用户名: 密码: 验证码:
考虑土—结构动力相互作用的巨型框架隔震悬挂结构动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高层和超高层建筑的建设成本高,人员和财产高度集中,建筑功能多变,因此与常用建筑相比,在灾害条件下具有更高的风险。研究更加安全、可靠、经济、适应建筑功能要求的结构新体系成为高层及超高层建筑结构发展过程中急待解决的重要课题之一。巨型框架隔震悬挂结构的提出为此起到了抛砖引玉、添砖加瓦的作用。巨型框架隔震悬挂结构新体系整合了巨型结构、悬挂结构和隔震技术三者各自的优点于一身,可有效保障高层和超高层建筑结构的安全可靠性和使用舒适性。而结构基础周围的地基土是影响结构动力特性最主要的影响因素之一,因此开展考虑土—结构动力相互作用的巨型框架隔震悬挂结构动力响应研究具有重大的理论意义和应用价值。
     本文首先对不同土样在不同围压条件下的动力特性进行了试验研究。结果表明土层埋置越深,围压就越大,因此土颗粒接触点增加,导致骨干曲线的斜率增大,动剪切模量和剪切波速也就随之增大,与之相反,阻尼比随之逐渐减小。土的这些动力特性是研究土—结构动力相互作用的基础。
     其次,本文给出了隔震悬挂结构简化计算时的等效计算原则和等效计算方法。研究表明担梁与子结构质量比和隔震层与子结构重力刚度比在一定范围内时可将隔震悬挂结构由两质点体系简化为单质点体系,并给出了等效计算原则和等效计算公式,并经试验验证了等效计算公式的适用性,进而使其动力分析问题得到较大简化。
     再次,本文通过数值计算的手段对巨型框架单段和多段隔震悬挂结构进行了幅频和相频响应分析,揭示了单段和多段巨型框架结构通过主子结构间的相位差实现减震控制的原理。同时还发现结构参数中的主子结构质量比、频率比和子结构阻尼比在一定范围内存在最优值,可使结构的减震控制效果达到最佳状态。另外,不同形式巨型框架悬挂结构有限元模态对比分析表明,巨型框架隔震悬挂结构的自振周期明显长于其他两种形式的,有利于结构避震。有限元时程对比分析表明,分别与结构安全性和舒适性息息相关的主结构相对位移和子结构加速度明显小于自由悬挂和传统悬挂结构的。由于隔震层的存在使得巨型框架隔震悬挂结构的地震响应有快速衰减的现象,表明隔震层耗散了绝大部分的地震输入能量,从而达到较好的振动控制效果。
     最后,通过对不同悬挂结构形式在不同场地条件下的动力响应时程分析结果表明,土层做为地震波的传播介质,具有低频放大和高频滤波效应。考虑土—结构动力相互作用时的巨型框架隔震悬挂结构的地震响应振动控制指标(主结构相对位移和子结构绝对加速度)明显优于刚性地基条件假设条件的,因此不考虑土—结构动力相互作用时进行的结构参数设计是偏于安全和保守的。
     本文的研究表明,巨型框架隔震悬挂结构的震动控制思想依靠其独特的动力特性,在结构安全性和使用舒适性方面都是目前其他结构形式和振动控制方法所无法实现的。另外,它也是一种新的抗震思想的描述,对高层和超高层建筑结构振动控制有重要意义。
The requirements of structural system become higher and higher along with the developing of high-rise buildings, especially super-high buildings. Comparing with buildings in common use, the high-rise buildings have the higher risk because of the higher building costs, highly centralized person and property and multivariate building function. As a result, the higher requirements for anti-seismic performance and building functions applicability of building structure system are increasingly pop out. One of the important projects is to search a new structure system with more safety, economic, reliable and suitable for building function to advance high-rise and super-high buildings. As well as the studying on megaframe with suspended and isolated substructures system plays an important role in casting a brick to attract jade and making a little contribution for it. The megaframe with suspended and isolated substructure system integrates respective advantages of megastructure, suspension structure and isolation technology, therefore the safe reliability and use of comfort of high-rise and super-high buildings could be ensured effectively. The soil around fonudation of structure is one of the most important influenced factors of structural dynamic properties. Therefore, it is of great significance and application value to develop the analysis on dynamical response of megaframe with suspended and isolated substructure considering soil-structure dynamical interaction.
