用户名: 密码: 验证码:
超高水充填材料及其充填开采技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭资源较为丰富,但其赋存特点是煤矿“三下”压煤比较普遍。一方面,我国主要产煤省多地处平原,村庄密集,人口众多,村庄压煤比重大;另一方面,随着国内经济不断持续发展,村镇规模不断扩大,新矿区、新井田不断建设,压煤量也持续增加。解决“三下”压煤问题是我国煤矿可持续发展的关键。此外,由于煤矿开采造成地表沉陷、建筑物破坏及地下水与土地资源减少等,使矿区生态环境问题越来越突出。基于上述问题,煤炭绿色开采是实现我国煤炭工业可持续发展的必由之路,充填开采技术是实现上述目标的不二选择。本文在充分研究我国煤炭资源赋存状况及充填开采现状的基础上,从充分回收煤炭资源、减少矿区环境污染、消除矿区生态破坏的角度出发,提出超高水充填材料用于矿井采空区充填的课题,并对此进行了详细研究。
     本文在详细查阅大量国内外文献的基础上,详细研究了超高水材料的生成机理,并通过大量实验,对超高水材料的各组成要素进行了详细研究。在实验室条件下,经过多年反复试验研究,找出超高水材料合理的组成配方。所制得的超高水材料由A、B两种主料与少量复合速凝剂和复合缓凝分散剂组成。该材料可在水体积高达97%时,实现初凝时间在8~90min之间的按需调整。当水体积在95~97%时,抗压强度可根据外加剂的不同而进行调节,其28天强度可达到0.66~1.5MPa之间。该材料A、B两主料单浆可持续30~40小时不凝固,混合后材料可快速水化。调整外加剂配方可以改变材料性能如凝结时间与强度等。
     为了考察所制得超高水材料性能,对超高水充填材料的基本性能包括基本力学性能、化学性能及所构成材料的稳定性进行了研究,发现该材料具有早强、快硬的特点,7天抗压强度可达到最终强度的60~90%,后期强度增长趋势较缓慢。通过调节水固比与外加剂,可根据需要调整其强度性能与凝结时间等指标。该材料体积应变较小,有利于采空区的充填应用。该材料抗风化性能较差,火烤效果类同于风化,表明该材料不适于干燥、开放的环境。在井下潮湿环境中采取一定措施后可方便使用,尤其适合于井下密闭大空间的充填。
     对超高水材料固结体进行电镜分析表明,其主要成分为钙矾石。超高水材料的钙矾石结构为纤细的丝网状结构,同时伴有铝胶及其它凝胶类物质。同时发现,当水体积大于95%时,钙矾石结构以纤细的丝网状结构占绝对优势,反之材料的钙矾石向粗大的针状结构过渡。因此,以95%的水体积作为区分高水与超高水材料的界限为宜。
     对超高水材料浆体的流变性进行了研究,结果表明:其A、B料浆的粘度较小,与水的粘度相仿,可视为牛顿流体,而混合浆液则属振凝时变性非牛顿流体。但材料在混合后的初始阶段粘度发展较慢,当达到其凝结时间的约2/3时,粘度开始较快上升,并在接近凝结时间时,出现突变性拐点。出现拐点时的各浆体表观粘度值随凝结时间的减少呈降低趋势。
     研究还结合流体流动基本方程及一些经验模型,对材料的流体力学性能如材料的不淤临界流速进行了研究。发现浆体的表观粘度、所含固体物料的颗粒组成、制成浆体的浓度等因素均会对材料的流体力学性能产生影响。公称直径在100~200mm的常规无缝钢管,用来输送超高水材料时,可输送速度以不小于2m/s为宜。
     研制的超高水材料用于现场采空区充填时有以下特点:(1)水含量特别高,可通过管路混合后对采空区进行灌注式充填,充填工艺十分简单;(2)超高水充填用水可采用矿井水,可减少大量排水费用,同时减少排水对地面的污染。
     通过对超高水充填材料性能及充填开采方法进行详细研究后发现,适宜于超高水材料的充填方法有多种,具代表性的有开放式充填、袋式充填、混合式充填、分段阻隔式充填等。这些方法可根据现场开采工艺进行选择,其中开放式充填具有系统简单,无须架设充填袋的优点,但袋式充填方法适应性较强。
     根据超高水材料特点及采空区充填要求,研制出半连续式制浆充填工艺系统。该系统由4个子系统组成。在使用时,多个搅拌器交替工作,使料浆供给呈连续状态,保证采空区充填连续不间断进行。
     本文的研究成果已成功在田庄矿薄煤层与陶一矿厚煤层两个不同条件下的采空区进行了实际应用。作者在对前者煤层地质条件进行详细分析后,借助数值模拟对试验工作面上覆岩层可能出现的变形情况进行了分析,提出合理充填开采方案,对后者则对在采空区充填后的上覆岩层活动状态进行了计算机模拟研究,得出了指导性结论。目前陶一煤矿已经成功完成两个充填开采工作面,第三个工作面的充填工作正在进行,现已采出煤炭十几万吨,累计创经济效益近七千万元。田庄煤矿充填开采已经取得可喜成果,工作面推进达120余米,工作面充填工作进展顺利,充填效果良好,已取得超千万元的经济效益。
     为考察充填体实验效果,还对陶一、田庄二煤矿工作面充填后的地表沉陷情况进行了观测研究。截止到目前,充填工作面对应地表未受任何影响,初步表明超高水材料充填开采具有明显的经济效益、社会及环境效益。
China is rich in coal resource. But unfortunately, most of them are located undervillages, railroads and surface buildings. The very reason is that most provincesabounding in coal site on the plain with more villages of high population density. Howto mine these coals above is key factor and primary problem restricting thedevelopment of China’s coal mining. Green coal mining is the only way to achievesustainable development of China's coal industry. Coal filling mining technology is aprime choice to achieve these goals. In this paper, the project of superhigh-waterpacking material used as mine gob filling material is proposed and obtained a detailedstudy.
