用户名: 密码: 验证码:
氧化镁基活性炭复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以镁盐和商品活性炭为原料,运用过量浸渍法、等体积浸渍法、机械混合法和化学沉淀-原位复合法制备一系列氯化镁/活性炭复合材料、氢氧化镁/活性炭复合材料和氧化镁/活性炭复合材料。利用差热-热重分析仪、比表面积及孔结构分析仪、X射线衍射仪、红外光谱仪和扫描电镜等现代仪器对其进行了表征分析,并研究了该系列镁炭复合材料的吸湿性能、对废水中有机物和重金属离子的吸附脱除性能及对催化裂化汽油中硫化物的吸附脱除性能。
     运用过量浸渍法、等体积浸渍法、机械混合法和化学沉淀-原位复合法制得氯化镁/活性炭复合材料、氢氧化镁/活性炭复合材料和氧化镁/活性炭复合材料。发现:镁盐改性活性炭得到的复合材料的比表面积随着焙烧温度和焙烧时间的变化而变化,其平均孔径均大于2nm,具有中孔性质。镁盐负载在活性炭上之后,其特征峰峰强变弱,说明氯化镁负载在活性炭上之后,镁盐的晶体结构被破坏,在晶面上出现不同程度缺陷结构。在复合材料中,镁元素分别以氯化镁、氢氧化镁和氧化镁的形式存在,分散于活性炭的孔隙内外,镁组分和炭组分有一定的相互作用。
     研究了氯化镁/活性炭复合材料的吸湿性能。结果表明,氯化镁/活性炭复合干燥剂的吸湿量随着氯化镁含量的增加而增加;在氯化镁含量固定时,相对湿度越高,干燥剂的吸湿量越大。吸湿过程遵循伪二级动力学模型,再生性能好,可循环利用。
     研究了氯化镁/活性炭复合材料、氢氧化镁/活性炭复合材料和氧化镁/活性炭复合材料对水溶液中染料(弱酸性红2R、普拉红B、弱酸性艳蓝RAWL、亚甲基蓝、分散深蓝S-3BG、中性红2GL和碱性紫)的静态吸附和动态吸附性能。静态吸附实验结果表明:氧化镁基活性炭复合材料对染料的吸附均是快速吸附过程,在实验考察的温度范围内,对染料的吸附均遵循伪二级动力学模型,吸附过程分别可用Langmuir和Freundlich吸附等温式描述。在20~40℃吸附温度下,氯化镁/活性炭复合材料对弱酸性红2R的饱和吸附量为35.84~714.57mg·g-1;在20~40℃吸附温度下,氢氧化镁/活性炭复合材料对弱酸性红2R、普拉红B、弱酸性艳蓝RAWL、亚甲基蓝、分散深蓝S-3BG的饱和吸附量分别为178.57~125mg·g-1,32.57~31.55mg·g-1,37.88~34.82mg·g-1,166.67~212.72mg·g-1和120.48~192.3lmg·g-1;在20~40℃吸附温度下,氧化镁/活性炭复合材料对普拉红B和弱酸性艳蓝RAWL的饱和吸附量分别为63.69~59.17mg·g-1和105.26~70.42mg·g-1。热力学研究表明,氧化镁基活性炭复合材料对染料的吸附过程均可自发进行。动态吸附实验表明,弱酸性红2R和普拉红B溶液初始浓度增大,传质推动力增大,吸附量增大;随着柱高的增加,饱和吸附时间增加,饱和吸附百分率随着柱高的增加而增大;流速增大,穿透时间缩短,但改性复合吸附剂的饱和吸附量降低;改性复合吸附剂适用pH值范围很广,但在酸性条件下吸附性能最佳;吸附柱可以再生和重复利用,具有重要的实用应用价值。
     研究了氧化镁基活性炭复合材料对水溶液中重金属离子的吸附性能,考察了吸附时间、吸附温度、溶液初始pH值、吸附剂用量和初始浓度对吸附性能的影响。结果表明:该类复合材料对这几种重金属离子的吸附均为快速的吸附过程,吸附均遵循伪二级动力学模型。Cu2+在氧化镁/活性炭复合材料上的吸附和Ni2+在氢氧化镁/活性炭复合材料上的吸附均可用Langmuir线性吸附等温方程式很好的描述,而Cr(Ⅵ)在氧化镁/活性炭复合材料上的吸附则用Freundlich线性吸附等温方程式描述更为合适。在20~50℃吸附温度下,Cu2+和Cr(VI)在CACl(以氯化镁和造纸草浆黑液为主要原料制备)上的饱和吸附量分别为22.12~91.74mg·g-1和27.03~384.62mg·g-1;在25~45℃吸附温度下,Cu2+和Cr(VI)在DMC(以氯化镁和商品活性炭为主要原料制备)上的饱和吸附量分别为63.58~85.26mg·g-1和32.14~53.26mg·g-1;在20~50℃吸附温度下,Ni2+在氢氧化镁/活性炭复合材料上的饱和吸附量为27.86~34.36mg℃g-1。热力学数据表明,该类复合材料对这几种重金属离子的吸附过程是一个自发的吸热反应。
     氧化镁/活性炭复合材料吸附脱除FCC汽油中硫化物的实验表明,以硫酸镁和造纸草浆黑液为原料制得的氧化镁/活性炭复合材料(CAS)对FCC汽油脱硫的适宜条件为:固定床温度80℃,油剂比1.0,空速5h-1;以氯化镁和商品活性炭为原料制得的氧化镁/活性炭复合材料(DMC)对FCC汽油脱硫的适宜条件为:固定床温度90℃,油剂比1.0,空速5h-1。在相同的动态吸附条件下,氧化镁/活性炭复合材料比商品活性炭和氧化镁具有更大的硫容和更高的脱硫性能,复合材料CAS的初始脱硫能力高于DMC,而DMC的硫容明显大于CAS。在两种复合材料分别脱硫后的FCC汽油中,硫化物的含量和种类均明显减少,尤其是苯并噻吩基本完全脱除。氧化镁/活性炭复合材料在300℃下用氮气吹扫2h再生,再生后仍具有较高的脱硫能力:脱硫率达88.56%,穿透时间为110min。
     上述研究表明,镁盐改性活性炭得到的镁炭复合材料可以很好地应用于空气干燥、废水中有机物和重金属离子的吸附脱除等领域,对催化裂化汽油中硫化物的脱除也有很好地效果。该研究不仅得到了一系列性能优良的无机-有机复合多孔性环保材料,而且对于我国西部盐湖资源开发过程中镁盐的综合利用也具有非常重要的意义。
In this paper, a series of compounds were prepared with magnesium salts and activated carbon as raw materials by plus-impregnation, incipient-impregnation, mechanical mixing and chemical precipitation & compounding in situ, such as magnesium chloride/activated carbon composites, magnesium hydroxide/ activated carbon composites and magnesia/ activated carbon composites. These compounds were analyzed and characterized by DTA-TGA, BET surface area and pore structure analyzer, X-ray diffraction, infrared spectroscopy and scanning electron microscopy and other modern instruments. The adsorption properties of magnesia-based activated carbon compounds were evaluated by moisture absorption, removal of organic matter and heavy metal ions in wastewater, sulfur compound from FCC gasoline.