     First of all, the dynamical properties testing for soil with different soil patterns and confining pressure shows that the more depth of soil layer embedment, the larger confining pressure, the tighter soil particle contact, the larger slope of backbone curve, and shear modulus and shear wave speed increase remarkablely. On the contrary, the damping ratio decreases. The dynamical properties of soil are the basis for analyzing soil-structure dynamical interation.
     Secondly, dynamic properties of suspended and isolated structure are studied by theoretical analysis and numerical calculation means. It is feasible to simplify suspended and isolated structure as single mass system based on the analysis of its dynamic characteristic depending on mass ratio and stiffness ratio, the equivalent principle and formulas are provided, and then the analytic process can be quite simplified. On the other hand, the experimental investigation on dynamic characteristics of suspended and isolated structure is completed to verify the conclusion and equivalent design formulas above. The experiment shows that the equivalent design procedure proposed in this paper is very effective.
     Thirdly, the analysis on amplitude-frequency and phase-frequency response of megaframe with single or multi segments suspended and isolated substructures reveal the principle that structure vibration controlled by phase separation between megastructure and substructure. At the same time, vibration control effect could be optimal if the mass ratio, frequency ratio between mega and substructure and damping ratio of substructure get optimum values in the certain scope. On the other hand, contrastive analysis on finite element modal of different forms of megaframe with suspended substructures shows that the natural vibration period of megaframe with suspended and isolated substructures is remarkable lager than the others, and it is beneficial for structure to avoid earthquake. Contrastive analysis on response-time history shows that megastructure relative displacements and substructure absolute acceleration are remarkable little than megaframe with free or conventional suspended substructures, and they close relate to safety and amenity of structure. Because of the existing of isolated layer, the seismic response of megaframe with isolated and suspended substructures damp rapidly, it shows that the most seismic importing energy is damped by isolated layer, and then the better vibration control effect could be achieved.
     Finaly, the analysis on dynamical time history response of megaframe with different suspended sunstructure and site condition shows that soil layers have the effect of low frequency amplification and high frequency filter as the communication media of earthquake wave. The seismic reponse control objectives of megaframe with suspended and isolated substructures considering soil-structure dynamical interaction get the advantage over the rigid foundation assumption, and then structure parameters design without considering soil-structure dynamical interaction is relatively safty and conservative.
     The strategies of vibration control in megaframe with isolated and suspended substructure is based on the dynamical properties of itself, structure safty and amenity are magnificent remarkablely batter than the other structures and vibration control methods. On the other hand, it is a prospective philosophy in the vibration control in high-rise buildings.
引文
[1]张耀春,何若全,严力军.高层钢框架结构分析的几个问题[J].哈尔滨建筑大学学报,1990,23(2):199-128.
    [2]包世华,方鄂华.高层建筑钢结构设计[M].北京:清华大学出版社,1990.
    [3]徐永基,刘大海,钟锡根,等.高层建筑钢结构设计[M].西安:陕西科学出版社,1993.
    [4]崔鸿超.高层建筑钢结构在我国的发展[J].建筑结构学报,1997,18(1):61-71.
    [5]Beedle L S. Advance in tall buildings [M]. New York. Van Nostrand Reinhold Company,1986.
    [6]Beedle L S. Developments in tall buildings [M]. Stroudburg:Hutchinson Ross Publishing Co-mpany, 1983.
    [7]Charles N, Gay Lord. Structure design of tall steel buildings [M]. New York:ASCE,1979.
