag Acting of Piles in Ground Flowing by Liquefaction. Proceedings of the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. National Center for Earthquake Engineering Research, SUNY, Buffalo, N. Y., 1992, 1: 511~523
    60 Y. Miyamoto, K. Miura, R. F. Scott, et al. Pile Foundation Response in Liquefiable Soil Deposit Deposit During Strong Earthquakes. Journal of Structural and Construction Engineering. 1992: 49~60
    61 D. W. Wilson, R. W. Boulanger, B .L. Kutter. Lateral Resistance of Piles in Liquefying Sand. Analysis, Design, Construction and Testing of Deep Foundations, Geotechnical Special Publication, ASCE, Reston. 1999, 88: 165~179
    62 R. W. Boulanger, C. J. Curras, B. L. Kutter, et al. Seismic Soil-Pile-Structure Interaction Experiments and Analyses. Journal of Geotechnical and Geoenvironmental Engineering. 1999, 125(9): 750~759
    63 S. H. Goh. Soil-Pile Interaction During Liquefaction-Induced Lateral Spreading. Ph.D. Dissertation, Cornell University. 2001: 63~67
    64 C. J. Curras, R. W. Boulanger, B. L. Kutter, et al. Dynamic Experiments and Analyses of a Pile-Group-Supported Structure. Journal of Geotechnical and Geoenvironmental Engineering. 2001, 127(7): 585~596
    65 V. Suarez, M. J. Kowalsky. Displacement-Based Seismic Design of Drilled Shaft Bents with Soil-Structure Interaction. Journal of Earthquake Engineering. 2007, 11(6): 1010~1030
    66 M. Ashour, G. Norris. Strain Wedge Model for Piles/Shafts in Liquefied Soil. Geotechnical Engineering for Transportation Projects. 2004, (2): 1161~1173
    67 S. Malhotra. Soil-Pile Structure Interaction during Earthquakes. Geotechnical Engineering for Transportation Projects. 2004, 1: 428~440
    68 J. A. Knappett, S. P. G. Madabhushi. Modelling of Liquefaction-Induced Instability in Pile Groups. Seismic Performance and Simulation of Pile Foundations. 2006, 2: 255~267
    69 E. Taciroglu, C. S. Rha, J. W. Wallace. A Robust Macroelement Model for Soil–Pile Interaction under Cyclic Loads. Journal of Geotechnical and Geoenvironmental Engineering. 2006, 132(10): 1304~1314
    70 W. Zheng, R. Luna. Liquefaction Effects on Lateral Pile Behavior for Bridges. Foundation Analysis and Design: Innovative Methods. 2006: 264~270
    71 O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu. The Finite Element Method for Fluid Dynamics. Sixth Edition. Oxford, Boston: Elsevier Butterworth-Heinemann, 2005: 4~27
    72 E. J. Ruggiero, J. Singler, J. A. Burns, D. J. Inman. Finite Element Formulation for Static Shape Control of a Thin Euler-Bernoulli Beam Using Piezoelectric Actuators. Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California. 2004: 1~8
    73 T. Shiomia, S. Tsukunia, M. Hatanakaa, et al. Simulation Analysis of Ground Liquefaction induced by Earthquake. Computers and Geotechnics. 1987, 4(4): 221~225
    74 W. D. L. Finn. Geotechnical Engineering Aspects of Microzonation. Proceedings of the Fourth International Conference on Seismic Zonation. Stanford, California. 1991, 1: 199~259
    75 C. M. Famiglietti, J. H. Prevost. Solution of the Slump Test using a Finite Deformation Elasto-plastic Drucker-Prager Model. International Journal for Numerical Methods in Engineering. 1994, 37: 3869~3903
    76 R. Orense, I. Towhata. Prediction of Liquefaction-Induced Permanent Ground Displacements: A Three-Dimensional Approach. Proceedings of the 4th Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Honolulu, Hawaii. 1992: 335~349
    77 L. F. Bonilla, R. J. Archuleta, D. Lavallee. Hysteretic and Dilatant Behavior of Cohesionless Soils and Their Effects on Nonlinear SiteResponse: Field Data Observations and Modeling. Bulletin of the Seismological Society of America. 2005, 95(6): 2373~2395
    78 J. A. Sladen, R. D. D. Hollander, J. Krahn. The Liquefaction of Sands, A Collapse Surface Approach. Canadian Geotechnical Journal. 1985, 22: 564~578
    79 R. Clough, R. Woodward. Analysis of Embankment Stresses and Deformations. Journal of Geotechnical and Geoenvironmental Engineering. 1996, 122(7): 578~584
    80 S. M. Fujii, A. Okushima, Kikuchi, R. Kitamura. Development of a Network Flow Simulator and Evaluation of Travel Time. Proceedings of the 17th Annual Meeting of the Japanese Society of Traffic Engineers, Japanese. 1998: 694~695
    81 T. Takashi, O. Akira, F. Masaki. Damage Analysis of a Pile Foundation and Seismic Issues Revealed by the 1995 Great Hanshin Earthquake. The 2nd UJNR Workshop on Soil-Structure Interaction, Tsukuba, Japan, 2001: 2~17
    82 W. D. L. Finn, N. Fujita. Piles in Liquefiable Soils: Seismic Analysis and Design Issues. Soil Dynamics and Earthquake Engineering. 2002, (22): 731~742
    83 Anandarajah. Fully-Coupled Analysis of a Single Pile Founded on Liquefiable Sands. Computer Simulation of Earthquake Effects, ASCE. 2000: 117~131
    84 H. Funahara, S. Fujii, S. Tamura. Numerical Simulation of Pile Failure in Liquefied Soil Observed in Large-Scale Shaking Table Test. 12th World Conference on Earthquake Engineering, New Zealand. 1514~1523.