     This paper studied fully about the formation mechanism of superhigh-watermaterial based on detailed inspection of a large number of domestic and foreignliteratures. Through a large number of experiments trial and error on the key elementsto form the superhigh-water material, reasonable constituents to form superhigh-watermaterial were found. It was composed of A and B components together with a smallamount of complex accelerating, retarding agents and dispersant. The setting time ofthe material could be regulated from 8 to 90 minutes. Its compressive strength couldalso be changed under different water content. For instance, when the water volumecontent varied between 95 ~ 97%, its final strength could be varied between 0.66 ~1.5MPa. The slurry formed with A or B alone could keep 30 to 40 hours unsetting,whereas the mixture of A and B hardened quickly.
     In order to investigate the properties of the superhigh-water material, its basicproperties including basic mechanical properties, chemical properties and stabilitywere investigated in laboratory. It was found that the material has quick hardeningcharacteristics and the 7 day compressive strength could be up to 60~90% of the 28day one. After that, the strength growing slowed down. Its compressive strength andsetting time could be regulated by adjusting the water-solid ratio and additives. Thesmall bulk strain of this material made it apt to filling application in largeunderground interspace. The material was of poor weathering-resistance property,which indicating that it was not suitable for hot, dry and open-up environment. In thewet conditions of underground goaf, the material could be easy to use, especiallysuitable for filling the large space confined underground.
     The microtopography of the superhigh-water material induration was investigated by SEM analysis. The results showed that its main ingredient is ettringite. Thisettringite in the superhigh-water material was thin and wire-like, accompanied byAl(OH)_3-gel and other gel-type substances. It was also found that the water volumecontent in 95% is a key point, beyond it, the structure of ettringite was dominant inthin, mesh-like structure. But less than it, the ettringite needle-like structure wasthickening more and more. Therefore, it was appropriate to make the water volume in95% be a turn point from high-water to superhigh-water packing material.
     Rheology studies of the superhigh-water material showed that the slurry viscosityof A or B alone was almost as small as water’s and then could be referred asNewtonian fluid, while the mixed slurry was a time-varying non-Newtonian fluid. Butthe viscosity of the mixture increased slowly in the initial stage. It did not rise quicklyuntil the time kept about two to thirds of the setting time of the material. When nearthe setting time, the curve of the viscosity reached an inflexion. The apparentviscosity at inflexion of the material with short setting time was lower than that of thelonger ones.
     The hydrodynamic properties of the superhigh-water material such as the criticalnon-silt velocity and so on were studied here with combination with the basicequations of fluid flow and a number of empirical models. It was found that all thefactors such as apparent viscosity of slurry, particle composition, concentration,transporting pipe diameter and other relevant ones had impacts on the hydrodynamicperformance. When the nominal diameter of 100~200mm conventional seamless steelpipe used to transport superhigh-water materials, the conveying velocity should be noless than 2m/s.
     After detailed study on the properties of the superhigh-water material and thefilling mining methods, it was found that most of the methods were suitable forsuperhigh-water packing material, including open-up filling, bag filling, mixed-typefilling, partition-wall filling and so on. These methods could be selected according toon-site mining techniques used. Open-up filling was simple and no need to set upfilling bags, and the adaptability of the bag filling was better and broader.
     A semi-continuous filling system suitable for underground filling was developed.It was composed of four subsystem components. A number of mixers ran alternatelyin use, so that the slurry supply could keep continuous to meet the transportrequirement of filling slurry.