    [8]李国强,沈祖炎.我国建筑钢结构的发展概况[J].结构工程学报,1991,2(3):652-657.
    [9]沈祖炎,陈荣毅.巨型结构的应用与发展[J].同济大学学报,2001,29(3):258-262.
    [10]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安建筑科技大学,2003.8.
    [11]黄庆华,地震作用下钢筋混凝土框架结构空间倒塌反应分析[D].同济大学,2007.4.
    [12]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程.1991,3(3):52-57.
    [13]刘郁馨,吕志涛.中央核筒悬挂建筑结构分析[J].南京建筑工程学院学报,1998(1):1-6.
    [14]王玉朋,魏琏.悬挂质量结构的抗震计算及减震性能分析[M].北京:地震出版,1991.
    [15]周坚,伍孝波,刘娜.高层建筑悬挂结构体系的非线性动力分析[J].工程力学(增刊),2002,376-381.
    [16]王常峰,李伟.悬挂质量结构减震性能及影响因素分析[J].兰州交通大学学报,2004,23(3):102-105.
    [17]王前信,卢书辉.悬挂体系的地震力[M].北京:地震出版社.1981
    [18]Ou J. P(欧进平),Wu B.(吴斌).Recent Advances in Research on and Application of Passi-ve Energy Dissipation Systems [J],地震工程与工程振动,1996(3):7276
    [19]齐凯.从10WCEE看结构控制技术的发展现状[J].世界地震工程.1994,5(2):78-83
    [20]建筑抗震设计规范(GB50011-2001).北京:北京建筑工业出版社,2001
    [21]李英民.工程地震动的模型化研究[D].重庆建筑大学.1999
    [22]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学[M].北京:中国建筑工业出版社,2000
    [23]林皋.土—结构动力相互作用[J].世界地震工程.1991,3(1):4-21
    [24]熊建国.土—结构动力相互作用问题的新进展(Ⅰ)[J].世界地震,1992(3),22-29
    [25]熊建国.土—结构动力相互作用问题的新进展(Ⅱ)[J].世界地震,1992(4),17-25
    [26]梁青槐.土—结构动力相互作用数值分析方法的评述[J].北方交通大学,1997,21(6):690-694
    [27]窦立军,杨柏坡,刘光和.土—结构动力相互作用几个实际应用问题[J].世界地震工程.1999,15(4):62-68.
    [28]蒯行成,任毕乔.求解地基-结构系统运动方程的基本频率法[J].湖南大学学报.1998,25(6):81-85.
    [29]J. P. Wolf.吴世明.土—结构动力相互作用[M].北京:地震出版社.1989.
    [30]M. Nuray Aydmoglu. Consistent Formulation of Direct and Substructure Methods in nonlinear soil-Structure interaction[J]. Soil Dynamics and Earthquake Engineering.1993 (12):403-410.
    [31]张楚汉.结构-地基动力相互作用.结构与介质相互作用理论及其应用[M].南京:河海出版社,1993:243-266.
    [32]宋二祥.无限地基数值模拟的传输边界[J].工程力学增刊,1997:613-619.
    [33]廖振鹏.近场波动的数值模拟[J].力学进展.1997,27(2):193-16
    [34]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M],同济大学出版社,1998
    [35]J. P. Wolf, Georges R. Darbre. Dunamic Stiffness of Unbounded Medium based on Damping-Solvent Extraction[J]. EESD.1984,1293:385-401
    [36]杜修力,熊建国.波动问题的级数解边界元法[J].地震工程与工程振动,1988,8(1):76-82
    [37]J. P. Wolf, Georges R. Darbre. Non-linear soil-structure-interaction analysis based on boundary-element method in time domain with application to embedded foundation[J]. Earthquake engineering & structure dynamics.1986,14(1):.83-101
    [38]陈清军,徐植信.层状土介质中群桩及其上部结构体系对任意入射地震波的响应[J].地程与工程振动.1994,14(1):36-44.