    85 R. Uzuoka, N. Sento, M. Kazama. Numerical Analysis of Rate Dependent Reaction of Pile in Saturated or Liquefied Soil. Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. Geotechnical Special Publication, ASCE. 2005: 204~217
    86 M. Ishihara, K. Cubrinovski. A Case-History of Damaged Piles due to Lateral Spreading: Evaluation by a Simplified Analysis. International Geotechnical Conference: Soil-Structure Interaction-Calculation Methods and Engineering Practice, Saint Petersburg, Russia. 2005: 77~82
    87 R. Uzuoka, N. Sento, M. Kazama, et al. Failure Mechanism of a Riverbank along the Mekong River during a Decline in the Water Level. Proceedings of 13th Asian Regional Conference of Soil Mechanics and Geotechnical Engineering Kolkata.2007, 1: 935~938
    88 S. Mazzoni, F. Mckenna, M. Scott, et al. OpenSees Command Language Mamual. 2006: 11~31
    89 Z. Alterman, F. C. Karal. Propagation of Elastic Waves in Layered Media by Finite Difference Methods. Bulletin of the Seismological Society of America. 1968, 59(3): 67~98
    90 S. T. Wang, L. C. Reese. Designed Foundations in Liquefied Soils. Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE Geotechnical Special Publication. 1998, 2(75): 1331~1343
    91 S. Goh, T. D. O. Rourke. Limit State Model for Soil-Pile Interaction during Lateral Spreal. Proceedings of 7th US-Japan Workshop on Earthquake Resestant Design of Lifeling Fanilities and Countermeasures against Soil Liquefaction, Seattle. 1999: 237~260
    92 C. Mansour, A. Steinberg, N. Matasovic. Analysis, Design and Construction of the Supporting Structure and Wharf Retrofit For A New Shiploader at the Port of Long Beach, California, ASCE. 2004: 2: 1~9
    93 K. Kubo. Vibration Test of a Structure Supported by Pile Foundation. 4th World Conference on Earthquake Engineering, Santiago. 1969, 6: 1~12
    94 K. Kubo. Experimental Study of the Behaviour of Laterally Loaded Piles. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal. 1965, l(2): 275~279
    95 T. Kagawa, L. Kraft. Seismic P-y Responses of Flexible Piles. Journal of the Geotechnical Engineering Division, ASCE. 1980, 106(8): 899~918
    96 Y. Sasaki, K. Tokida, H. Matsumoto, et al. Shake Table Tests on Lateral Ground Flow Induced by Soil Liquefaction. The 3rd Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, San Francisco. 1991: 371~385
    97 K. Ohtomo, M. Hamada. Soil Force Acting on Pile inLaterally Flowing Ground by Soil Liquefaction. The 15th US National Conference on Earthquake Engineering, Chicago. 1994, 4: 241~250
    98 H. Liu, K. Chen. Test on Behavior of Pile Foundation in Liquefiable Soils. The 2nd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, Saint Louis Missouri. 1991, 1(1): 233~235
    99 M. Miyajima, M. Kitaura, K. Ando. Experiments on Liquefaction-Induced Large Ground Deformation. The 3th Japan-U.S.Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. Technical Report NCEER, SUNY, New York, 1991, (1): 269~278
    100 M. Hamada, K. Ohtomo, H. Sato, et al. Experiment Study of Effects of Liquefaction induced Ground Displacement on in-ground Structure. Proceedings of the 4th Japan–US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. Technical Report NCEER, SUNY, New York, 1992, 1: 481~92
    101 T. Kagawa, C. Minowa, H. Mizuno, et al. Shaking-Table Tests on Piles in Liquefying Sand. The 5th U.S. National Conference on Earthquake Engineering, Chicago. 1994, l(4): 107~116
    102 I. Towhata, W. Vargas-Monge, R. P. Orense, et al. Shaking Table Tests on SubgradeReaction of Pipe Embedded in Sandy Liquefied Subsoil. Soil Dynamics andEarthquake Engineering. 1999, 18(5): 347~361
    103 A. S. Ashford, J. Teerawut. Response of Single Piles and Pipelines in LiquefactioninducedLateral Spreads using Controlled Blasting. Earthquake Engineering andEngineering Vibration. 2002, 1(2): 181~193
    104黄春霞,张鸿儒,隋志龙.大型叠层剪切直变模型箱的研制.岩石力学与工程学报.2006,25(10):2129~2134
    105凌贤长,王丽霞,王东升.非自由液化场地地基动力性能大型振动台模拟试验研究.中国公路学报.2005,18(2):34~39
    106 K. T. Chu, C. Y. Shen, X. Guo. Nonlinear Seesmic Soil-Pile-Structure Interactions:Shaking Table Tests and FEM Analyses. Soil Dynamics and Earthquake Engineering.2009, 29(2): 300~310
    107 R. Motamed, I. Towhata. Shaking Table Model Tests on Pile Groups Behind QuayWalls Subjected to Lateral Spreading. Journal of Geotechnical andGeoenvironmental Engineering. 2010, 136(3): 477~489
    108 K. Tokimatsu, H. Suzuki. Pore Water Pressure Response around Pile and Its Effectson p-y Behavior during Soil Liquefaction. Soils and Foundations. 2004, 44(6):53~63
