用户名: 密码: 验证码:
氧化铈催化臭氧氧化水中有机物及控制溴酸盐研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧催化氧化深度处理工艺是一种有效地分解水中高稳定性有机物的方法,它在水处理领域有很好的应用前景,影响其应用的关键因素在于高效催化剂的研制以及氧化过程中溴酸盐的生成控制问题,同时缺乏系统的设计参数(如停留时间、催化剂加入量等)以指导工程实际。
     研究利用催化剂强化臭氧氧化的作用机理与途径,是研制高效催化剂并将其应用于工程实际的基础。论文中选择了几种有代表性的催化剂;氧化铈、羟基氧化铁、氧化镁、氧化铝以及高硅沸石等,它们在臭氧催化氧化有机物时所遵循的作用机理有很大差别。本研究以氧化铈作为主要催化剂,从以下几方面考察不同催化剂对臭氧分解有机物和控制溴酸盐的催化氧化规律:(1)考察了不同条件下氧化铈催化臭氧氧化有机物的效能,并论证氧化铈催化臭氧氧化水中有机物的作用机理;(2)以滤后水为对象,研究不同催化剂强化臭氧氧化前后水中有机物分子量分布以及官能团的变化情况,并考察了单独臭氧氧化与催化剂联用的可能性;(3)考察了不同条件下氧化铈催化臭氧氧化控制水中溴酸盐的效能,初步探讨了氧化铈催化臭氧氧化控制水中溴酸盐生成的机理;(4)通过连续流试验,考察了不同条件下催化剂对臭氧分解的促进效能,并讨论了相同催化剂在不同条件下以及不同催化剂之间臭氧分解与催化剂强化臭氧氧化有机物之间的关系。
     在本研究中选择了两种比较典型的目标物—对氯硝基苯和邻苯二甲酸(PA),这两种有机物与臭氧分子的氧化速率都非常慢,对氯硝基苯通常被用作臭氧氧化过程中羟基自由基的指示性有机物,它的络合能力较差;而邻苯二甲酸具有很好的络合能力。试验过程中发现,氧化铈的存在并没有提高臭氧对水中对氯硝基苯的去除率,与单独臭氧氧化相比,对氯硝基苯的去除率反而有所降低,为了更好地研究其作用机理,通过向O3/CeO2反应体系中加入过氧化氢来激发臭氧产生羟基自由基,虽然对氯硝基苯的去除率有所提高,但仍然远小于相同条件O3/H2O2反应过程中对氯硝基苯的去除率。推断在氧化铈催化臭氧氧化对氯硝基苯的过程中,羟基自由基的产生受到了一定的抑制。氧化铈催化臭氧氧化PA时,有很好的去除效果,通过不同条件下氧化铈催化臭氧氧化PA的效果可做出如下推断:由于氧化铈表面的Ce4+是较强的Lewis酸,很容易吸附溶液中的PA和臭氧,PA与氧化铈形成Ce(Ⅳ)-PA中间体,而臭氧与氧化铈形成氧化能力比臭氧更强的表面键O·-自由基,表面键O-·自由基与PA和氧化铈形成的中间体反应,从而达到去除水中PA的目的。这个推断可以解释不同条件下氧化铈催化臭氧氧化PA时所表现出的特点,在此过程中PA在氧化铈表面上的络合吸附以及臭氧在催化剂表面的转化成为影响氧化铈催化臭氧效能的关键因素。
     天然水体中的有机物绝大部分是天然有机物(NOM),常规水处理工艺对NOM的去除非常有限,NOM的存在会在消毒过程中产生消毒副产物,同时使管网内细菌二次繁殖,严重影响饮用水水质。为了深入地研究不同臭氧催化氧化工艺对水中NOM的作用规律,测定了氧化过程中UV254和DOC的变化、分子量分布的变化,并用荧光技术考察了滤后水氧化前后NOM组分结构和官能团变化。O3/FeOOH氧化滤后水的矿化程度比较明显,O3/FeOOH与O3/MgO氧化滤后水的A型EEM荧光基团强度显著降低,臭氧催化氧化可以有效地降低滤后水中芳环或共轭键有机物的数量,同时将腐殖酸类物质氧化成小分子有机物。虽然O3/CeO2氧化NOM的效果较差,但是其与单独臭氧氧化联用可以显著地提高水中DOC的去除率,多种臭氧催化氧化工艺联用将是以后的发展方向。
     为了进一步研究CeO2控制臭氧氧化过程中BrO3的生成机理,考察了不同影响因素对CeO2控制BrO3生成的影响,同时对不同煅烧温度条件下生成的CeO2进行了表征。通过研究讨论推断,CeO2控制臭氧氧化过程中BrO3的生成主要是由于CeO2吸附了水中一些含氧负离子(如HO2、O2·等),从而抑制了羟基自由基的产生,进而控制了水中BrO3的生成。
     用二氧化铈催化臭氧氧化虽然不能提高对氯硝基苯的去除,但可以很好地催化臭氧氧化水中一些有机酸类物质,同时可以有效地控制溴酸盐生成。在工程应用时,二氧化铈催化臭氧氧化可以与单独臭氧氧化联用,从而进一步将单独氧化或是其它臭氧催化氧化过程中产生的有机酸类物质进一步降解,同时二氧化铈催化剂也可以在臭氧氧化或消毒过程中应用,具有很好的应用前景。
Catalytic ozonation process in water treatment is an effective method for removal of stable organic pollutants, which are promising in water treatment. The key factors affecting its application are the preparation of effective catalysts and the formation of bromate during oxidation process. At the same time, there are few clear design parameters for the application guidance of catalytic ozonation (such as residence time, catalyst amount, etc).