    [39]刘兴业.土—结构相互作用问题的边界元、有限元藕合法[J].振动工程学报.1994(3).45-58
    [40]陈健云,林皋.三维结线动力地穷元及其特性研究[J].岩土力学.1998,19(3):14-19
    [41]陈新锋,金峰,张楚汉,王光纶.一种分析层状介质-结构相互作用的多元耦合模型[J].清华大学学报.1997,37(11):82-86
    [42]Z. X. Lei, Y. K. Cheung, L. GTham. Vertical response of Single Piles:Transient Analysis by Time-domain BEM[J]. Soil Dynamics and Earthquake Engineering.1993 (12):37-49.
    [43]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报.1986,17(3):88-93
    [44]LE罗伯逊.钢结构在高层建筑中的作用[J].顾慰祖译.钢结构,1990,5(1):42-51.
    [45]沃尔夫岗·舒勒尔.高层房屋结构[M].同济大学钢筋混凝土结构教研室译.上海:上海科学技术出版社,1981.
    [46]惠卓,秦卫红,吕志涛.一种新型的高层建筑结构体系—巨型建筑结构体系[J].东南大学学报,1999,(4A):197-203
    [47]陆赐麟.对高层建筑钢结构国产化道路的研讨[J].钢结构,1987,2(2):18-20.
    [48]刘大海,杨翠如.高层建筑结构方案优选[M].北京:中国建筑工业出版社,1996.
    [49]周广德.日本超高层建筑现状及其发展[J].陕西建筑,1992,44(2):12-17.
    [50]魏琏,杨卫红.单层厂房扭转耦联振动分析方法的研究[J].建筑结构学报,1995,16(4):49-58.
    [51]蔡益燕.巨型钢框架弹塑性分析的等效模型[J].建筑结构,1993(1):49-52.
    [52]鞠笑辉.巨型钢框架结构等效模型剪力方法及结构分析[D].哈尔滨建筑大学建筑工程系,1996.
    [53]李君,张耀春.超高层结构的新体系—巨型结构[J].哈尔滨建筑大学学报,1997,30(6):21-27.
    [54]胡庆昌,张美励,孙金墀,等.高层住宅中混凝土巨型框架体系应用研究[J].建筑结构,1998(10):3-9.
    [55]程晓辉,钱稼茹,方鄂华.高层住宅巨型框架节点受力性能试验研究[J].建筑结构,1998(10):10-13.
    [56]李国强,沈祖炎.高层建筑抗震设计的发展趋势[J].建筑结构学报,1992,13(4):75-78.
    [57]Marsh J W. Earthquakes, steel structures performance and design code developments[J]. Eng-ineering Journal,1993, 30(20):56-65.
    [58]李国强,孙飞飞,沈祖炎.强震下钢框架梁柱焊接连接的断裂行为[J].建筑结构学报,1998, 19(4):19-28.
    [59]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报,1997,25(2):135-140.
    [60]黄本才.高层建筑结构计算及设计[M].上海:同济大学出版社,1998.