     This superhigh-water packing material had been succeeded in underground goaf filling as its practical application. After a detailed study of the field condition, thesurface deformation of overlying rock was analyzed using the simulation software anda reasonable filling program was proposed. After the goaf filling, the simulation of theground behavior and field theoretical analysis was also carried out, which made thepractice application success in Taoyi coal mine of Handan Mining Group for thickcoal seam. Currently, Taoyi Mine successfully carries out the third working face of thefilling mining. The thin-seam filling mining of Tianzhuang Mine of Linyi MiningGroup has also achieved gratifying results. Now the filling working is progressingsmoothly with a good effect.
     In order to investigate the effectiveness of goaf filling, strata control observationabout the surface subsidence of Taoyi and Tianzhuang Mine was carried out. Up tonow, the earth surface above the working face has not shown any influence due to thefilling. It is indicated that goaf filling with the superhigh-water packing material hasobvious economic benefits, social and environmental benefits.There are 87 pictures, 33 tables and 198 references in the paper.
引文
[1]罗斐.煤炭资源的现状与结构分析[J].中国煤炭,2008,34(3):91-94,96.
    [2]毛艳丽陈妍郭艳玲.世界煤炭资源现状及钢铁公司的煤炭安全策略[J].冶金管理,2009,(3):40-44.
    [3]中国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008:201-207.
    [4]周爱民.矿山废料胶结充填[M].北京:冶金工业出版社,2007:12-20.
    [5]钱鸣高许家林缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003, 32(4):343-348.
    [6]缪协兴钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报, 2009,20(1):1-14.
    [7]刘同有.充填采矿技术与应用[M].北京:冶金工业出版社,2001:357-391.
    [8]李开文.对我国铀矿山应用干式充填采矿法的评价[J].中国矿业,1993,2(1):45-52.
    [9]张桂暄.干式充填采矿法存在问题与改进实践[J].黄金科学技术,2002,10(6):25-30.
    [10]王黎王彦丰刘兰菊.干式充填采矿法几个技术问题的探讨[J].黄金,2000,21(3):24-27.
    [11]谭伟华.云西矿区干式充填采矿的改进与实践[J].矿业工程,2007,5(3):29-30.
    [12]杨秀瑛王跃江贺志坚.干式充填采矿法若干技术进步[J].黄金,2004,25(10):29-31.
    [13]白忠强王彦军.干式充填采矿法若干技术问题探讨[J].中国矿山工程,2004,33(2):18-21.
    [14]杨明.干式充填采矿法在河台金矿的应用[J].矿业研究与开发,1996,16(Supp.):80-82.
    [15]张桂暄.干式充填采矿工艺若干技术问题探讨[J].黄金科学技术,2004,12(1):8-12.
    [16]唐际华干式充填法在实践中的应用[J].内蒙古科技与经济,2004,(3):53-54.
    [17]吴壮军刘小林杨立根.机械化水平分层干式充填采矿法试验研究[J].湖南冶金,1996,(2):8-12,15.
    [18]刘旭娃干式充填法在低品位矿体开采中的应用[J].中国钼业,2006,30(5):18-21.
    [19]黎学勤干式充填法在厚婆坳锡矿的应用[J].有色金属,1993,(1):7-10.
    [20]谈晓明杨兴明傅林.进路分层干式充填采矿法在鹤庆锰矿的应用[J]. 2000,18(2):12-14.
    [21]梁永辉姜俊城.干式充填采矿法开采石棉矿[J].有色金属,1976,(3):25-28
    [22]梁永辉王逵兴杨本申.倒V形干式充填采矿法实践[J].非金属矿,1983, (3): 12-15,11.
    [23]缪协兴张吉雄.煤矿矸石井下处理的研究[J].中国矿业大学学报, 2006, 35(2):197-200.
    [24]张吉雄缪协兴茅献彪等.建筑物下条带开采煤柱矸石置换开采的研究[J].岩石力学与工程学报, 2006, 35(2): 197-200.
    [25]朱应杰李兴东王伟等.翟镇煤矿综采工作面矸石充填技术的研究[J].科技成果管理与研究, 2009, (1): 95-98.
    [26]缪协兴张吉雄.矸石充填采煤中的矿压显现规律分析[J].采矿与安全工程学报, 2007,24(4): 379-382.
    [27]刘春明王恒.矸石井下处置绿色开采技术[J].煤矿开采, 2008, 13(6): 30-32,45.
    [28]张广海.高档普采矸石充填工作面设备及工艺研究[J].煤炭技术, 2008, 27(12): 58-60.
    [29]刘天泉.波兰城镇及建筑物下采煤技术[J].世界煤炭技术,1985,(8): 5-9.