     Understanding on the catalytic ozonation mechanism is the key step to develop efficient catalysts and providing sound basis for engineering applications. Some typical catalysts were selected such as cerium dioxide, hydroxy iron oxide, magnesium oxide, alumina and high silica zeolite. There are different catalytic ozonation mechanism in the presence of different types of catalysts. Cerium dioxide was selected as the major catalyst. The influence of different catalytic ozonation on the removal of organic pollutants and control bromate was discussed:1. The effectiveness and mechanism of ozone oxidation of organic pollutants with cerium oxide under different conditions were discussed; 2. The molecular weight distribution and functional group changes of organic matter after catalytic ozonation of the filtered water were investigated, the possibility of combined ozonationation alone and catalytic ozonation was also discussed;3. Bromate formation and control method in catalytic ozonation of bromide containing water in the presence of cerium oxide under different conditions were investigated, and the mechanism of bromate reduction in catalytic ozonation in the presence of cerium oxide was discussed; 4. Ozone decomposition catalysed by different catalysts was investigated and the relationship between ozone decomposition and the oxidation of organic matter in continuous flow reactor were also discussed.
     Two typical target-chloronitrobenzene and phthalic acid (PA) were selected in this study, which have very low oxidation rate by ozone molecules. Chloronitrobenzene with poor complexing ability were often used as indicative organic compounds of hydroxyl radical oxidation during ozonation, and PA has a good complexing ability with catalysts. The removal rate of chloronitrobenzene did not increase but decrease during catalytic ozonation in the presence of cerium oxide. In order to further study the mechanism of catalytic ozonation by cerium oxide, peroxide was added into reaction O3/CeO2 to induce hydroxyl radicals. Although the removal rate of chloronitrobenzene increased after adding cerium oxide and peroxide, it still far less than than the case achieved by O3/H2O2 under the same conditions. So it is deduced that the production of hydroxyl radicals was inhibited during the catalytic ozonation of chloronitrobenzene after adding cerium oxide.
     There was a good catalytic ozonation effect on PA in the presence of cerium dioxide, from which we infered that Ce(Ⅳ) of cerium oxide surface was a strong Lewis acid and it easily absorbed PA and ozone in the solution, leading to the formation of complex intermediates of PA and the formation of O·-free radicals, then O·-free radicals reacted with complex intermediates of PA. The entire reaction processes improved the removal of PA. The inference above could be used to explain the responding characteristics of catalytic ozonation of PA in the presence of cerium oxide. During entire reaction processes, the complex adsorption of PA and the conversion of ozone on the catalyst surface were the key factor of catalytic ozonation in the presence of cerium oxide.
     The major organic matter in natural waters was natural organic matter(NOM), which was difficult to be removed during conventional water treatment processes. The oxidation of NOM made the formation of disinfection by-products during disinfection. NOM could also cause the regrowth of bacterial in water supply networks, which seriously affect the quality of drinking water. In order to study the catalytic ozonation of NOM in water, the parameters such as UV254, DOC and SUVA changes and the structural and functional group variation of NOM illustrated by EEM of filtered water treated by catalytic ozonation were measured. The obvious mineralization of filtered water was achieved after the oxidation by O3/FeOOH, the A-EEM fluorescent intensity was significantly lower after the oxidation by O3/FeOOH and O3/MgO. Catalytic ozonation could effectively reduce the number of aromatic ring and conjugated organics in the filtered water, and oxidize humic substances into small molecular organic compounds. Although cerium oxide behave poor effective oxidation efficiency of NOM, but the use of cerium oxide in catalytic ozonation after ozone alone could significantly increase the removal of DOC. The combined process of ozonation and catalytic ozonation would be a promising process for future water treatment.
     To further study the mechanism of bromate reduction in catalytic ozonation by cerium oxide, the influence of different factors on bromate formation and control in catalytic ozonation was investigated and meanwhile CeO2 generated under different calcination temperatures were characterized. Based on the results of this study, and the discussion on the process of O3/CeO2 for controling the formation of BrO3-, the adsorption on CeO2 was mainly due to a number of oxygen ions in water (such as the HO2-, O2·-, etc.) on the catalyst surface, thereby inhibiting the production of hydroxyl radicals, and then control the formation of BrO3-.
     The mechanism of bromate reduction in catalytic ozonation in the presence of cerium oxide may be explained as follows:the adsorption of some oxygen ions(such as the HO2-, O2·-, etc.) in water which inhibited the production of hydroxyl radicals, therefore, the formation of bromate was reduced in catalytic ozonation in the presence of cerium oxide.