     The compounds such as magnesium chloride/activated carbon composites, magnesium hydroxide/ activated carbon composites and magnesia/ activated carbon composites were prepared by plus-impregnation, incipient-impregnation, mechanical mixing and chemical precipitation & compounding in situ. It showed that the specific surface area of these mesoporous compounds changed with changing the calcination temperature and time, the average pore size of whom larger than 2nm. After the magnesium salt load in the activated carbon, the peak intensity weaken, which indicated that the crystal structure of magnesium salt was destroyed. It was found that magnesium were inside and outside the pores in activated carbon, respectively, in the form of magnesium chloride, magnesium hydroxide and magnesium oxide. Mg and C have a certain fusion.
     It was showed that the water adsorption capacity increased with the content of magnesium chloride and the relative humidity increasing. The moisture adsorption onto the magnesium chloride/activated carbon composite was followed the pseudo-second order model. The adsobnet could be recycled and reused.
     The static and dynamic adsorption performance of dyes from aqueous solution on the magnesium oxide-based activated carbon composites(magnesium chloride/activated carbon composites, magnesium hydroxide/activated carbon composites and magnesia/activated carbon composite materials) were studyed. Static adsorption experiment results showed that the adsorption courses were all fast processes;the adsorption of all kinds of dyes onto the composites were followed the pseudo-second order model and could be described respectively by Langmuir or Freundlich isotherm; the adsorption capacities of Weak Acid Red 2R on magnesium chloride/activated carbon were 35.84~714.57mg·g-1 at the temperature of 20~40℃; the adsorption capacityes of Weak Acid Red 2R, Weak Acid Red B,Weak Acid Brilliant Blue RAWL, Methylene and Disperse Navy Blue S-3BG on magnesium hydroxide/activated carbon composites were 178.57~125mg·g-1,32.57~31.55mg·g-1, 37.88~34.82mg·g-1,166.67~212.72mg·g-1 and 120.48~192.31mg·g-1 under the temperature of 20~40℃, while those were 63.69~59.17mg·g-1 and 105.26~70.42mg·g-1 to Weak Acid Red B and Weak Acid Brilliant Blue RAWL on magnesia/activated carbon composites at the same temperature; thermodynamic studies have shown that the adsorption processes of dyes on the magnesium-based activated carbon composites were spontaneous.Dynamic adsorption experiments showed that the mass transfer driving force increased with increasing the initial concentration of dyes, which leaded to the adsorption amount of the Weak Acid Red 2R and the Weak Acid Red B;with the increase of column height and the saturation adsorption time increasing, the percentage of adsorption increased; with the flow rate increasing, through time and the adsorption capacity decreased; the composites prepared were well for a wide range of pH values, but best for acidic conditions; adsorption column could be recycled and reused, with important practical application.
     The magnesia-based activated carbon composites prepared were examined for the adsorption of heavy metal ions from aqueous solutions by varying the parameters of adsorption time, temperature, initial pH, adsorbent dosage and initial concentration. Studies showed that the adsorption courses were all fast processes; the adsorption of all kinds of heavy metal ions onto the composites were followed the pseudo-second order model;the adsorption of Cu2+ on the magnesia/activated carbon composite and Ni2+ on the magnesium hydroxide/activated carbon composite could be described by Langmuir isotherm, but the adsorption of Cr(VI) on the magnesia/activated carbon composite could be described by Freundlich isotherm; under the temperature of 20~50℃,the adsorption capacities of Cu2+ and Cr(Ⅵ) on CAC1 (CAC1 was prepared using magnesium chloride and straw pulp black liquor as main raw materials) were 22.12~91.74mg·g-1 and 27.03~384.62mg·g-1,but the adsorption capacities of Cu2+ and Cr(VI) on DMC (DMC was prepared using magnesium chloride and activated carbon as main raw materials) were 63.58~85.26mg·g-1 and 32.14~53.26mg·g-1 under the temperature of 25~45℃; the adsorption capacities of Ni2+ on magnesium hydroxide/activated carbon composite were 27.86~34.36mg·g-1 under the temperature of 20~50℃;the adsorption of all kinds of heavy metal ions was found to be endothermic.