    [61]赵西安.高层建筑结构实用设计方法[M].第3版.上海:同济大学出版社,1998.63-66
    [62]赵西安.高层建筑结构走向2000年[J].建筑科学,1992,8(2):8-14
    [63]张相庭.高层建筑抗风抗震设计计算[M].上海:同济大学出版社,1997.1-12
    [64]蓝文武.巨型钢框架悬挂结构体系减震半主动控制研究[D].广西大学.2005.7
    [65]高立人.主次梁结构体系设计若干问题的讨论[J].建筑结构,1999,29(10):48-51
    [66]董军,邓洪洲,王肇民.组合巨型框架结构振动特性研究[J].建筑结构,1998,28(9):18-20
    [67]胡庆昌,张美励,孙金樨,等.高层住宅中混凝土巨型框架体系应用的研究[J].建筑结构,1998,28(10):3-9
    [68]程晓辉,钱稼茹,方鄂华.高层住宅中巨型框架节点受力性能试验研究[J].建筑结构,1998.28(16):10-13
    [69]欧阳峰,陈长.某大楼加层预应力巨型结构设计研究[J].建筑结构,1997,27(1):38-41
    [70]何国松,方鄂华.住宅型钢筋混凝土巨型框架节点试验研究[J].土木工程学报,2000,33(2):13-18
    [71]蔡益燕编译.巨型钢框架弹塑性分析的等效模型[J].建筑结构,1993,23(1):1,49-52
    [72]惠卓.巨型框架结构的计算理论及抗震性能的研究[D].东南大学,1998,71-83
    [73]惠卓,秦卫红,吕志涛.巨型建筑结构体系的研究与展望[J].东南大学学报.2000,30(4):1-8
    [74]C. R. Lehmann. Multi-storey suspension structures[J]. Architecture Design.1963, (11):530-535
    [75]BABICKI B. Cables support office building[J]. Civil Engineering, ASCE,1971,41(10):64-67.
    [76]林拱辰.国外预应力混凝土的发展和应用[M].北京:建筑工业出版社,1982.125-136.
    [77]邓朝荣.斜拉索压环式高层建筑结构的设计[J].建筑结构学报,1997,18(5):74-77.
    [78]董军,邓洪洲,王肇民,等.组合巨型框架结构振动特性研究[J].建筑结构,1998,(9):18-20.
    [79]王肇民,邓洪洲,董军.高层巨型框架悬挂结构体系抗震性能研究[J].建筑结构学报,1999,20(1):23-30.
    [80]赵永生,程勇凌.高层悬挂结构减振系统的风洞实验分析[J].工业建筑,2000,30(4):31-33.
    [81]段保顺.悬吊结构抗震研究[J].建筑结构,1990,(5):9-12.
    [82]康希良.悬挂体系地震效应的有限元分析[J].工程抗震,1994,(2):16-20.
    [83]李宏男,宋本有.高层建筑利用悬吊质量摆的减震研究[J].地震工程与工程振动,1995,15(4):55-61
    [84]余震,宋一乐.高层建筑摆锤减震方法的试验研究[J].工程力学,1997,14(增刊):212-215.
    [85]吕志涛,孟少平.现代预应力设计[M].北京:中国建筑工业出版社,1998
    [86]BLISS E C, HERRERA A. Bacardi building-n un-usual structure for an unusual building[J]. Journal of ACI, 1965,62(12):1521-1531.
    [87]格·波·波利索夫斯基.未来的建筑[M].陈汉章译.北京:中国建筑工业出版社,1979.67-100.
    [88]GOODNO B J, GERE J M. Analysis of shear cores using super elements[J]. Proceeding ASCE, 1976,102 (ST-1):267-283.
    [89]GOODNO B J, GERE J M. Earthquake behavior of suspended floor buildings[J]. Proceedi-ng ASCE, 1976,102(ST-5):973-992.
    [90]NIKOLAEN N A, BURG AMEN I N. Earthquake resistance of structures with suspended ma-sses [A]. Proceedings of 5th International Symptom Earthquake Structural Engineering. Miss-ouri USA: University Missouri,1976.683-698.
    [91]林拱辰.国外预应力混凝土的发展和应用[M].北京:建筑工业出版社,1982.125-136.
    [92]邓朝荣.斜拉索压环式高层建筑结构的设计[J].建筑结构学报,1997,18(5):74-77.
    [93]董军,邓洪洲,王肇民,等.组合巨型框架结构振动特性研究[J].建筑结构,1998,(9):18-20.
    [94]王肇民,邓洪洲,董军.高层巨型框架悬挂结构体系抗震性能研究[J].建筑结构学报,1999,20(1):23-30.
    [95]赵永生,程勇凌.高层悬挂结构减振系统的风洞实验分析[J].工业建筑,2000,30(4):31-33.