引文
1 2008年中国环境状况公报.国家环保总局.2009
    2 L. Xie and C. Shang. A Review on Bromate Occurrence and Removal Strategies in Water Supply[J]. Water Science and Technology:Water Supply.2006,6(6): 131-136
    3 何茹,鲁金凤,马军,等.臭氧催化氧化控制溴酸盐生成效能与机理.环境科学,2008,29(1):99-103
    4 童俊,臧道德,陈国光,等.关于瓶装水水质标准中溴酸盐离子的探讨.净水技术,2009,28(1):72-74
    5 T. P. Bonacquisti. A Drinking Water Utility's Perspective on Bromide, Bromate, and Ozonation[J]. Toxicology.2006,221:145-148
    6 R. Courbat, S. Ramseier, J. L. Walther, et al. Utilisation de I'ozone pour traitement des eaux potable En Suisse. Gas Wasser Abwasser,1999,79:843-852
    7 M. Cho, J. H. Kim and J. Y. Yoon. Investigating Synergism during Sequential Inactivation of Bacillus Subtilis Spores with Several Disinfectants. Water Res. 2006,40,2911-2920
    8 D. G. Korich, J. R. Mead and M. S. Madore. Effects of Ozone, Chlorine Dioxide, Chlorine, and Monochloramine on Cryptosporidium Parvum Oocyst viability. J. Appl. Environ. Microbiol.1990,56(5),1423-1428
    9 W. R. Mackenzie, N. J. Hoxie, M. E. Procter, et al. A Massive Outbreak in Milwaukee of Cryptosporidium Ifection transmitted through the Public Water supply. New Engl.J.Med.1994,331,161-167
    10 M. Cho, H. M. Chung and J. Y. Yoon. Quantitative Evaluation of the Synergistic Sequential Inactivation of Bacillus Subtilis Spores with Ozone Followed by Chlorine. Environ.Sci.Technol.2003,37,2134-2138
    11 M. Cho, J. Yoon. Enhanced Bacterial Effect of O3/H2O2 Followed by Cl2. Ozone Sci. Eng.2006,28,335-340
    12 U. Von Gunten and Y. Oliveras. Kinetics of the Reaction between Hydrogen Peroxide and Hypobromous Acid:Imolication on Water Treatment and Natural Systems. Wat. Res.1997,31(4):900-906
    13 Y J. Jung, B. S. Oh and J. W. Kang. Synergistic Effect of Sequential or Combined Use of Ozone and UV Radiation for the Disinfection of Bacillus Subtilis Spores. Water Res.,2008,42:1613-1621
    14 R.EI Araby, S. Hawash and G. El Diwan. Treatment of Iron and Manganese in Simulated Groundwater via Ozone Technology. Desalination,2009,249: 1345-1349
    15 Edwin J. Hart. Molar absorptivities of ultraviolet and visible bands of ozone in aqueous solution, Anal. Chem,1983(55),46-49
    16 L. H. Nowell and J. Hoigne. Interaction of Iron(Ⅱ) and other Transition Metals with Aqueous Ozone.8th Ozone World Congress, Zurich, September,1987,
    17 D. Gregory and K. Carlson. Oxidation of Dissolved Manganese in Natural Waters, Annual Conference Proceedings; AWWA,1996
    18 N. J. Ashbolt. Risk Analysis of Drinking Water Microbial Contamination cersus Disinfection By-products(DBPs).Toxicology,2004,198(1-3):255-262
    19 P. C. Singer. Assessing ozonation research needs in wate treatment [J]. JAWWA, 1990,82(10):78 - 88.
    20刘海龙,王东升,王敏,等.臭氧对有机物混凝的影响.环境科学,2006,27(3):456-460
    21刘海龙,杨栋,赵智勇,等.高藻原水预臭氧强化混凝除藻特性研究.环境科学,2009,30(7):1914-1919
    22马军,刘晓飞,张金松,等.臭氧/高锰酸盐预氧化助凝及影响因素,中国给水排水,2005,21(8):10-13
    23 G. F. Stolarik and J. D. Christie. "A Decade of Ozonation in Los Angeles" Conference proceedings, IOA Pan American Group Conference, Lake Tahoe, NV,1997
    24 D. A. Prendiville. "Ozonation at the 900 cfs Los Angeles Water Purification Plant."Ozone Sci. Engrg,1986,8:77.
    25 J. E. Tobiason, J. K. Edzwald, O. D. Schneider, et al. Pilot Study of the Effects of Ozone and Peroxone on In-Line Direct Filtration. J.AWWA, 1992,84(12):72-84.
    26 S. A. Parsons, M. Williams.Introduction.In:Parsons,S.(Ed.),Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing, London, UK,2004:1-6
    27 J. Hoigne, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Part I. Non-dissociating Organic Compounds. Water Res.1983,17:173-183
    28 D. Yao and W. R. Haag. Rate Constants for Direct Reactions of Ozone with Several Drinking Water Contaminants. Water Res.1991,25:761-773
    29 U. Von Gunten. C. L. Greenstock, W. P. Helman, A. B. Ross. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution. J.Phys.Chem.1988,17:513.