     The removal performance of sulfur compounds from FCC gasoline by magnesium oxide/activated carbon composites with magnesium sulfate and straw pulp black liquor as raw materials (CAS) or with magnesium chloride and activated carbon as raw materials (DMC) was evaluated using dynamic adsorption method. It was found that when sorbent granularity at the range of 40~60 meshes, the best technological parameters of adsorption temperature, volume ratio of gasoline and space velocity to CAS and DMC were 80℃,1.0,5h-1 and 90℃,1.0,5h-1 respectively, sulfur removal efficiencies were higher. In the same conditions, the sulfur hold and desulfurization performance of magnesium oxide/activated carbon composites were higher than activated carbon and magnesium oxide, respectively; when the initial desulfurization capacity of CAS was higher than DMC, DMC had a greater sulfur hold significantly than CAS.GC-FPD chromatograms of gasoline desulfurized clearly showed that sulfur compounds, such as thiophene and 3-methyl-thiophene, in FCC gasoline were adsorbed by magnesia/activated carbon composites, and benzothiophene was removed completely. Magnesia/activated carbon composites after regeneration at 300℃for 2h with nitrogen purge still had a higher desulfurization capacity:desulfurization rate of 88.56%, and the penetration time was 110min.
     The studies showed that the composites prepared by magnesium salts modified activated carbon could be well applied to air dry, removal of organic matter, heavy metal ions in wastewater and sulfur compounds in FCC gasoline. The preparation of magnesia-based activated carbon composites by magnesium salts and activated carbon can serve two purposes. One hand, it can provide a new way for preparation of inorganic-organic porous material for environmental protection; but on the other hand, it's very important for utilization of magnesium salts from salt lake's of China's western.
引文
[1]徐慕孺.镁—现代工业社会和自然界不可缺少的组成部分.国外耐火材料,1994, (8):11-15
    [2]Ien Wilson.世界镁资源概论[C]//辽宁省人民政府主要资源保护办公室.第二届中国辽宁国际镁质材料博览会学术报告汇编.沈阳:辽宁省人民政府主要资源保护办公室,2006:113-148
    [3]张保全.柴达木盆地盐湖镁盐工业的发展及对策.镁盐工业,2001,2:94-99
    [4]李华.柴达木盆地盐湖开发中镁资源利用的几点思考.有色金属,2000,8:33-34
    [5]王兆敏.中国菱镁矿现状与发展趋势.中国非金属矿工业导刊,2006,(5):6-9
    [6]邓敏,钱光人,唐明述,等.白云石晶体的有序度与去白云石化反应.南京化工大学学报,2001,23(1):1-3
    [7]黄西平,张琦,郭淑元,等.我国镁资源利用现状及开发前景.海湖盐与化工,2004,33(6):1-6
    [8]袁俊生,吴举,邓会宁,等.中国海洋苦卤综合利用技术的开发进展.盐业与化工,2006,35(4):33-37
    [9]徐丽君,周仲怀.苦卤综合利用技术的研究与开发.海湖盐与化工,2001,30(4): 5-9
    [10]徐丽君,于廷芳,于银亭,等.关于我国海水(含卤水)镁砂的研究与开发.海湖盐与化工,1999,28(1):16-20
    [11]徐丽君,于银亭,殷丽,等.我国21世纪海水化学资源综合利用技术发展战略.海湖盐与化工,1999,28(6):21-25
    [12]庞全世,李权.柴达木盐湖镁资源综合利用与发展我国镁业的对策.盐湖研究,2002,10(4):56-62
    [13]向兰,刘峰,金永成,等.试论我国西部盐湖镁资源的高度利用对策.海湖盐与化工,2002,31(4):24-28
    [14]夏德宏,余涛,张刚,等.皮江法炼镁工艺用能状况诊断及节能措施.工业炉,2005,(2):32-351
    [15]陈建军,马玉涛.水氯镁石脱水研究的进展与展望.盐湖研究,1998,6(2):92-97
    [16]张永健.含水氯化镁脱水方法及其利用.轻金属,2001,(12):42-45
    [17]周桓,袁建军.高纯无水氯化镁制备技术的进展.过程工程学报,2004,4(3):278-283
    [18]Buchmann Fred J. Pure Magnesium Chloride Prepared by the Simultaneous Extraction and Azeotropic Drying of a Salt Mixture.美国专利,3352634,1967
    [19]Braithwaite David G, Allain Ronald J. Anhydrous Magnesium Chloride Using Ethylene Glycol and Ammonia.美国专利,3966888,1976