    [96]沃尔夫岗·舒勒尔.高层房屋结构[M].同济大学钢筋混凝土教研室译.上海:上海科学技术出版社,1982.115-163.
    [97]鲍育明,薛顺应.悬挂式结构的巨型桁架对核结构的影响[A].第十届全国高层建筑结构学术交流会论文集[C].第二卷.北京:中国建筑科学研究院,1988.522-529.
    [98]杨允表,宋启根.关于核心单筒式悬挂结构的两个问题[J].工业建筑,1997,27(12):10-13.
    [99]杨允表.核心单筒式悬挂结构中四面开洞核心筒体的屈曲荷载与振动频率[J].工业建筑,1998,28(4):20-23.
    [100]杨允表,宋启根.核心单筒式高层悬挂结构中四面开洞核心筒体在水平力作用下的力学分析[J].建筑结构学报,1998,19(3):11-17.
    [101]杨允表.核心单筒式悬挂结构的振动刚度矩阵[J].建筑结构,1998,(9):21-22.
    [102]杨允表,宋启根.四面开洞核心单筒体扭转特性的位移分析法[J].工程力学,1999,16(2):37-44.
    [103]罗兆辉,吴淦卿.高层悬挂结构的动力特性[J].天津城市建设学院学报,1995,1(1):7-13.
    [104]罗兆辉.高层悬挂结构的地震反应分析[J].天津城市建设学院学报,1996,2(3):6-12.
    [105]李京玲,罗兆辉.多高层悬挂结构的地震效应计算分析[J].天津城市建设学院学报,1997,3(4):23-29.
    [106]刘郁馨,吕志涛,袁发顺.多高层混凝土悬挂建筑结构体系及受力性质[J].工程力学,1996,13(增刊):542-546.
    [107]刘郁馨,张旭,吕志涛.悬挂楼层的动力反应分析[J].工程力学,1997,14(增刊):33-37.
    [108]刘郁馨,吕志涛.悬挂建筑框架结构弹性稳定性估算方法[J].工程力学,1997,14(4):29-37.
    [109]袁发顺,刘郁馨.隔层悬挂楼盖结构新体系及其数值分析[J].工程力学,1996,13(增刊):639-644.
    [110]张晖,朱伯龙,苏少军.悬挂结构层间减震控制系统试验及分析[J].建筑结构学报,1997,18(5):59-65.
    [111]梁启智,张耀华.巨型框架悬挂体系动力及减震性能分析[J].华南理工大学学报,1998,26(10):1-6.
    [112]梁启智,张耀华.巨型框架悬挂体系地震反应特性及阻尼控制研究[J].华南理工大学学报,1999,27(1):106-110.
    [113]张耀华,梁启智,付赣清.巨型框架悬挂体系抗震原理及初步设计方法[J].工程力学,2000,17(2):10-17.