    30 U. Von Gunten. Ozonation of drinking water:Part I. Oxidation Kinetics and product formation. Water Res.,2003,37:1443-1467
    31钱易,汤洪霄,文湘华,等.水体颗粒物和难降解有机物的特性与控制技术原理(下).中国环境科学出版社,2000:92-93
    32 H. Bader and J. Hoigne. Determination of Ozone in Water by the Indigo Method. Water Res.,1981,15:449-456
    33 J. Staehelin, J. Hoigne. Decomposition of Ozone in Water:Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol.1982,16, 676-681
    34 B. Langlais, D. A. Reckhow, D.R.Brink. Ozone in Water Treatment:Application and Engineering, Lewis Publishers, Chelsea, MI,1991:20-34
    35 B. Legube., N. Karpel Vel Leitner. Catalytic ozonation:apromising advanced oxidation Technology for water treatment. Catalysis Today,1999,53:61-72
    36鲍晓丽,隋铭皓,关春雨,等.水处理中的高级氧化技术.环境科学与管理,2006,31(1):105-107
    37 H. Xiao, R. P. Liu, X. Zhao, et al. Effect of Manganese Ion on the Mineralization of 2,4-dichlorophenol by Ozone[J]. Chemosphere,2008,72(7): 1006-1012.
    38 R. P. Schwarzenbach, B. I. Escher, K. Fenner, et al. The Challenge of Micropollutants inAquatic Systems[J]. Science,2006,313(5790):1072-1077.
    39 R. Andreozzi, V. Caprio, A. Insola and M.G. D'Amore. The Kinetics of Mn(II)-catalysed Ozonation of Oxalic Acid in Aqueous Solution. Water Res. 1992,26:917-921
    40李来胜,祝万鹏,李中和.催化臭氧化—一种有前景的水处理高级氧化技术.给水排水,2001,27(6):26-29
    41 R. Andreozzi, V. Caprio, A. Insola, et al. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese. Water Res.1998,32:1492-1496
    42 R. Andreozzi, V. Caprio, R. Marotta and V. Tufano. Kinetic Model in Gofpyruvic Acid Ozonation in Aqueous Solutions Catalyzed by Mn(Ⅱ) and Mn(Ⅳ) Ions. Wat.Res.2001,35(1):109-120
    43 D. Pines, D Reckhow. Effect of Dissolved Cobalt(Ⅱ) on the Ozonation of Oxalic Acid. Envir. Sci. Tech.2002,36(9):4040-4051
    44 B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Appl. Catal. B:Environ.,2003,46:639-669
    45 C. Cooper and R. Burch. An Investigation of Catalytic Ozonation for the Oxidation of Halocarbons in Drinking Water Preparation. Water Res.1999,33: 3695-3700
    46 R. Andreozzi, V. Caprio, A. Insola,, et al. The Use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. App. Catal. A:General,1996,138:75-81
    47 C. Quispe, J. Villasenor, Pecchig, et al. Catalytic ozonation ofoxalic acidwithMnO2/TiO2 and Rh/TiO2[J]. J Chil Chi Soc,2006,51(4):1049-1051.
    48 L. H. Nowell and J. Hoigne. Interaction of Iron (Ⅱ) and Other Transition Metals with Aqueous Ozone. In Proceedings of 8th Ozone World Congress, Zurich, Switzerland,2006:80-95
    49 C. H. Wu, C. Y. Kuo, C.L. Chang. Decolorization of Azo dyes Using Catalytic ozonation[J]. React Kinet Catal Lett,2007,91(1):161-168.
    50 C. H. Wu, C. Y. Kuo, C.L. Chang. Decolorization of C. I. Reactive Red 2 by catalytic ozonation processes[J]. J. Hazard Mater,2008,15(3):1052-1058.
    51 Y. Dong, H. Yang, K. He, et al. β-MnO2 Manowires:A Novel Ozonation Catalyst for Water Treatment[J]. Appl. Catal. B:Environ.,2009,85:155-161.
    52 J. Villasenor, P. Reyes, PECCHIG. Catalytic and Photo Catalytic Ozonation of phenolon MnO2 Supported Catalysts[J]. Catal. Today,2002,76:121-131
    53 S. T. Xing, C Hu, J. H. Qu, et al. Characterization and Reactivity of MnOx Supported Onmesoporous Zirconia for Herbicide 2,4-D Mineralization with Ozone[J]. Environ Sci. Technol.,2008,42:3363-3368.
    54 M. A. Alsheyab, A. H. Munoz. Comparative Study of Ozone and MnO2/O3 Effects on the Elimination of TOC and COD of Raw Water at the Val-mayor Station[J]. Desalination,2007,207:179-183.
    55 R. Rosal, Rodrigueza, M. S. Gonzalo, et al. Catalytic Ozonation of Naproxen and Carbamazepine on Titanium Dioxide[J]. Appl. Catal. B:Environ, 2008,84(1-2):48-57
    56马军,刘正乾,虞启义,等.臭氧多相催化氧化除污染技术研究动态.黑龙江大学自然科学学报,2009,26,1:1-15
    57 Y. X. Yang, J. Ma, Q. Q. Qin, et al. Degradation of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation[J]. J. Mol. Catal. A:Chem.,2007,267(2-3):41-48.