    109凌贤长.E-Defense建设与相关研究.地震工程与工程振动.2008,28(4):111~116
    110 K. Tokimatsu, H. Suzuki. Effects of Pore Pressure Response around Pile onHorizontal Subgrade Reaction during Liquefaction and Lateral spreading in LargeShaking Table Tests. The 16th International Conference on Soil Mechanics sndGeotechnical Engineering. 2005: 38~45
    111 M. Cubrinovski, T. Kokusho, K. Ishihara. Interpretation from Large-Scale ShakeTable Tests on Piles Undergoing Lateral Spreading in Liquefied Soils. SoilDynamics and Earthquake Engineering. 2006, 26(3): 275~286
    112陈跃庆,吕西林,侯建国等.有建筑物存在的软土地基液化模拟地震振动台试验研究.武汉大学学报(工学版).2003,36(1):59~63转85
    113刘惠珊,陈克景.液化土中的桩基试验.工程抗震.1991,(2):19~23
    114黄志全,王思敬.离心模型试验技术在我国的直用概况.岩石力学与工程学报.1998,17(2):199~203
    115 R. Scott, H. Liu, J. Ting. Dynamic Pile Tests by Centrifuge Modeling. 6th WorldConference on Earthquake Engineering, New Delhi. 1977, 1(2): 1670~1674
    116 J. P. Bardet, M. Kapuskar. An Analysis of the Sand Boils Due To Liquefaction in theSan Francisco Marina District during the 1989 Loma Prieta Earthquake. Journal ofGeotechnical Engineering, ASCE. 1993, 119(3): 543~562
    117 L. Liu, R. Dobry. Effect of Liquefaction on Lateral Response of Piles by CentrifugeModel Tests. National Center for Earthquake Engineering Research NCEER. 1995,9(1): 7~11
    118 T. Abdoun. Modeling of Seismically Induced Lateral Spreading of Multi-LayeredSoils and Its Effects on Pile Foundations. Ph.D. Dissertation, Rensselaer PolytechnicInstitute. 1997: 31~37
    119 R. Dobry, T. Abdoun. Post-Triggering Response of Liquefied Soil in The Free Fieldand Near Foundations. Geotechnical Special Publication, ASCE. 1998, 75(1):270~300.
    120 D. W. Wilson, R. W. Boulanger, B. L. Kutter. Signal Processing for and Analyses ofDynamic Soil-Pile-Interaction Experiments. Proceeding Centrifuge 98, Balkema,Rotterdam. 1998: 135~140
    121 R. W. Boulanger, D. W. Wilson, B. L. Kutter, et al. Soil-Pile SuperstructureInteraction in Liquefiable Sand. Transportation Research Record, National ResearchCouncil, National Academy Press, Washington. 1997: 55~64
    122 D. W. Wilson, R. W. Boulanger, B. L. Kutter. Seismic Lateral Resistance ofLiquefying Sand. Journal of Geotechnical and Geoenvironmental Engineering,ASCE. 2000, 126(10): 898~906
    123李雨润,袁晓铭.液化场地上土体侧向变形对桩基影响研究评述.世界地震工程.2004,20(2):18~21
    124 S. J. Brandenberg, R. W. Boulanger, B. L Kutter, et al. Behavior of Pile Foundationsin Laterally Spreading Ground during Centrifuge Tests. Journal of Geotechnical andGeoenvironmental Engineering. 2005, 131(11): 1378~1391
    125 T. H. Abdoun, R. Dobry. Evaluation of Pile Foundation Response to LateralSpreading. Soil Dynamics and Earthquake Engineering. 2002, 22: 1051~1058
    126 T. H. Abdoun, R. Dobry, T. D. O. Rourke, et al. Pile Response to Lateral Spreads: Centrifuge Modeling. Journal of Geotechnical and Geoenvironmental Engineering. 2003, 129(10): 869~878
    127 S. Bgattacharya. Errors in Design leading to Pile Failures During Seismic Liquefaction. Proceedings of the 15th Internationsl Conference on Case Histories in Geotechnical Engineering, New York. 2004: 1~6
    128 P. A. L. F. Coelho, S. K. Haigh, S. P. G. Madabhushi, et al. Brien. Post-earthquake Behaviour of Footing When using Densification an a Liqucfaction Resestance Measure. Ground Improvement. 2007, 11(1): 45~53
    129 S. Bhattacharya, S. P. G. Madahushi. A Critical Review of Methods for Pile Design in Seismically Liquefiable Soils. Bulletin of Enthquake Engineering. 2008, 6(3): 407~446
    130 P. A. L. F. Coelho, S. K. Haigh and S. P. G. Madabhushi. Boundary Effects in Dynamic Centrifuge Modeling of Liquefaction in Sand Deposits. The 16thEngineering Mechanics Conference, ASCE. 2003: 151~162
    131 C. W. Lu, S. C. Lai. Evaluation of Side Boundary on Dynamic Numerical Modeling for Centrifugal Model Tests. Journal of Earthauake Engineering. 2008, 12(5): 760~778
    132 P. A. L. F. Coelho, S. K. Haigh, S. P. G. Madabhushi, et al. Post-earthquake Behaviour of Footings Employing Densification to Mitigate Liquefaction. Ground Improvement. 2007, 11(1): 45~53
    133 S. Bhattacharya. Pile Instability during Earthquake Liquefaction. P.h.D Dissertation, University of Cambridge. 2003: 30~49
    134 K. Arulanandan, R. F. Scott. Project VELACS-control test results. Journal of the Geotechnical Engineering, ASCE. 1993, 119(8): 1276~1292