    [20]贺春宝,王玉萍.盐湖生产氯化镁的研究.无机盐工业,2000,32(3):12-14
    [21]李丽,袁存光.黄河三角洲盐卤资源综合利用研究.海湖盐与化工,2005,34(3):1-4
    [22]刘文东.开发生产高纯氯化镁.中国无机盐,2006,(5):22-24
    [23]乌志明,李法强.青海盐湖氯化镁资源开发.盐湖研究,2001,9(2):61-65
    [24]闫振甲,何艳君.镁水泥改性及制品生产实用技术.北京:化学工业出版社,2006
    [25]天津化工研究院,等编.无机工业手册(下)[M].北京:化学工业出版社,1996:1089-1090
    [26]王玉萍,’贺春宝,郭向东.盐湖苦卤直接制取精制硫酸镁的研究.无机盐工业,2004,36(3:35-37
    [27]郭如新.硫酸镁肥料生产应用和研究开发近况.磷肥与复肥,1999,17(2):55-57
    [28]Carpentier F, et al. Harring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide zinc borate formulations. Polym Degradation Stability,2000,69:83
    [29]Norio T. Function of inorganic power surface by the grafting of polymers. J Polym,1996, 45(6):421
    [30]吴健松,李海民,李财花.水热法制备阻燃型氢氧化镁.无机盐工业,2005,37(1):19
    [31]林慧博,印万忠,南黎.纳米氢氧化镁制备技术研究.有色矿冶,2003,19(1):33
    [32]王路明.石灰卤水法制备超细氧化镁的研究.海湖盐与化工,2000,30(1):21
    [33]张勇,袁建军.石灰卤水法制备氢氧化镁的反应条件探索.天津科技大学学报,2006,21(2):81
    [34]韩海波,赵华,刘润静,等.卤水-石灰乳法制备纳米氢氧化镁新工艺研究.无机盐工业,2008,40(2):31
    [35]王锋,李稳宏,刘焕强,等.高活性氧化镁生产新工艺研究.石化技术与应用,2002,20(3):152-154
    [36]邓绍雄.高纯氧化镁生产的历史回顾与展望.耐火材料,1994,28(5):289-292
    [37]邓绍雄.高纯氧化镁的生产.广东化工,1995,(1):30-32
    [38]孙国清,白锦会,邓绍雄.高纯氧化镁的生产.湖北化工,1994,(2):37-39
    [39]赵乐,张保林,侯翠红,等.菱镁矿制备高纯纳米氧化镁的实验研究.无机盐化工,2009,41(2):23-26
    [40]郑荣光,阎肃.二次碳化法制取高纯氧化镁的研究.华东地质学院学报,1997,20(2):173-177
    [41]杜宝安,鲁秀国,翟永青,等.水热合成法制备高纯度氧化镁.海湖盐与化工,2000,30(1):20-21
    [42]谢英惠,何予基.高纯氧化镁的研究.海湖盐与化工,.2001,30(6):16-18
    [43]Soldatkina L.M.,Purich A.N.,Menchuk V.V..Adsorption of dyes on magnesium hydroxide. Adsorpt. Sci.Technol.,2001,19(4):267-272
    [44]姜述芹,周保学,于秀娟,等.氢氧化镁处理含镉废水的研究.环境化学,2003,22(6):601-604
    [45]郭如新.绿色安全中和剂氢氧化镁.化工科技市场,1999,22(12):18-2
    [46]钟秦编.燃煤烟气脱硫脱硝技术及工程实例,北京:化学工业出版社,2002
    [47]詹树林,林俊雄,方明晖,等.氢氧化镁改性硅藻土对阴离子染料的吸附性能研究.稀有金属材料与工程,2008,37:644-647
    [48]壮亚峰,曹桂萍,张潇潇,等.环境科学与管理,2008,33(1):70-73
    [49]壮亚峰,姚国胜,李杰励,等.氢氧化镁-淀粉复合絮凝剂对印染废水的脱色研究.化学与生物工程,2007,24(2):29-31
    [50]I. Hama, T. Okamoto, E. Hidai et al. Direct ethoxylation of fatty methyl ester over Al-Mg composite oxide catalyst. JAOCS,1997,74(1):19-24
    [51]卢永定.新型矿物材料-水滑石.无机盐工业,1998,30(3):8-10
    [52]Reichle, W. T., Kang, S.Y., Everhardt D. S. The nature of the thermal decomposition of a catalytically active anionic clay mineral, Journal of Catalysis,1986,101 (2):352-359
    [53]俞卫华,倪哲明,郭志强.LDHs材料制备技术研究进展.浙江工业大学学报,2004,32(3):306-307
    [54]Klumpp E, Contreras C O, Klahre P, et al. Sorption of 2,4-dichlorophenol on modified hydrotalcites. Colloids and Surfaces A,2004,230:111-116
    [55]UlibarriM A, Pavlovic I,HermosinM C, et a.l Hydrotalcite-like compounds as potential sorbents of phenols from water.Applied Clay Science,1995,10(1-2):131-145.
    [56]袁素珺,张青红,李耀刚,等.高比表面积的镁铝复合氧化物纳米薄片的制备及其吸附 性能.硅酸盐通报,2009,28(4):636-640
    [57]Ni ZM, Xia S J, Wang L G, et al.Treatment of methyl orange by calcined layered double hydroxides in aqueous solution:Adsorption property and kinetic studies. Journaland Colloid and Interface Science,2007,316(2):284-291
    [58]宋伟明,周兴业,邓启刚,等.镁铝复合介孔氧化物催化月桂酸甲酯乙氧基化反应.石油化工,2009,38(5):536-540
    [59]安霞,谢鲜梅,王志忠.水滑石类化合物的性质及其催化作用.太原理工大学学报,2002,33(5):498-501
    [60]Mahzoul H, Brilhac J F, Gilot P. Experimental and mechanistic study of adsorption over NOx trap catalysts. Applied Catalysis B,1999,20:47.