    58杨忆新,马军,秦庆东,等.臭氧/纳米TiO2催化氧化去除水中微量硝基苯的研究[J].环境科学,2006,27(10):2028-2034.
    59杨忆新,马军,张静,等.硅胶负载纳米TiO2催化氧化降解水中微量硝基苯的研究[J].环境科学学报,2006,26 8:1258-1264.
    60张涛,马军,陈忠林,等.有机酸在金属氧化物上的吸附对催化臭氧氧化的影响.环境科学,2005,26(5):85-88
    61 J. S. Park, Ⅰ. H. CHO, J. CHO. Kinetic Decomposition of Ozone and Para-chlorobenzoic Acid (pCBA) during Catalytic Ozonation[J]. Water Res..2004, 38(9):2284-2291.
    62董玉明,蒋平平,张爱民.介孔结构的a-FeOOH对苯酚的催化臭氧化降解.无机化学学报,2009,25(9):1595-1600
    63 J. Ma,Z. Z. Sun, H. L. Liu. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modied ceramic honeycomb. Appl. Catal. B:Environ.,2009,89,326-334
    64 J. Rivera-Utrilla, M. Sanchez-Polo. Ozonation of 1,3,6-naphthalenetrisulphonic Acid Catalysed by Activated Carbon in Aqueous Phase. App. Catal. B:Environm. 2002,39:319-329
    65吴桂萍,安文浩,陆晓华,等.Ti02/AC催化臭氧氧化处理水中的苯酚.环境科学与技术,2007,30(2):23-25
    66隋铭皓,马军,盛力.吸附在多相催化臭氧氧化降解水中有机物中的作用.中国给水排水,2006,22(23):99-102
    67隋铭皓,马军,盛力.水处理多相催化臭氧氧化技术研究现状.现代化工,2007,27(3):15-19
    68范红娟,黄肖容,隋贤栋.催化臭氧化在水处理中的应用.环境保护科 学,2009,35(2):40-42。
    69赵雷,孙志忠,马军.金属催化臭氧化应用在水处理中的机理研究进展.现代化工,2007,27,78-82
    70 Y. Joseph, W. Ranke and W. Weiss. Water on FeO(111) and Fe3O4(111): Adsorption Behavior on Different Surface Terminations. J Phys. Chem. B.2000, 104:3224-3236
    71 M. Ernst, F. Lurot and J. C. Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Appl. Cata. B:Environ.2004,47:15-25
    72 G. L. Elizarova, G. M. Zhidomirov, and V. N. Parmon. Hydroxides of Transition Metals as Artificial Catalysts for Oxidation of Water to Dioxygen. Catalysis Today.2000,58:71-88
    73岳银玲,李淑敏,应波,等.超市中瓶装矿泉水溴酸盐含量的调查[J].中国卫生检验杂志,2006,16(6):677-678
    74 U. Von Gunten. Ozonation of Drinking Water:Part II. Disinfection and By-product Formation in Presence of Bromide, Iodide or Chlorine. Water Research,2003,37:1469-1487
    75 M. S. Siddiqui, G. L. Amy, R. and G. Rice. Bromate Ion Formation:A Critical Review. JAWWA.1995,87 (10):58-63
    76 U. Von Gunten and Y. Oliveras. Advanced Oxidation of Bromide-containing waters:Bromate Formation Mechanisms. Environ. Sci. Technol.1998,32: 63-70
    77李继,董文艺,贺彬,等.臭氧投加方式对溴酸盐生成量的影响[J].中国给水排水,2005,21(4):1-4
    78王毓娟,揭雪飞,董新法,等.Ce02在氧化催化反应中的作用[J].电源技术,2002,26(1):43-46
    79 T. Hoshino,Y Kurata, Y. Terasaki, et al. Mechanism of Polishing of SiO2 Films by CeO2 Particles. Journal of Non-Crystalline Solids,2001,283:129-136
    80 P. Shuk, K. V. Ramanujachary, M. Greenblatt. New meral-oxide-type pH sensors. Solid State Ionics,1996,86:1115-1120
    81 T. Mori, J. Drennan, Y Wang, et al. Influence of Nano-structure on Electrolytic Properties in CeO2 Based System. Journal of Thermal Analysis and Calorimetry,2002,70:309-319
    82 T. Hoshino, Y. kurata, Y. Terasaki, et al. Mechanism of polishing of SiO2 Films by CeO2 Particles. Journal of Non-Crystalline Solids,2001,283:129-136
    83马燕合.我国稀土应用开发现状及其展望.材料导报,2000,14(1):3-5
    84 B. Jacques, L. Oliviero, B. Renard et al. Catalytic Wet Air Oxidation of Ammonia over M/CeO2 Catalysts in the Treatment of Nitrogen-containing Pollutants. Catal. Today,2002,75:29-34.
    85 J. Kaspar, M. Fomasiero, M. Graziani. Use of CeO2based Oxides in the Three-way Catalysis. Catal. Today,2000,50:285-298.