    135 S. J. Brandenberg. Behavior of Pile Foundations in Liquefied and Laterally Spreading Ground. Ph.D. Dissertation, University of California, Davis. 2002: 30~49
    136 A. Elgamal, Z. Yang, E. Parra. Computational Modeling of Cyclic Mobility and Post-Liquefaction Site Response. Soil Dynamics and Earthquake Engineering. 2002, 22(4): 259~27137 T. J. Weaver, S. A. Ashford, K. M. Rollins. Response of a 0.6-m CISS Pile inLiquefied Soil under Lateral Loading. Journal of Geotechnical andGeoenvironmental Engineering. 2005, 131(1): 94~102
    138 K. M. Rollins, L. J. Hales. P-y Curves for Large Diameter Shafts in Liquefied Sandfrom Blast Liquefaction Tests. Seismic Performance and Simulation of PileFoundations. 2006, 2: 11~23
    139 G. Castro. Liquefaction of Sands. Ph.D. Dissertation, Harvard University. 1969. 81:1~112
    140 T. M. Gerber. P-y Curves for Liquefied Sand Subject to Cyclic Loading Based onTesting of Full-Scale Deep Foundation. Ph.D. Dissertation, Brigham YoungUniversity. 2003: 125~265
    141 Osman Amr El Menchawi. Development of Generalized Pseudostatic p-y Curves forLiquefied Sands. Ph.D. Dissertation, University of California. 2006: 72~175
    142廖雄华,李锡夔.关于土一结相互作用界面力学行为的数值模拟.计算力学学报.2002,19(4):450~455
    143赵成刚,尤昌龙.饱和砂土液化与稳态强度.土木工程学报.2001,34(3):90~96
    144鲁晓兵,谈庆明,王淑云等.饱和砂土液化研究新进展.力学进展.2004,34(1):87~96
    145张建民,谢定义.饱和砂土振动孔隙水压力理论与应用研究进展.力学进展.1993,23(2):165~180
    146刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究.岩土工程学报.2003,24(2):142~146
    147崔杰,门福录,沈世杰.以剪切波速为参量的一种砂土地震液化的不确定性判别法.地震工程与工程振动.1997,17(3):91~99
    148叶吉芳,张固宁,陈季等.模糊讯息分析法评估砂性土液化潜能.岩土工程学报.1996,18(1):7~14
    149孙锐,袁晓铭,石兆吉.建筑物地基中地震孔压的计算分析.世界地震工程.1999,15(3):63~68
    150陈文化.CONE模型与地基动力液化的非线性有效应力分析.岩土力学.2003,24(1):40~44
    151赵跃堂,钱七虎,王明洋.爆炸波作用下三相饱和土本构研究.爆炸与冲击.1998,18(1):28~34
    152廖振鹏.工程波动理论.科学出版社.2002:36~47
    153王明洋,钱七虎.爆炸波作用下准饱和土的动力模型研究.岩土工程学报.1995,17(16)f:103~110
    154赵剑明,汪闻韶,张崇文.土石坝振动孔压影响因素的研究.水利学报.2000,5(2):54~59
    155杨峻,吴世明.地震波在饱和土层界面的反射与透射.地震学报.1997,19(1):29~35
    156赵成刚,高福平,崔杰.波在饱和多孔介质与弹性固体介质交界面上的界面效直.地震工程与工程振动.1999,19(1):1~6
    157蔡袁强,徐长节,吴世明.粘弹性饱水岩层中地震波的传播.地震学报.1985,20(3):250~254
    158门福录,崔杰,景立平.含水与不含水地层的分层交错对地面运动和波传播的影响.地球物理学报.1995,38(6):774~786
    159石兆吉,张延军,郁寿松等.土层液化对地面运动特性的影响.地震工程与工程振动.1994,14(4):15~23
    160汪明武,罗国煜.最优化方法在砂土液化势评价中的应用.岩土工程学报.1999,2 1(6):704~706
    161林皋.土一结构动力相互作用.世界地震工程.1991,1:4~21转39
    162黄雨,舒翔,叶为民等.桩基础抗震研究现状综述.工业建筑.2002,32(7):50~53
    163黄雨,八(?)厚,张锋.液化场地桩一土一结构动力相互作用的有限元分析.岩土工程学报.2005,27(6):646~651
    164凌贤长,王臣,王志强.自由场地基液化大型振动台模型试验研究.地震工程与工程振动.2003,23(6):138~143
    165张建民.水平地基液化后大变形对桩基础的影响.建筑结构学报.2001,22(5):75~77
    166凌贤长,王臣,王成.液化场地桩一土一桥梁结构动力相互作用振动台试验模型相似设计方法.岩石力学与工程学报.2004,23(4):450~456
    167冯士伦.可液化土层中桩基横向承载特性研究.天津大学博士论文.2004:67~76
    168凌贤长,王东升,王志强.液化场地桩一土一桥梁结构动力相互作用大型振动台模型试验研究.土木工程学报.2004,37(11):67~72
    169王建华,冯士伦.液化土层中桩基水平承载特性分析.岩土力学.2005,26(10):1597~1601
    170冯士伦,王建华,郭金童.液化土层中桩基抗震性能研究.岩石力学与工程学报.2005,24(8):1402~1406
    171冯士伦,王建华.饱和砂土中桩基的振动台试验.天津大学学报.2006,39(8):951~956
    172凌贤长,唐亮,于恩庆.液化场地地震振动孔隙水压力增长数值模拟的大型振动台试验及其数值模拟.岩石力学与工程学报.2006,25(2):3998~4003
    173王成雷,王建华,冯士伦.土层液化条件下桩土相互作用p-y关系分忻.岩土工程学报.2007,29(10):1500~1505
    174王成雷,王建华.土层液化过程中桩土相互作用的动力p-y曲线研究.中国海湾建设.2007,(2):9~12
    175王建华,戚春香,余正春.弱化饱和砂土中桩的p-y曲线与极限抗力研究.岩土工程学报.2008,30(3):309~315
    176凌贤长,唐亮,高霞.液化场地桩基桥梁加速度反直振动台试验与数值模拟.哈尔滨工业大学学报.2008,40(10):1546~1551
    177袁晓铭,李雨润,孙锐.地面横向住返运动下可液化土层中桩基响应机理.土木工程学报.2008,41(9):102~109
    178凌贤长,徐鹏举,于恩庆.液化场地桩一土一桥梁结构地震相互作用振动台试验数值模拟方法研究.地震工程与工程振动.2008,28(3):71~377
    179凌贤长,郭明珠,王臣.液化场地桩基桥梁地震灾害响直大型振动台模型试验研究.岩土力学.2006,26(1):123~129
    180唐亮,凌贤长,徐鹏举.液化场地桥梁群桩-独柱墩结构地震反直振动台试验研究.土木工程学报.2009,42(11):102~108
    181 L. Tang, X. Z. Ling, P. J. Xu, et al. Shake Table Test of Soil-Pile Groups-bridgeStructure Interaction in Liquefiable Ground. Earthquake Engineering andEngineering Vibration. 2010, 9(1): 39~50
    182 L. Tang, X. Z. Ling, P. J. Xu, et al. Seismic Response of Elevated-Cap Pile Groupsof Bridge in Liquefiable Ground Using Shaking Table Test. Journal of HarbinInstitute of Technology (New Series). 2009, 16(Sup.1): 198~201
    183唐亮,凌贤长,徐鹏举.承台型式对液化场地桥梁桩一柱墩地震响直影响振动台试验研究.地震工程与工程振动.2010,30(1):155~160
    184陈清军,赵云峰,王汉东.振动台模型试验中地基土域的数值模拟.力学季刊.2002,23(3):407~409
    185王刚,张建民.砂土液化变形的数值模拟.岩土工程学报.2007,29(3):403~409
    186钱家欢,殷宗泽.土工原理与计算.中国水利水电出版社.1996:23~46
    187 K. Yang. Analysis of Laterally loaded Drilled Shafts in Rock. Ph.D. Dissertation,The University of Akron. 2006: 70~94
    188 H. Dou, P. M. Byrne. Model Studies of Boundary Effect on Dynamic Soil ResponseCanadian Geotech Journal. 1997, 34(3): 460~465