    [61]Kun Xing, Haizeng Wang,Lugang Guo, et al.Adsorption of tripolyphosphate from aqueous solution by Mg-Al-CO3-layered double hydroxides. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,328:15-20
    [62]崔卫华,董邦真,刘菲.硅胶载体除氟剂的性能.化工进展,2007,26(8):1170-1173
    [63]Peiyi Zhu, Haizeng Wang, Baowei Sun,et al. Adsorption of fluoride from aqueous solution by magnesia-amended silicon dioxide granules. J Chem. Technol. Biotechnol.,2009
    [64]C.A Sorrell, C.R. Armstrong, Reactions and equilibria in magnesium oxychloride cements. Journal of the American Ceramic Society,1976,59(1-2):51
    [65]严育通,景燕,马军.氯氧镁水泥的研究进展.盐湖研究,2008,16(1):60-66
    [66]V.S.Ramachandran, R.F.Feldman, J.J.Beaudoin著.黄士元,孙复强,王善拔,等译.混凝土科学.北京:中国建筑工业出版社,1986,9
    [67]汪宏涛,钱觉时,王建国.磷酸镁水泥的研究进展.材料导报,2005,19(12):46-48
    [68]李鹏晓,杜亮波,李东旭.新型早强磷酸镁水泥的制备和性能研究.硅酸盐通报.2008,27(1):20-25
    [69]苏畅.铝硅镁水泥.中国专利,00122936,2004.04.07
    [70]李智广.高掺量粉煤灰菱镁水泥性能研究.山东煤炭科技.2007,1:70-71
    [71]许贤敏.磷酸铵镁水泥轻混凝土的耐热性.2002,22(1):58-59
    [72]E. Aghion, B.Brontin, D.Eliezer. The role of the magnesium industry in protecting the environment. Jounral of Materials Processing Technology,2001,117:381-385
    [73]H.M. Lu, L.L. Yu, P. Liang, et al. Electrolysis of Magnesium from Bischofite in Qinghai Salt Lakes. Rare metals,2001,20 (4):209-212
    [74]Yuhuang, Hu, Eli, Ruckenstein. The catalytic reaction of NO over Cu supported on meso-carbon microbeads of ultrahigh surface area. Catalysis,1997,172(1):110~117
    [75]炭素材料学会编,高尚愚,陈维译.活性炭基础与应用.中国林业出版社,1984,235-287
    [76]John.. Kennedy. L, Judith VijayaJ, Kayalvizhi. K. et al. Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chem. Eng.,2007,132: 279-287
    [77]古可隆.活性炭的应用(三).林产化工通讯,1999,33(6):43-45
    [78]北川浩,铃木谦一朗.吸附的基础与设计(中译本).化学工业出版社,1983,86-95
    [79]王炳中.活性炭对含有机废水处理的基础研究.中国环境科学,1987,7(6):27-30
    [80]王中来,郭文斌.搅拌槽液相吸附过程的数学模拟研究—粒内表面扩散控制.中国环境科学,1997,17(1):45-49
    [81]宁平,彭金辉,高建培.烤胶废料活性炭对含铬废水的处理能力.环境污染与防治,1999,21(3):1-3
    [82]王爱平,刘中华.活性炭水处理技术及在中国的应用前景.昆明理工大学学报,2002,27(6):48-1
    [83]T. Soldatkina, L. M. Purich, A.N., Menchuk. V.Adsorption of dyes on magnesium hydroxide. Adsorpt. Sci. Technol.,2001,19(4):267-272
    [84]A. Suhasa, P. J. M. Carrott,M. M. L. Ribeiro. Carrot.Lignin-from natural adsorbent to activated carbon:A review. Bioresour. Technol.,2007,98(12):2301-2312
    [85]Fierro. V., Torne-Fernandez. V., Celzard. A. Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid:Synthesis and textural characterisation. Microporous Mesoporous Mater,6,92:243-250
    [86]余万波.臭氧—生物活性炭技术在微污染饮用水处理中的应用(上).西南给排水,2003,25(2):8-12
    [87]余万波.臭氧—生物活性炭技术在微污染饮用水处理中的应用(下).西南给排水,2003,25(3):25-30
    [88]吴新华编著.活性炭生产工艺原理与设计,中国林业出版社,北京:1994
    [89]Tan. B.H., Teng. T. T.,Mohd. Omar. A. K. Removal of dyes and industrial dye wastes by magnesium chloride.Wat. Res.,2000,4(2):607-632
    [90]扬海涌.LY-02型椰壳活性炭在催化裂化汽油脱臭中的应用,炼油设计,1999,29(11):15-17
    [91]栾蕊,韩恩山.金属硫化物的研究与应用.化学世界,2002,2:105-108
    [92]古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钦复合催化剂空气净化网的研制.华东理工大学学报,2000(26):36-37
    [93]施荫锐.活性炭的性质及其在卷烟滤嘴中的应用.吸烟与健康,2002,5(2):25-27
    [94]潘红艳,李忠,夏启斌,等.金属离子改性活性炭对二氯甲烷脱附活化能的影响.化工学报,2007,58(9):2259-2265
    [95]李国希,黄启忠,侯娟.负载Pt活性炭纤维对NO的吸附活性.催化学报,2003,24(2):107-110
    [96]詹亮,张睿,王艳莉,等.Pd在超级活性炭上的负载对其储氢性能的影响.新型炭材料,2005,20(1):33-38
    [97]Macias-Peiez M.C.,Bueno-Lopez A.,Lillo-Rodenas M.A., et al. SO2 retention on CaO/activeated carbon sorbents. Part Ⅰ:Importance f calcium loading and dispersion. Fuel,2007, 86:677-683
    [98]冯飞月,陈水挟.负载纳米氧化锌多孔碳吸附剂的制备及其结构研究.功能材料,2006,9(37):1481-1484
    [99]郭丽燕,马伟.磁场在煤气洗涤废水处理及回用中的作用.矿冶工程,2000,20(3):59-60[100]王向荣,王秀兰.CO2气氛下FeLi/AC催化剂上的乙苯脱氢反应.太原理工大学学报,2008,(1).:23-25
    [101]Sina, Rabindra K. Method of preparing magnesium oxide impregnated activated carbon.美国专利,4125482,1978
    [102]Ziming T,Keith E G, Adsorption in carbon micropores at supercritical Temperatures. J Phys Chem.1990,94:6061-6069
    [103]李家俊,臧科研,赵乃勤,等.分散MgO对活性炭纤维结构及吸附性能的影响.天津大学学报,2002,35(1):101-104
    [104]Targosz, Eugene F. Wastewater treatment processusingan admixed paste fo activated carbon and magnesium hydroxide.美国专利,6379555,2002
    [105]Sawai J, Kojima H, Kano F, et al. Antibacterial characteristics of magnesium oxide powder. World J. Microbiol. Biotechnol.,2000,16(2):187-194.