    86洪维民,田蓉屏.稀土超微粉末的制备方法及应用.稀有金属,1995,19(5):384-389.
    87陈汝芬.纳米CeO2的制备方法及应用研究进展.纳米材料与结构,2005,1(8):356-360.
    88张亚平,韦朝海,吴超飞,等.光Fenton反应的Ce-Fe/Al2O3催化剂制备及性能表征.2006,26(3):320-323
    89张亚平,韦朝海.光助Ce-Fe/Al2O3催化H2O2降解阳离子红GTL模拟废水.环境工程学报,2007,1(9):15-19
    90 A. Naydenov, R. Stoyanova, D. Mehandjiev. Ozone Decomposition and CO Oxidation on CeO2. Catal. A:Chemical,1995,98:9-14
    91 K. Krishna, A. Bueno-Lopez, M. Makkee, et al. Potential Rare Earth Modified CeO2 Catalysts for Soot Oxidation. characterisation and catalytic activity with O2 [J]. Appl. Catal. B:Environ.,2007,75(3/4):189-200.
    92叶伟莹,刘佩红,李来胜,等.氧化铈/活性炭催化臭氧氧化技术去除.环境污染与防治,2009,31(2):14-22
    93 K. Kandori, M. Fukuoka and T. Ishikawa. Effects of Citrate Ion on the Formation of Ferric Oxide Hydroxide Particles. J. Material Sci.1991,26: 3313-3319
    94马军,张涛,陈忠林,等.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨[J].环境科学,2005,26(2):78-82.
    95张涛,陈忠林,马军,等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯[J].环境科学,2004,25(4):43-47
    96 M. Mullet, P. Fievet, A. Szymczyk, A. Foissy, J. C. Reggiani, J. Pagetti. A simple and Accurate Determination of the Point of Zero Charge of Ceramic Membranes. Desalination.1999,121:41-48.
    97 G. Newcombe, R. Hayes and M. Drikas. Granular Activated Carbon: Importance of Surface Properties in the Adsorption of Naturally Occurring Organics. Colloid Surface.1993,78:65-71
    98 W. Stumm, Chemistry of the Soild-Water Interface, John Wiley & Sons, New York,1992,15-20
    99 H. Bader, J. Hoigne. Determination of ozone in water by the indigo method[J]. Water Res.,1981,15(4):449-456.
    100 Q. Zhou, S. E. Cabaniss and P. A. Maurice. Considerations in the Use of High-pressure Size Exclusion Chromatography (HPSEC) for Determining Molecular Weights of Aquatic Humic Substances. Water Res.2000,34: 3505-3514
    101 T. K. Nissinen, I. T. Miettinen, P. T. Martikainen, et al. Molecular Size Distribution of Nnatural Organic Matter in Raw and Drinking Waters. Chemosphere.2001,45:865-873
    102范红娟,黄肖容,隋贤栋.催化臭氧化在水处理中的应用.环境保护科学,2009,35(2):40-42。
    103赵雷,孙志忠,马军.金属催化臭氧化应用在水处理中的机理研究进展.现代化工,2007,27,78-82
    104 P. Pitter. Determination of biological degradability of organic Substances. Water Res.1976,10(3):231-235
    105 J. M. Shen, Z. L. Chen, Z. Z. Xu, et al. Kinetics and Mechanism of Degradation of P-chloronitrobenzene in Water by Ozonation[J]. Journal of Hazardous Materials,2008,152(3):1325-1331.
    106张涛.羟基氧化铁催化臭氧氧化水中有机物研究.哈尔滨工业大学博士论文.2006:117-128
    107 U. Von Gunten. Ozonation of Drinking Water:Part Ⅰ. Oxidation Kinetics and Product Formation. Water Res.2003,37:1443-1467
    108叶苗苗,陈忠林,沈吉敏,等.LaO和CeO2的制备及催化臭氧氧化对氯硝基苯.哈尔滨工业大学学报,2009,41(4):77-80
    109 W. Stumm. Chemistry of the Solid-water Interface. John Wiley and Sons, New York, USA.1992
    110 F. J. Beltran, F. J. Rivas and R. Montero-de-Espinosa. Ozone-enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. Heterogeneous Catalytic Ozonation. Ind. Eng. Chem. Res.2003,24:3218-3324
    111 C. Pines and D. Reckhow. Environ. Effect of dissolved Co(Ⅱ) on the Ozonation of Oxalic Acid. Environ. Sci. Technol.2002,36:4046-4051
    112F. J. Beltran, F. J. Rivas and R. Montero-de-Espinosa. A TiO2/Al2O3 Catalyst to Improve the Ozonation of Oxalic Acid in Water. Appl. Catal. B:Environ.2004, 47:101-109
    113 F. J. Beltran. Ozone Reaction Kinetics for Water and Wastewater systems. Lewis Publishers, Boca Raton.2004:13-14
    114 R. Rosal, A. Rodriguez, M. S. Gonzalo, et al. Catalytic Ozonation of Naproxen and Carbamazepine on Titanium Dioxide[J]. Appl. Catal. B:Environ,2008, 84(1-2):48-57
    115 W. Chu, C. W. Ma. Quantitative prediction of direct and indirect dye ozonation kinetics. Water Res.,2000,34(12):3153-3160
    116 J. C. Charpentier. Gas-Liquid Absorptions and Reactions. New York:Academic Press,1981:25
    117王凯雄.水化学[M].北京:化学工业出版社,2001.252-253.