    189 H. Matlock, E. A. Ripperger. Measurement of Soil Pressure on a Laterally LoadedPile. Proceedings, American Society for Testing Materials. 1958, 58: 1245~1259
    190 J. Ting. Full Scale Cyclic Dynamic Lateral Pile Response. Journal of GeotechnicalEngineering, ASCE. 1987, 113(1): 30~45
    191 M. Takayoshi, I. michio. Identification of Nonlineaer Dynamic Soil Resistance toPile. Journal of Strucrural and Construction Engineering. 2000: 49~56
    192 A. Takahashi, J. Kuwano, Y. Arai, et al. Lateral Resistance of Buried Cylinder inLiquefied Sand. Proceedings of The International Conference on Physical Modellingin Geotechnics, Newfoundland, Canada. Physical modelling in gewtechnics. 2002:477~482
    193 API. Recommended Practice for Planning, Designing and Constructing FixedOffshore platforms. American Petroleum Institute. 2000
    194 Y. Shamoto, J. M. Zhang, S. Goto. Mechanism of large Post-liquefactionDeformation in Saturated Sands. Soils and Foundation. 1997, 37(2): 71~80
    195 Y. P. Vaid, J. Thomas. Liquefaction and Postliquefaction Behavior of Sand. Journalof Geotechnical Engineering, ASCE. 1995, 1(121): 163~173
    196 A. Elgamal, Z. H. Yang, E. Parra, et al. Modeling of Cyclic Mobility in SaturatedCohesionless Soils. International Joural of Plastictty. 2003, 19(6): 883~905
    197 Y. Shamoto, J. M. Zhang, Kusukame. A Simple method for Triaxial Strain PathTesting of Soils. Journal of Soils and Foundations. 1996, 36(2); 129~137
    198 Y. Shamoto, J. M. Zhang, S. Goto. Mechanism of large Post-liquefactiondeformation in saturated sands. Joural of Soils and Foundations. 1997, 37(2): 71~80
    199戚春香.饱和砂土液化过程中桩土相互作用p-y曲线研究.天津大学博士论文.2008:30~48
    200 Z. Yang, J. Lu, A. Elgamal. A Web-based Platform for Computer Simulation of Seismic Ground Response. Advances. Advances in Engineering Sofrware. 2004, 35(5): 249~259
    201 M. A. Biot, D. G. Willis. The Elastic Coefficiects of the Theory of Consolidation. Journal of Applied Mechanics. 1957, 1(24): 594~601
    202 A. Elgamal. Nonlinear Modeling of Large-scale Ground-Foundation-Structure Seismic Response. Journal of Earthquake Technology. 2007, 44(2): 325~339
    203 I. M. Smith. Overview of Nmerical Predictions in the VELACS Project. Proceedings of the Verifications of Numerical Predictions for the Analysis of soil Liquefaction. 1993, 2: 1321~1338
    204 O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, D. K. Paul, et al. Static and Dynamic Behavior of Soils: A Rational Approach to Quantitative Solutions: I. Fully Saturated Problems. Proceedings of the Royal Society London, Series A, Mathematical and Physical Sciences. 1990, 429: 285~309
    205 E. Parra. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems. Ph. D. dissertation, Rensselaer Polytechnic Institute. 1996: 85~101
    206 O. C. Zienkiewicz, P. Bettess. Fluis Structure Interaction. Proceedings of the Ocean Structural Dynamics Symposium, Oregon Sate University. 1982: 65~102
    207 T. Shiomi, S. Tsukuni, M. Hatanaka, et al. Aimulation Analysil of Ground Liquefaction induced by Earthquake. Compute and Geotechnics. 1987, 4(4): 221~245
    208 O. C. Zienkiewicz, D. K. Paul, A. H. C. Chan. Numerical Solution for the total Response of Saturated Porous Media Leading to Liquefaction and Subsequent Consolidation. Numeta 87 Conference, Swansea. 1987: 6~10
    209 O. C. Zienkiewicz, M. Pastor, A. H. C. Chan. Simple Models for Soil Behaviour and Applications to Problems of Soil Liquefaction. Numerical Methods in Geomechanics. 1988: 169~180
    210 M. Cervera, J. Oliver, R. Faria. Seismic Evaluation of concrete Dams Via Continuum Damage Models. Earthquake Engineering Structural Dynamics. 2006, 24(9): 1225~1245
    211 P. K. Woodward, D. V. Griffiths. Influence of Viscous Damping in the Dynamic Analysis of an Earth Dam Using simple Constitutive Models. Comprters and Geotechnica. 1996, 19(3): 245~263
    212 J. H. Prevost. Nonlinear Dynamic Response Analysis of Soil and Soil-Structure Interacting Systems. In Soil Dynamics and Geotechnical Earthquake Engineering. 1993: 49~126
    213 A. H. C. Chan, O. O. Famiyesin, D. Muir Wood. A Fully Explicit u-w Schemes for Dynamic Soil and Pore Fluid Interaction. Apcom Hong Kong. 1991, 1: 881~887
    214 X. K. Li, O. C. Zienkiewicz. Multiphase Flow in Deforming Porous Media and Finte Element Solutins. Computers Structures. 1992, 45(2): 211~227
    215王刚,张建民.地震液化问题研究进展.力学进展.2007,37(4):575~590