    [114]吕西林,叶骅.结构主动控制和混合控制技术的发展[J].世界地震工程,1997,13(2):21-39
    [115]Yao J. T. P. Concept of structural control[J]. Journal of Structure Division, ASCE,1972,98(ST7): 1567-1574
    [116]周福霖.工程结构减震控制.北京:地震出版社,1997.4
    [117]阎维明,周福霖,谭平.土木工程结构振动控制的研究进展[J].世界地震工程,1997,13(2):8-20
    [118]刘季.中国结构控制研究现状[J].哈尔滨建筑工程学院学报,1993,26(4):1-11
    [119]傅育安,基础隔震工程的回顾与展望[J],工程抗振,1987(3):42-45
    [120]周福霖,隔震、消能减震和结构控制技术的发展和应用(上、下),世界地震工程,1989(4):16-20
    [121]J. M. Kelly, Aseismic base isolation:Review and bibligraphy[J], Soil Dyn Earthquake Eng.1986, 5(3):202-216
    [122]N. Forell and M. Walfers.房屋基础隔震在美国的实施[J],世界地震工程,1989,(1):1-10
    [123]I. G. Buckle, New Zealand seismic base isolation concepts and their application to nuclear engineering[J], Nucl. Eng. Des.1985,84(3):315-326
    [124]U. N. Mostaghel and M. Khdaverdian, Dynamics of resilient-friction isolator (R-FBI) [J], Earthquake Eng. and Struc. Dyn.1987(15)
    [125]R. Guerand et. al, Seismic isolation using sliding-elastomer bearing pads, Nucl. Eng. Des.1985, 84(3):363-377
    [126]Lin Su and Goodazz Ahmadi, A probabilistic comparative study of base isolation system, Mech. Struct. and Mach,1990,18(1):107-133
    [127]武腾清著,腾家禄等译.结构的动力设计[M],中国建筑工业出版社,1985
    [128]楼永林、王敏权、苏志奇.多层砖房底部滑移减震研究[J],建筑结构学报,1994,15(1):24-31
    [129]张广寿等,设置耗能墙框架模型的振动台试验[J],武汉工业大学科学研究报告,1990
    [130]瞿伟廉等,设置耗能横缝的填充墙对多层框架地震反应的控制[J],建筑结构学报,1991,12(2):42-50
    [131]曹征良等,RC.双功能连梁试验研究[J],第十届全国高层建筑结构学术交流会议论文集,1988(5)
    [132]韩小雷,带刚性连梁的双肢剪力墙几其结构控制性能研究[D],华南理工大学,1991,12
    [133]Whittaker A. et al., Seismic testing of steel plate energy dissipation devices, Earthquake spectra, 1991,7(4):563-604
    [134]Dargush G. F et al., Behavior of metallic plate dampers in seismic energy dissipation systems, Earthquake spectra,1995
    [135]Tsai K. C. et al., Design of steel triangular plate energy absorbers for seismic resist conshuction[J], Earthquake spectra,1993,9(3):505-528
    [136]Nims D. K. et al., The use of the energy dissipating restraint for seismic hazard mitigation[J], Earthquake spectra,1993,9(3):467-489
    [137]刘大伟、魏琏等,摩擦耗能支撑钢筋支撑混凝土框架结构的振动台试验研究[J],建筑结构学报,1997(3):29-37
    [138]俞公华、周福霖等,中房大厦设计—首栋在高层建筑采用消能柱间支撑工程简介[J],全国第三届结构减震学术研讨会论文,1995: 124-124
    [139]Clark, P W., Multiple passive tuned mass dampers for reducing earthquake induced building motion. Proc. Ninth World Corf On Earthquake Engrg.,1988,5:779-784
    [140]Kangming Xu and Takeru Igusa, Dynamic Characteristics of multiple substructures with closely spaced frequencies[J], Earthquake Engrg. and Struct. Dyrz 1992,21:1059-1070
    [141]HirokYamaguchi and Napat Harnpomchai, Fundamental Characteristics of multiple tuned mass dampers for suppressing harmonically fomxd oscillations[J], Earthquake Engrg. and Struct. Dyn., 1993, (22):51-62
    [142]Abe M. and FuJino Y. Dynamic characterization of multiple tuned dampers and some design formulas[J]. Earthquake Engrg. and Struct. Dyn,1994,23:813-835
    [143]Setareh, M., Use of the doubly-tuned mass dampers for passive vibration control[J], Proc., First World Conf on Struct. Control,1994, (1):2-21
    [144]MaLsuhisa et al, Vibration reduction of a gondola 皿 by dynamic absorbers[J], Proc., First World Conf. on Struct. Control,1994, (1):74-79
    [145]Li et al. A ring-like pendulum for reducing seismic response of tall chimneys[J], Proc First World Conf. on Struct. Control,1994, (1):80-86
    [146]王肇民.电视塔结构TMD风振控制研究和设计[J],建筑结构学报,1994,(5):79-85
    [147]Li Hongnan, M. P Singly Sun Yuliang, Suspended pendulum damper for vibration control of engineering structure[J], Earthquake Engineering and Engineering Hhration,1996,16(3):61-71.