    118 J. Hoigne, H. Bader, W.R Haag, J Staehelin. Rate constants of reactions of ozone with organic and inorganic compounds in water—Ⅲ. Inorganic compounds and radicals. Wat. Res.,1985,19(8):993-1004
    119 J. MA, D. GRAHAM. Degradation of Atrazine by Manganese-Catalysed Ozonation:Influence of Radical Acavengers. Wat. Res.2000,34,(15):3822-3828
    120张涛,鲁金凤,马军,等.羟基氧化铁催化臭氧氧化对滤后水卤乙酸生成势的影响.环境科学,2006,27(8):1580-1585
    121 H. Paillard, M. Dore, M. M. Boubigot. Prospects Concerning Applications of Catalytic Ozonation in Drinking Water Treatment. The 10th Ozone World Congress. March,Monaco,1991:313
    122 M. I. Tejedor-Tejedor and M. A. Anderson. "In Ssitu" ATR-Fourier Transform Infrared Studies of the Goethite (α-FeOOH)-aqueous Solution Interface. Langmuir.1986,2:203-210
    123 D. Peak, R. G. Ford and D. L. Sparks. An in Situ ATR-FTIR Investigation of Sulfate Bonding Mechanisms on Goethite. J. Colloid Interface Sci.1999,218: 289-299
    124 K. M. Bulanin, J. C. Lavalley and A. A. Tsyganeneko. Infrared Study of Ozone Adsorption on TiO2 (anatase). J. Phys. Chem.1994,99:10294-10298
    125 J. Beltran. Fernando and J. Rivas. Francisco. Ramon Montero-de-Espinosa, Catalytic Ozonation of Oxalic Acid in an Aqueous TiO2 Slurry Reactor. App. Catal. B:Environm.2002,39:221-231
    126 K. M. Bulanin, J. C. Lavalley and A. A. Tsyganeneko. IR Spectra of Adsorbed Ozone. Physicochemical and Engineering Aspects.1995,101:153-158
    127 A. Torrents and A. T. Stone. Hydrolysis of Phenyl Picolinate at the Mineral/water Inerface. Environ. Sci. Technol.1991,25:143-149
    128 Juan M. Coronado, A. Javier Maira, Arturo Martinez-Arias, Jose Carlos Conesa, Javier Sori. EPR Study of the Radicals formed upon UV Irradiation of Ceria-based Photo Catalysts. Journal of Photochemistry and Photobiology A:Chemistry,2002,150:213-222
    129 P. C. Singer. Humic Substances as Precursors for Potentially Harmful Disinfection By-products. Water Sci.Technol.1999,40(9):25-30
    130 J. Chen, E. J. LeBoeuf, S. Dai, et al. Fluorescence spectroscopic studies of natural organic matter fractions [J]. Chemosphere,2003,50(5):639-647
    131王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    132 C. N. Chang, Y. S. Ma and F. F. Zing. Reducing the Formation of Disinfection By-products by Pre-ozonation. Chemosphere.2002,46:21
    133 J. K. Edzwald, W. C. Becker and K. L. Wattier. Surrogate Parameters for Monitoring Organic Matter and THM Precursors. J. AWWA.1985,77 (4): 122-132
    134张永吉,南军,周玲玲,等.高锰酸钾对水中天然有机物氯化活性的影响[J].环境科学,2006,27(9):1799-1801
    135 Q. Zhou, S. E. Cabaniss and P. A. Maurice. Considerations in the Use of High-pressure Size Exclusion Chromatography (HPSEC) for Determining Molecular Weights of Aquatic Humic Substances. Water Res.2000,34: 3505-3514
    136 T. K. Nissinen, I. T. Miettinen, P. T. Martikainen, et al. Molecular Size Distribution of Nnatural Organic Matter in Raw and Drinking Waters. Chemosphere.2001,45:865-873
    137傅平青,刘丛强,尹祚莹,等.腐殖酸三维荧光光谱特性研究[J].地球化学,2004, 33(3):301-308
    138 Chen J, LeBoeuf E J, Dai S, et al. Fluorescence Spectroscopic Studies of Natural Organic Matter Fractions [J]. Chemosphere,2003,50(5):639-647
    139傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析,2005,25(12):2024-2028
    140黎司,吉芳英,周光明,等.三峡库区水体溶解有机质的荧光光谱特性[J].分析化学研究简报,2009,37(9):1328-1332
    141任保卫,赵卫红,王江涛.胶州湾围隔实验中溶解有机物三维荧光特征[J].环境科学,2007,28(4):712-718.