    216A. Anandarajah Rashidi, K. Arulanandan. Elasto-plastic Finite Element Analyses of a Soil-Structure System under Earthquake Excitations. Computers and Geotechnics. 1995, 17(3): 301~325
    217A. Gajo, A Saetta, R. Vitaliani. Evaluation of three-and two-field Finite Element Methods for the Dynamic Response of Saturated Soil. International Journal for Numerical Methods in Engineering. 1994, 37: 1231~1247
    218R. S. Sandhu, H. L. Shaw, S. J. Hong. A Three-Field Finite Element Procedure for Analysis of Elastic Wave Propagation throgh Fluid-saturated Soils. Soil Dynamics and Earthquake Engineering. 1990, 9: 58~65
    219A. H. C. Chan, O. O. Famiyesin, W. D. Muir. Numerical Prediction for Model. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems. Rotterdam. 1994: 87~108
    220M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. Part I-low-frequency Range, Journal of the Acoustical Society of America. 1956, 28(2): 168~178.
    221Ragheb, M. Ahmed. Numerical Analysis of Seismically Induced Deformations In Saturated Granular Soil Strata. Ph.D Dissertation, Rensselaer Polytechnic Institute. 1994: 11~32
    222 A. K. Chopra. Dynamics of Structures. Upper Saddle River: Prentice Hall. 2001: 345~401
    223 V. Cannillo, M. Mancuso. Spurious Resonances in Numerical Time Integration Methods for linera Dynamics. Journal of Sound and Vibration. 2000, 238(3): 398~399
    224 O. C. Zienkiewicz, C. T. Chang, P. Bettess. Consolidating and Dynamic Behaviour Assumptions in Soils. Geotechnique. 1980, 30(4): 385~395
    225 M. G. Katona, O. C. Zienkiewicz. A Unified Set of Single Step Algorithms. Part 3: The Beta-m Method, A Generalization of the Newmark Scheme. International Journal for Numerical Methods In Engineering. 1985, 21: 1345~1359
    226 A. H. C. Chan, O. O. Famiyesin, D. Muir Wood. Numerical Modelling of Dynamic Experiments on Dry Sand Beds using Simple Models. Proceedings of the 3rdEuropean Conference on Numerical Methods in Geotechnical Engineering. 1994: 249~255
    227 Z. Yang. Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction. Ph.D Dissertation, Columbia University. 2000: 47~59
    228 J. H. Prevost. A Simple Plasticity Theory for Frictional Cohesionless Soils. Soil Dynamics and Earthquake Engineering. 1985, 4(1): 9~17
    229 K. Ishihara, F. Tatsuoka, S. Yasuda. Undrained Deformation and Liquefaction of Sand under Cyclic Stresses. Soils and Foundations. 1975, 15(1): 29~44
    230 S. Murayama. Constitutive Laws of Soils-Report of Issmfe Subcommittee on Constitutive Laws of Soils. Proceedings of Discussin Session, San Francisco. 1985: 1097~1100
    231 B. Ghosh, S. P. G. Madabhushi. Centrifuge Modelling of Seismic Soil Sturcture Interaction Effects. Nuclear Engineering and Design. 2007, 237(8): 887~896
    232 Felix Darve, Francois Nicot. On Incremental Non-linerity in Granular Media: Phenomenological and Multi-scale Views. International Journal for Numerical and Analytical Methods in Geomechanics. 2005, 29(14): 1387~1409
    233 Y. F. Dafalias. Overview of Constitutive Models used in VELACS. Proceedings of the International Conference on the Verfication of Numerical Procedurew for the Analysis of Soil Liquefaction Problem. 1994, 2: 1293~1303
    234 F. Oka, A. Yashima, A. Tateishi, Y. Taguchi, et al. A Cyclic Elasto-plastic Constitutive Model for Sand Considering a Plastic-strain Dependence of the Shear Modulus. Geotechnique. 1999, 49: 661~6807
    235K. Nishi, M. Kanatani. Constitutive Relations for Sand under Cyclic Loading based on Elasto-Plasticity Theory. Soils and Foundations. 1990, 30(2): 43~59
    236Y. F. Dafalias, L. R. Herrmann. Bounding Surface Formulation of Soil Plasticity. Soil Mechanics-Cyclic and Transient Loads. 1982: 253~282
    237K. Hashiguchi, Z. P. Chen. Elastoplastic Constitutive Equation of Soils with the Subloading Surface and Rotational Hardening. International Journal for Numerical and Analytical Methods in Geomechanics. 1998, 22: 197~227
    238K. Hashiguchi. Foundamenatals in Constitutive Equation: Continuity and Smoothness Conditions and Loading Criterion. Soils and Foundations. 2000, 40(4): 155~161
    239Z. Mroz, O. C. Zienkiewicz. Uniform Formulation of Constitutive Equations for Clays and Sand. Mechanics of Engineering Materials. 1984: 415 ~ 450
    240Z. Yang, A. Elgamal, E. Parra. A Computational Model for Cyclic Mobility and Associated Shear Deformation. Journal of Geotechnical and Geoenvironmental Engineering. 2003, 129(12): 1119~1127