    [148]Palazzo B., Petti L., Seismic response control in base isolated systems using tuned mass dampers, Proc., First World Conf. on Struct. Control,1994, (5):80-86
    [149]宋德全.多高层建筑组合控制理论及应用[D],华南理工大学,1995.
    [150]Maria Q. Feng, Akira Mita, Vibration control of tall building using mega subconfiguration, Jozanal of Enginering Meckenics ASCE,1995,121:1082-1088.
    [151]Abdel Rohman M. et al., Structural control by pole assiggment method, J. Engrg. Mech. Div., ASCE,1978,104(10):1159-1175
    [152]Martin C. R., Soong T. T. Mordan Control of Multistory Structure, J. Engrg. Mech. Div. ASCE,1976,102(10):613-623
    [153]Soong T T., Active Structural Control:Theory and Practice, Longman, London & Wily, New York, 1990
    [154]Yang J. N. et al., New control algorithms for structural control, J. Engrg. Mech, Div., ASCE, 1987,113:1369-1386
    [155]Yang J. N. et al., Experimental verification and sliding mode control for seismically excited buildings, J. Struct. Engrg., ASCE,1996,122(1):69-75
    [156]Yang J. N. et al., sliding mode control for nonlinear and hysteretic stn, ictures, J. Engrg. Mech, ASCE,1995,121(12):1330-1339
    [157]刘季、孙作玉,结构可变阻尼半主动控制[J],地震工程与工程振动,1997(2):92-97
    [158]Mukai Y. et al., Experimental study of active fin system for wind-induced structural vibration, Proc., First World Conf. on Struct. Control,1994, WP2:52-61
    [159]Patter W. N. et al:, Suppresion of vehicle induced bridge vibration via hydraulic semi-active vibration dampers, Proc., First World Conf. on Siruct. Control,1994,1:33-38
    [160]Patten W. N. et al., Seismic structural control via hydraulic semic-active vibration dampers, Proc., First World Conf. on Struct. Control,1994,2:83-89
    [161]Sun L., Goto Y, Application of fizzy theory to variable dampers for bridge vibration control[J], Proc., First World Conf. on Struct. Control,1994(1):31-41
    [162]Kamagata S., Kobori T. Autonomous adaptive control of active variable stiffness system for seismic ground motion[J], Proc., First World Conf. on Struct Control,1994 (4):33-42
    [163]Caughey T K., Musings on structural control[J], Proc. Int. Workshop on Struct. Control,1993: 65-75
    [164]Winston Chai, Maria Q. Feng. Vibration control of super tall buildings subjected to wind loads[J]. Non-Linear Mechanics,1997,32(4):657-668.
    [165]Maria Q. Feng, Akira Mita. Vibration control of tall building using mega subconfiguration[J], Jozanal of Enginering Meckenics ASCE,1995,121:1082-1088.
    [166]Hadjian A H.罗东(台湾)土—结构相互作用大比例模型试验的启示[J].世界地震工程,1993,10(3):41-52
    [167]Ishihara K. Soil Behaviour in Earthquake Geotechnics[M]. Oxford:Clarendon Press,1996.
    [168]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989
    [169]王光远等译.结构动力学[M].北京:高等教育出版社.2007,12:238-239.
    [170]王春林.核筒悬挂建筑结构的减震分析及CFRP索结构设计[D].东南大学.2005,3.
    [171]Prasad S K, Towhata I, Chandradhara G P, et al. Saking table tests in earthquake geotechnical engineering[J]. Current Science, Special Section:Geotechnics and Earthquake Hazard,2004, (10): 1398-1404
    [172]陈国兴著.岩土地震工程学[M].北京:科学出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700