    [106]Sawai J., Yoshikawa T.. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay.J. Applied Microbiol.,2004, 96(4):803-809
    [107]Tamai H, Katsu N, Ono K, Yasuda H. Antibacterial activated carbons prepared from pitch containing organomellics. Carbon,2001,39:1963-1969
    [108]Zhou Q., Yang J. W., Wang Y.Z., et al.. Preparation of nano-MgO/Carbon composites from sucrose-assisted synthesis for highly efficient dehydrochlorination process. Mater Lett 2007;doi: 10.1016/j.matlet.2007.10.031
    [109]Meigunov M S, Meigunova E A, Zaikovskii V I, et al. Carbon Dispersion and Morphology in Carbon-Coated Nanocrystalline MgO. Langmuir,2003,19(24):10426-10433
    [110]Heroux D S, Volodin A M, Zaikovski V I, Chesnokov V V, Bedilo A F, Klabunde K J. ESR and HRTEM study of carbon-coated nanocrystalline MgO. J Phys Chem,2004,108(10): 3140-3144
    [111]HIJC USA, INC.. http://www.adsorptionchiller.bigstep.com/,2007/01/16.
    [112]江苏双良空调设备股份有限公司http://www.shuangliang.com/newpage/product/xifusi.htm,2007/01/16
    [113]Srivastava N.C.,Eames I.W..A review of adsorbents and adsorbates in solid-vapor adsorption heat pump systems. Appl.Therm.Eng.,1998,18 (9-10):707-714
    [114]李鑫,李忠,刘宇,等.不同金属盐改性对硅胶的水蒸气吸附性能影响.离子交换与吸附,2005,21(5):391-396
    [115]Aristov Y. I., Restuccia G., Tokarev M. M., et al. React. Kinet. Catal.L.,2000,71 (2): 377-384
    [116]刘业凤,范宏武,王如竹,等.新型复合吸附剂SiO2·xH2O·yCaCl2与常用吸附剂空气取水性能的对比实验研究太阳能学报.2003,24(2):141-144
    [117]张学军,代彦军,王如竹.新型复合干燥剂吸附分形特征.工程热物理学报,2004,25(2):320-322
    [118]Ootake T, Shishido M, Ando N, et al. Kagaku Kogaku Ronbun,2003,29(4):483-487
    [119]Tokarev M,Gordeeva L,Romannikov V,et al. Int.J.Therm. Sci.,2002,41:470-474
    [120]Gonzolez J C,Molina-Sabio M,Rodriguez-Reinoso F. A pplied Clay Science,2001,20 (3):111-118
    [121]Edith Mathiowitz. Journal of A pplied Polymer Science,2001,80:317-327
    [122]I.H. Derby, V.Yngve. Dissociation tensions of certain hydrated chlorides and the vapor pressures of their saturated solutions. Journal of the American Chemical Society,1916,38, 1439-1451
    [123]K.K.Kelley. Energy Requirment and Equilibrium in Dehydration, Hydrolysis, and Decomposition of Magnesium Chloride, U.S.Bur. Mines,1945
    [124]Serowy Fritz.,Tittel Manfred. Zur Frage der thermischen Behandlung von Carnallit und Bischofit. Freib Forsch-11,1959,88
    [125]Berg,L. G, Burmistrova, N.P.,Lisov, N. I.Investigation of reactions in solids by DTA. Journal of Thermal Analysis,1975,7(1):111-117
    [126]陈新民,张平民,叶大陆,等.氯化镁水合物分解的综合研究.中南矿冶学院学报,1979,1:15-26
    [127]李玉贤,朱明悦,张征.MgCl2·6H2O热分解机理的研究.河南化工,1999,12:16-17
    [128]D.Petzold, R. Naumann. Thermoanalytical study on the decomposition of magnesium chloride hexahydrate under quasi-isobar conditions. Journal of Thermal Ananlysis,1980,19(1): 25-34
    [129]翟宗玺.氯化镁及其水合物的标准溶解焓与生成焓.盐湖研究,1993,1:33-37
    [130]中华人民共和国轻工业部.GB/T 13025.6-91.中国国家共和国国家标准制盐工业通用试验方法钙和镁离子的测定
    [131]中华人民共和国化学工业部.HG/T2765.5-1996.中华人民共和国化工行业标准-硅胶试验方法.1996
    [132]X.П.斯特雷列茨(韩薇,霍光蔗等译).电解法制镁(第一版).北京:冶金工业出版社,1981
    [133]赵振国.吸附作用应用原理.北京:化学工业出版社,2005,71-73
    [134]Aristov Yu I,Restuccia G,Cacciola G et al.A family of new working materials for solid sorption air conditioning systems. Appl.Therm.Eng.,2002,22(2):191-204.
    [135]刘业凤,王如竹.新型复合吸附干燥剂的吸附动力学特性研究.上海理工大学学报,2006,28(2):107-110
    [136]Lagergren S, Bihang A. Zur Theorie der sogenannten Adsorption geloster Stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar,1898,24(4):1-49.
    [137]Ho Y S, Mckay G. Sorption of dye from Aqueous Solution by Peat. Chem. Eng. J.,1998, 70(2):115-124.
    [138]Chairat M., Rattanaphani S., John B.Bremner, et al. Adsorption kinetic study of lac dyeing on cotton. Dye. Pigment,2008,76:435-439
    [139]岳钦艳,解建坤,高宝玉,等.污泥活性炭对染料的吸附动力学研究.环境科学学报,2007,27(9):1431-1438.