    241W. D. Iwan. On a Class of Models for the Yielding Behavior of Continuous and Composite Systems. Journal of Applied Mechanics. 1967, 34: 612~617
    242Z. Mroz. On the Description of Anisotropic Work Hardening. Journal of Mechanics and Physics of Solids. 1967, 15: 163~175
    243R. L. Kondner. Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of the Soil Mechanics and Foundations Division. 1963, 89(1): 115~143
    244Z. Yang, A. Elgamal. Influence of Permeability on Liquefaction-Induced Shear Deformation. Journal of Engineering Mechanics. 2002, 128(7): 720~729
    245R. Dobry, V. Taboada, L. Liu. Centrifuge Modeling of Liquefaction Effects During Earthquakes. Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, Tokyo, Japan. 1995: 1291~1324
    246J. C. Lu, J. Peng, A. Elamal, et al. Parallel Finite Element Modeling of Earthquake Ground Response and Liquefaction. Earthquake Engineering and Engineering Vibration. 2004, 3(1): 23~37
    247徐志英,沈珠江.土坝地震孔隙水压力产生.扩散和消散的有限单元法动力分析.华东水利学院学报.1981,4:1~16
    248 Z. L. Wang, Y. F. Dafalias, C. K. Shen. Bounding Surface Hypoplasticity Model for Sand. Journal of Engineering Mechanics, ASCE. 1990, 116: 983~1001
    249 M. T. Manzari, Y. F. Dafalias. A critical State Two-surface Plasticity Model for Sands.Geotechnique. 1997, 49(2): 252~272
    250 X. S. Li, Y. F. Dafalias. Dilatancy for Cohesioniess Soils. Getechnique. 2000, 50: 449~460
    251 Y. F. Dafalias, A. G. Papadimitriou, X. S. Li, er al. Generic Constitutive Ingredients in CSSM Models for Sands. Springer Berlin Heidelberg. 2006, 106: 103~116
    252 S. N. Nasser, J. Zhang. Constitutive Relations for Cohesionless Frictional Granular Materials. International Journal of Plasticity. 2002, 18 (4): 531~547
    253 E. Radi., D. Bigoni., B. Loret. Steady Crack Growth in Elastic-plastic Fluid-saturated Porous Media. International Journal of Plasticity. 2002, 18(3): 345~358
    254 R. Popescu, J. H. Prevost. Numerical Class A: Predictions for Soil Models. Proceedings of the International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Balkema, Rotterdam. 1993, 1(1): 1105~1207
    255 Y. F. Dafalias, E. P. Popov. Amodel for Nonlinearly Hardening Materials for Complex Loadings. Acta Mechanica. 1975, 21: 173~192
    256 Y. F. Dafalias, E. P. Popov. Cyclic Loading for Materials with a Vanishing Elastic Region. Nuclear Engineering Mechanics, ASCE. 1977, 112(9): 966~987
    257 Z. Wakai, S. Gose, K. Ugai. 3D Elasto-plastic Finite Element under Analyses of Pile Foundations Subjected to lateral Loading. Soils and Foundations. 1999, 39: 97~111
    258 K. Fukutake, A. Ohtsuki, S. Fujikawa, M. Sato. Three Dimensional Effective for Evaluating Response of Group Pile Foundation under Liquefaction. Japan Society of Civil Engineers. 1993, 495: 101~110
    259 Z. Yang, B. Jeremic. Numerical Analysis of Pile Behaviour under Lateral Loads in Layered Elastec-plastic Soils. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, 2: 1~31
    260 K. J. Bathe, A. P. Cimento. Some Practical Procedures for the Solution of Nonlinear Finite Element Equation. Computer Methods in Applied Mechanics and Engineering. 1980, 22(1): 59~85
    261 W. D. L. Finn, W. B. Gohl. Centrifuge Model Studies of Piles under SimulatedEarthquake lateral Loading. Geotechnical Special Pulication. 1987, 11: 21~38
    262杜修力,赵建锋.考虑土-结构相互作用效应的结构地震响应时域予结构分忻法.北京工业大学学报.2007,3(5):518~521
    263 T. Kagawa, L. Kraft. Modeling the Liquefaction Process. Journal of theGeotechnical Engineering Division. 1981, 107(12): 1593~1607
    264 T. Kagawa. Effects of Liquefaction on Lateral Pile Responses. Piles under DynamicLoads, Prakash, Shamsher. Geotechnical Special Publication. 1992: 207~223
    265 D. S. Liyanathirana, H. G. Poulos. Numerical Simulation of Soil Liquefaction due toEarthquake Loading. Soil Dynamics and Earthquake Engineering. 2002, 1(22):511~523
    266 R. B. Seed, L. F. Harder. Spt-based Analysis of Cyclic Pore Pressure Generation andundrained Residual Strength. Proceedings of the Hotel Blton Seed MemorialSymposium, University of California at Berkeley. 1900, 2: 351~376
    267 H. Matlock. Correlations for Design of Laterally Loaded Piles in Soft Clay.Proceedings of the 2nd Annual Offshore Technology Conference. Houston, Texas,1970: 577~594
    268 J. B. Anderson, F. C. Townsend, B. Grajales. Case History Evaluation of LaterallyLoaded Piles. Journal of Geotechnical and Geoenvironmental Engineering. 2003,129(3): 187~196