    142 P. G. Coble. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy. Marine Chem.1996,51: 325-346
    143 A. Baker. Fluorescence Excitation-emission matrix Characterization of River Waters Impacted by a Tissue Mill Effluent. Environ. Sci. Technol.2002,36: 1377-1382
    144刘明亮,张运林,秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征.湖泊科学,2009,21(2):234-241
    145 J. Swietlik and E. Sikorska. Application of Fluorescence Spectroscopy in the Studies of Natural Organic Matter Fractions Reactivity with Chlorine Dioxide and Ozone. Water Res.2004,38:3791-3799
    146 U. Von Gunten. Ozonation of Drinking Water:Part Ⅱ. Disinfection and By-product Formation in Presence of Bromide, Iodide or Chlorine. Water Res. 2003,37:1469-1487
    147 M. Siddiqui and G. Amy. Factors Affecting DBP Formation during Ozone-Bromide Reactions. J. AWWA.1993,85(1):63-72
    148 R. Song. Bromate Minimization during Ozonation. J. AWWA.1997,89(6): 69-70
    149 P. Westerhoff, R. Song, G. L. Amy, et al. OMs Role in Bromine and Bromate Formation During Ozonation[J].AWWA,1998,89(11):82-94.
    150李继,董文艺,贺彬,等.臭氧投加方式对溴酸盐生成量的影响[J].中国给水排水,2005,21(4):1-4.
    151 F. J. Beltrn, Ozone Reaction Kinetics for Water and Wastewater Systems, Lewi Publishers Inc., New York,2003.
    152 H. Christensen, K. Sehested, H. Cortzen, Reactions of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures, J. Phys. Chem. 1982,86:1588-1590
    153 P. Westerhoff, R. Song, G. Amy, R. Minear, Applications of Ozone Decomposition Models. Ozone:Sci. Eng.1997,19:55-73
    154鲁金凤.铁、铈氧化物催化臭氧氧化滤后水中天然有机物特性研究.哈尔滨工业大学博士论文,2008,75-120
    155 H. Wijnja and C. P. Schulthess. Vibrational Spectroscopy Study of Selenate and Sulfate Adsorption Mechanisms on Fe and A1 (Hydr)oxide Surfaces. J. Colloid Interface Sci.2000,229:286-297
    156梅燕,闫建平,聂祚仁.焙烧条件对Ce离子价态影响的XPS研究.光谱学与光谱分析.2010,30(1):270-273
    157董相廷,洪广言,于得财.Ceo2纳米粒子形成过程中Ce的价态变化.硅酸盐学报,1997,25(3):323-327
    158 W. H. Glaze, et al. Evaluating the Formation of Brominated DBPs during Ozonation. J. AWWA.1993,85 (1):96-103
    159 J. L. Graham, R. Striebich, C. L. Patterson, E. RadhaKrishnan, R. C. Haught, "MTBE Oxidation Byproducts from the Treatment of Surface Waters by Ozonation and UV-ozonation", Chemosphere,2004,54:1011-1016.
    160 J. Sutherland, C. Adams, J. Kekobad, "Treatment of MTBE by Air Stripping, Carbon Adsorption, and Advanced Oxidation:Technical and Economic Comparison for Five Ground waters", Wat. Res.,2004,38:93-205.
    161 G. Cruzan, S. J. Borghoff, A. Peyster, G C. Hard, M. McClain, D. B. McGregor, M. G. Thomas, "Methyl Tertiary-butyl Ether Mode of Action for Cancer Endpoints in Rodents", Regulatory Toxicology and Pharmacology,2007,47: 156-165.
    162 B. Kasprzyk-Hordern, P. Andrzejewski, Dabrowska, et al. MTBE, DIPE, ETBE and TAME Degradation in Water Using Perfluorinated Phases as Catalysts for Ozonation Process. Appl. Catal. B:Environ.,2004,51:51-66.
    163 S. G. Li, V. A. Tuan, R. D. Noble, et al. MTBE Adsorption on All-Silica β-Zeolite. Environ. Sci.& Technol.,2003,37:4007-4010.
    164 H. Fujita, J. Izumi, M. Sagehashi, et al. Adsorption and Decomposition of Water-dissolved Ozone on High Silica Zeolites [J]. Water Res.,2004,38: 159-165.
    165 M. A. Anderson. Removal of MTBE and Other Organic Contaminants from Water by Sorption to High Silica Zeolites [J]. Environmental Science & Technology,2000,34(4):725-727.
    166 J. W. Kang, M. R. Hoffmann. Kinetics and Mechanism of the Sonolytic Destruction of Methyl Tert-butyl Ether by Ultrasonic Irradiation in the Presence of Ozone[J]. Environ. Sci.& Technol.,1998,32(20):3194-3199.
    167 H. Fujita, J. Izumi, M. Sagehashi, et al. Decomposition of Trichloroethene on Ozone-adsorbed High Silica Zeolites. Water Res.,2004,38:166-172
    168 J. Ellis, W. Korth. Removal of Geosmin and Methylisoborneol from Drinking Water by Adsorption on Ultrastable Zeolite-Y. Water Res,1993,27(4):535-539
    169 M. A. Anderson. Removal of MTBE and Other Organic Contaminants from Water by Sorption to High Silica Zeolites [J]. Environ. Sci.& Technol.,2000, 34(4):725 - 727

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700