    [140]Kannan N., MariappanM. S..Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dye Pigment,2001,51(1):25-40
    [141]Webe W. J.,Morris J..Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Divis., Proc. Amer. Soc. Civil Eng.,1963, SA2:31-59.
    [142]Chiou M. S.,Li H. Y. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan bead. J. Hazard. Mater.,2002,93:233-248.
    [143]G. McKay,Y.S.Ho. Pseudo-second-order model for sorption processes.Process Biochem, 1999,34:451-465
    [144]Ugurlu M., Gurses A.,Acikyildiz M. Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2. Micropor. Mesopor. Mater.,2008,111(1-3):228-235
    [145]刘业凤.空气取水用复合吸附剂的吸附性能及吸附动力学特性研究:[博士学位论文].上海:上海交通大学,2003
    [146]王路明.氢氧化镁对印染废水处理的研究.无机盐工业,2008,40(12):53-55
    [147]Tan BH, Teng TT, OMAR A KM. Removal of dyes and industrial dye wastes by magnesium chloride. Wat. Res.,2000,34:597-601
    [148]赵宜江,嵇鸣,张艳,等.氢氧化镁吸附陶瓷膜微滤对印染废水脱色的研究.膜科学与技术,2000,20(1):41-45
    [149]Higgins, Matthew J. Myers, R. Dwayne, Sprague, Nicolle M., Barron, Kevin. Controlling hydrogen sulfidein wastewater using base addition. Proc.—WEFTEC'97, Water Environ. Fed. Annu. Conf.Expo.,70th,Volume 2,1997,587-594
    [150]刘文辉,刘增超,郑先俊,等.氢氧化镁处理酸性含铜废水的研究.能源环境保护,2006,20(4):33-35
    [151]Tuenay, Olcay, Kabdasli, Isik, Tasli, Rueya. Pretreatment of complexed metal wastewaters. Water Science and Technology,1993,29(9):13-15
    [152]马艳飞,王九思.氢氧化镁对废水中镉吸附性能的研究.兰州铁路学院学报,2003,22(4):120-122
    [153]罗明标,刘淑娟,余哼华,等.氢氧化镁处理含铀放射性废水的研究.水处理技术,2002,28(5):274-277
    [154]姜述芹,余秀娟等.含铬废水的氢氧化镁净化研究.哈尔滨工业大学学报,2004,36(8):1080-1083
    [155]Wu Q,Bishop L P,Keener T C. Sludge digestion enhancement and nutrient removal from anaerobic supernatant by Mg(OH) 2 application. Water Science and Technology,2001,44(1): 161-166
    [156]Berman,Y,Tanklevsky,A,Oren,Y, Tamir,A. Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams:Part Ⅱ. Chem. Eng. Sci.,2000,55 (5):1023-1028
    [157]Beeghly, Joel H, Smith, Kevin J,Babu, Manyam. Dewatering and agglomeration study of magnesium2enhanced lime generated FGD gypsum. Proceedings of the Air & Waste Management Association,1997,8-13
    [158]Hayakawa,Yumi,Yamashita,Masatada. Removal of sulfur oxides from boiler flue gases. J P 2000051649 A2 22 Feb.2000
    [159]Akiyoshi, Tetsuo. Waste gas desulfurization using magnesium hydroxide with improved utilization factor of treatment agent.J P 2001179048 A2 3 J ul.2001
    [160]Matsui, Hideo, Iimura, Hiroaki. Treatment of incinerator flue gases with magnesium hydroxide. J P 06246130 A26 Sep.1994
    [161]中华人民共和国轻工业部.GB/T 13025.5-91.中国国家共和国国家标准制盐工业通用试验方法-氯离子的测定
    [162]Sinel'nikov S.V.,Gopyanov V.M.,Vezikova R.M., Razumorshii S.N. Influence of preliminary heat treatment on the kinetics of sintering and recrystallization of magnesium oxide. Journal of Applied Chemistry of the USSR,1986,59(2):280-283
    [163]李陇岗,杨建元,钟辉,等.Mg(OH)2热分解动力学机理研究.盐湖研究,2006,14(1):39-42
    [164]杨琪,邓意达,胡文彬.氧化铝/碳纳米管复合材料的制备及表征.无机化学学报,2007, 23(12):2049-2053
    [165]王国祥,肖连生,张贵清,等.复合引发剂合成氢氧化镁-聚丙烯酰胺.当代化工,2008,37(1):52-55
    [166]彭秧锡,刘漫.微波辅助制备纳米MgO-ZnO复合粉体.硅酸盐通报,2007,26(4):826-829
    [167]胡杰珍,徐海波,芦永红,等.纳米TiN粉体氧化制备铱钛氧化物为中间层的钛基氧化铱电极.催化学报,2008(12),29(12):1253-1258
    [168]Faria P.C.C.,6rfao J.J.M.,Pereira M.F.R.. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research,2004,38:2043-2052
    [169]Nakagawa K., Namba A.,Mukai S.R., et al. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Research,2004,38: 1792-1798
    [170]路平,王敏娟.镁盐对印染废水脱色处理研究.工业水处理,2002,22(6):35-37
    [171]Boon H.T.,Tjoon T.T., Mohd OmarM A.K..Removal of dyes and industrial dye wastes by magnesium chloride. Water Res.,1999,34(2):597-601
    [172]Zhan Shulin, Lin Junxiong, Fang Minghui, et al. Adsorption of Anionic Dye by Magnesium Hydroxide-Modified Diatomite. Rare Metal Materials and Engineering,2008(5),37:644-647
    [173]壮亚峰,曹桂萍,张潇潇,等.氢氧化镁-壳聚糖复合絮凝剂对印染废水的脱色研究.环境科学与管理,2008,33(1):70-73
    [174]Rakhshaee R, Khosravi M, Ganji M T. Kinetic Modeling and Thermodynamic Study to Remove Pb(II), Cd(II), Ni(II) and Zn(II) from Aqueous Solution Using Dead and Living Azolla Filiculoides. J. Hazard. Mater.,2006,134(1-3):120-129.