    269 L. C. Reese, W. R. Cox, F. D. Koop. Analysis of Laterally Loaded Piles in Sand.Proceedings of the 6th Annual Offshore Technology Conference. Houston, Texas,1974, 2: 473~483
    270 S. Ashford, Teerawut Jrirnarongrit. Evaluation of Pile Diameter Effect on InitialModulus of Subgrade Reaction. Journal of Geotechnical and GeoenvironmentalEngineering. 2003, 129(3): 234~242
    271 D. Brown, C. F. Shie. Some Numerical Experiments with a Three DimensionalFinite-element Model of a Laterally Loaded Pile. Computers and Geotechnics. 1991,12: 149~162
    272 A. Trochanis, J. Bielak, P. Christiano. Three-dimensional Nonlinear Study of Piles.Journal of the Geotechnical Engineering. 1991, 117(3): 429~447
    273 A. Elgamal, J. Lu, L. J. Yan. Large Scale Comprtational Simulation in GeotechnicalEarthquake Engineering. The 12th International Conference of InternationalAssociation for Computer Methods and Advances in Gemechanics. 2008:2782~2789
    274 B. McClelland, J. A. Focht. Soil Modulus for Laterally Loaded Piles. Transactions ofthe American Society of Civil Engineers. 1958, 123: 1049~1086
    275 H. Matlock, S. H. C. Foo, L. M. Bryant. Simulation of Lateral Pile Behaviour underEarthquake Motion. Speciality Conference on Earthquake Engineering and SoilDynamics, ASCE. 1978, 2: 600~619
    276 A. Abghari, J. Chai. Modeling of Soil-Pile-Superstructure Interaction in the Designof Bridge Foundations. Geotechnical Special Publication. 1995, 51: 45~59
    277 D. Badoni, N. Makris. Nonlinear Response of Single Piles under Lateral Inertial andSeismic Loads. Soil Dynamics and Earthquake Engineering. 1996, 15(1): 29~43
    278 W. D. Liam Finn. A Study of Piles during Earthquakes: Issues of Design andAnalysis. Bulletin of Earthquake Engineering. 2005, 3(2): 141~234
    279 A. Abghari, J. Chai. Modeling of Soil-Pile-Superstructure Interaction for BridgeFoundations in Perforance of Deep Foundations Under Seismic Loading.Geotechnical Special Publication. ASCE. 1995: 45~59
    280 M. Novak, M. Sheta. Approximate Approach to Contact Effects of Piles. Proc. of aSpecialty Conference on Dynamic Response of Pile Foundations: Analytical Aspects,ASCE, Hollywood. 1980: 53~79
    281 M. H. Naggar, M. Novak. Nonlinear Analysis for Dynamic Lateral Pile Response.Soil Dynamics and Earthquake Engineering. 1996, 15(4): 233~244
    282 Y. E. Mostafa, M. H. El Naggar. A FE-Based Model for Analysis of LateralResponse of Pile Groups. The 2nd Canadian Specialty Conference on ComputerApplications in Geotechnique. Winnipeg, Manitoba: The Canadian GeotechnicalSociety. 2002: 96~103
    283孙利民,张晨男,潘龙.桥梁桩土相互作用的集中质量模型及参数确定.同济大学学报.2002,30(4):409~414
    284王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹塑性模型.岩土工程学报.1980,2(3):10~20
    285 G. Gazetas, R. Dobry. Horizontal Response of Piles in Layered Soils. Journal of Geotechnical Engineering, ASCE. 1984, 1(110): 20~40
    286 G. Gazetas, R. Dobry. Simple Radiation Damping Model for Piles and Footings. Journal of Engineering Mechanics, ASCE. 1984, 1(110): 937~956
    287 T. Kagawa, Y. Taji, C. Minowa. Soil-Pile-stucture Interaction in Liquefying Sand from Large-scale Shaking-table Tests and Centrifuhe Tests. Geotechnical Special Publication ASCE. 1977: 69~84
    288 R. Bouc. Modele Mathematique Dhysteresis. Acustica. 1971, 21: 16~25
    289 L. C. Reese, W. R. Cox, F. D. Koop. Analysis of Laterally Loaded Piles in Sand. Proceedings of the 6th Annual Offshore Technology Conference. Houston, Texas, 1974, 2: 473~483
    290 N. Gerolymos, G. Gazetas. Development of Winkler Model for Static and Dynamic Response of Caisson Foundations with Soil and Interface Nonlinearities. Soil Dynamics and Earthquake Engineering. 2006, 26(5): 363~376
    291 A. M. Kaynia, E. Kausel. Dynamic Behavior of Pile Groups. Proceedings of the 2ndInternational Conference on Numerical Methods in Offshore Piling, University of Texas at Austin. 1982: 509~531
    292 M. F. Randolph, D. Wang, H. Zhou, et al. Large Deformation Finite Element Analysis for Offshore Applications. The 12th International Conference of Interational Association for Computer Methods and Advances in Geomechanics, Goa, India. 2008: 3307~3316
    293 D. S. Liyanapathirana, H. G. Poulos. Sesmic Lateral Response of Piles in Liqufying Soil. Journal of Geotechnical and Geo-Environmental Engineering, ASCE. 2005, 1(131): 1466~1479
    294 W. Kornkasem. Seismic Behavior of Pile-supported Bridges. Ph. D dissertation, University of Illinois at Urbana-Champaign. 2001: 59~88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700