    [175]Malik, P. K.. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. J.Hazard. Mater.,2004,113(1-3):81-88
    [176]Chang M. Y.,Juang R S..Adsorption of tannic acid, humic acid and dyes from water using the composite of chitosan and cativated clay. J Colloid and interface Sci.,2004,278(1):18-25
    [177]高宝玉等.氯化镁用于染料废水的脱色研究.山东大学学报(自然科学版),1993,9(3):327-335
    [178]汤鸿霄.用水废水化学基础.中国建筑工业出版社,1979,785-792
    [179]张庆建,许正文,王海玲,等.大孔树脂对对硝基苯胺的吸附行为及其应用研究.离子 交换与吸附,2006,22(6):503-511
    [180]Charerntanyarak L. Heavy metals renoval by chemical coagulation and precipitation. Water Sci.Technol.,1999,39(10/11):135-138
    [181]孟佑婷,袁兴中,曾光明,等.生物表面活性剂茶皂素离子浮选去除废水中镉离子.环境科学学报,2005,25(8):1029-1033
    [182]P.M. Pimentela, M.A.F. Meloa, D.M.A. Meloa, et al. Kinetics and thermodynamics of Cu(II) adsorption on oil shale wastes. Fuel processing technology,2008,89:62-67
    [183]谭龙华,唐祖光,陈鹰,等.TBP纤维棉对金(Ⅲ)吸附性能的研究及应用.纤维素科学与技术,2006(4):16-20
    [184]黄石峰,潘湛昌,陈世荣,等.直流电解法处理电镀综合废水.化学与生物工程,2008,25(8):61-63
    [185]ARMSTRONG R D, TODD M, ATKINSON J W, et al.Selective electrodeposition of metals from simulated waste solutions. Applied Electrochem.,1996,26:379
    [186]Headley J V, Gandrass J, Kuballa J, et al. Rates of sorption and partitioning of contaminants in the biofilms Environ. Sci. Technol.,1998,32(24):3968-3973
    [187]Ajmal M, Khan A H, Ahmad S, Ahmad A. Role of sawdust in the removal of copper(II) from industrial wastes[J].Water Res.,1998,32:3085-3091.
    [188]Celis R, Hermosin M C, Cornejo J. Heavy metal adsorption by functionalized clays. Environ. Sci. Technol.,2000,34:4593-4599
    [189]国家环境保护局.GB7474-87.水质铜的测定.二乙基二硫代氨基甲酸钠分光光度法
    [190]国家环境保护局.GB7466-87.水质总铬的测定.高锰酸钾氧化-二苯碳酰二肼分光光度法
    [191]国家环境保护局.GB11910-89.水质镍的测定.丁二酮肟分光光度法.1989
    [192]Paul Chen J, Wu S, Chonga K H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon,2003,41(10):1979-1986.
    [193]Chen J P, Yiacoumi, S T, Blaydes G. Equilibrium and kinetic studies of copper adsorption by activated carbon. Separat. Technol.,1996,6(2):133-146.
    [194]Seyed A D, David A R. Pecan shell activated carbon:synthesis, characterization, and application for the removal of copper from aqueous solution[J].Carbon,2001,39(12):1849-1855.
    [195]孙奇娜,盛义平.载钛活性炭电吸附去除Cr(Ⅵ)的研究.环境工程学报,2007,1(2): 59-63
    [196]Sushanta D, Uday C G.Kinetics, isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodynamics,2008,40:67-77
    [197]何争光,季喆.铬镀废水的活性炭吸附机理探讨.郑州工业大学学报,1997,18(1):65-69
    [198]赵芝清,管济民,佘孝云.不同类型污泥对Cr(Ⅵ)的吸附及其影响因素.环境科学与管理,2007,32(12):76-78.
    [199]Debnath S.,Ghosh U. C.. Kinetics, isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodynamics.,2008,40(1):67-77
    [200]Abou-Mesalam M. M.. Sorption kinetics of copper, zinc, cadmium and nickel ions on synthesized silico-antimonate ion exchanger. Colloids Surf.A:Physicochem. Eng. Aspects., 2003,225(1-3):85-94;
    [201]Boonamnuayvitaya V.,Chaiya C.,Tanthapanichakoon W., et al. Removal of heavy metals by absorbent prepared from pyrolyzed coffee residues and clay. Sep. Purif. Technol.,2004,35(1): 11-12
    [202]邹卫华.锰氧化物改性过滤材料对铜和铅离子的吸附研究:[博士学位论文].长沙:湖南大学,2006.5
    [203]张振莉,周亚松,宗海生,等.镁铝复合氧化物载体的制备与性质研究.燃料化学学报,2007,35(1):91-97
    [204]刘守军,刘振宇,牛宏贤,等.新型低温CuO/AC脱硫剂制备及表征—载铜量对脱硫活性的影响.燃料化学学报,1999,27(12):186-191
    [205]刘守军,刘振宇,朱珍平,等.新型低温CuO/AC脱硫剂制备—煅烧温度对脱硫活性的影响.环境科学,2001,(1):12-17
    [206]马建蓉,刘守军,刘振宇,等.新型Ca/AC脱硫剂的研究.煤炭转化,2001,24(4):48-53
    [207]孙金香,王海增,郭鲁钢,等.MgO/AC复合材料脱除汽油中的硫化物.环境化学,2009,28(5):666-669
    [208]孙金香,王海增,郭鲁钢,等.氧化镁/活性炭复合材料的制备方法及其应用.中国专利,CN 101402475A

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700