    [30]施能为王金庄李成智.波兰建筑物下采煤[J].煤炭科学技术,1991,(6): 48-50.
    [31]陈隆金.波兰有色矿山的水砂充填技术[J].有色金属(矿山部分), 1982, (2): 52-55.
    [32]余斌.水砂充填砂浆制备与输送技术新进展[J].中国矿业,1994, 3(6): 37-41.
    [33]矿兵.胶结充填采矿法在加拿大的应用[J].有色金属,1975,(6): 65-67,26.
    [34]于润沧.料浆浓度对细砂胶结充填的影响[J].有色金属, 1984, 36(2): 6-11.
    [35]王小卫.影响金川矿山细砂胶结充填体质量的因素分析[J].中国矿业, 1999, 8(1):32-36.
    [36]胡家国范平之.粉煤灰细砂胶结充填在新桥硫铁矿的应用[J].岳阳师范学院学报(自然科学版), 2001, 14(4): 44-47.
    [37]王新民胡家国王泽群.粉煤灰细砂胶结充填应用技术的研究[J].矿业研究与开发,2001, 21(3): 4-6.
    [38] Fall, M. et al. Experimental characterization of the influence of tailings fineness and densityon the quality of cemented paste backfill[J]. Minerals Engineering, 2005, 18: 41-44.
    [39]郑巨明奉欣饶帮良等.细粒尾砂作为充填料脱水措施的研究[J].资源环境与工程,2007, 21(2): 184-186.
    [40]易圻封.块石胶结充填技术的应用[J].江西有色金属, 1992, 6(3): 165-169, 181.
    [41]谢开维张葆春.块石胶结充填的应用现状及发展[J].矿业研究与开发, 2002, 22(2):1-4.
    [42]陈鼎初.国内外块石胶结充填技术综述[J].湖南有色金属, 1997, 13(4): 14-18.
    [43]吴德权郭忠林孙国详.分段空场嗣后块石胶结充填采矿法在老厂锡矿的应用[J].采矿技术, 2009, 9(2): 1-2,7.
    [44]胡际平.充填采矿法在南非金矿的新发展[J].有色金属(矿山部分), 1988, (1): 13-17.
    [45]胡际平.南非金矿充填采矿法的发展[J].铀矿冶, 1988, (1): 58-62.
    [46]姚中亮乔雨.南非深部硬岩金矿胶结充填性能研究[J].采矿技术, 1996, (15): 8-11.
    [47] Rose-Watt, D. A. J.周以瑛.南非金田集团有色金属矿山的充填实践[J].有色矿山,1991,(06): 9-14, 43.
    [48]金川工程考察组.全尾砂膏体泵送充填及其在格隆德矿的应用与发展[J].有色矿山,1990, (2): 1-12.
    [49]杨根祥.全尾砂胶结充填技术的现状及其发展[J].中国矿业, 1995, 4(2): 40-45.
    [50]高泉谭幼缓.高浓度全尾砂胶结充填料胶结机理研究[J].矿业研究与开发, 1995,15(2): 1-4.
    [51]张省军.全尾砂用于分段空场法嗣后胶结充填的实践[J].金属矿山, 1996, (4): 18-21.
    [52]李翕然杨耀亮罗元新.我国地下金属矿山全尾砂胶结充填技术述评[J].矿业研究与开发, 1996, 16(Supp.): 72-75.
    [53]罗良士韩振中.高浓度全尾砂胶结充填新工艺和装备的研究与生产实践[J].矿产保护与利用, 1998, (1): 44-49.
    [54]言军跃.全尾砂胶结充填工艺在金属矿山中的应用[J].有色矿山, 1998, (4): 16-19.
    [55]谢开维何哲祥.张马屯铁矿全尾砂胶结充填的试验研究[J].矿业研究与开发, 1998,18(4): 8-10.
    [56]韩振中.高浓度全尾砂胶结充填新工艺和装备的研究与应用[J].采矿技术, 2001, 1(4):8-11.
    [57]谢鹰.全尾砂胶结充填工艺及应用前景[J].采矿技术, 2001, 1(2): 46-47,52.
    [58]康建华.张马屯铁矿全尾砂胶结充填试验[J].山东冶金, 2001, 23(2): 39-41.
    [59]王方汉曹维勤康瑞海.南京铅锌银矿全尾砂胶结充填试验与系统改造[J]. 2003, (10):16-17,70.
    [60]张常青谢开维林松等.金牛矿业全尾砂胶结充填技术可行性研究[J].矿业研究与开发, 2007, 27(1): 7-8.
    [61]汪顺才曹维勤康瑞海.南京铅锌银矿全尾砂胶结充填[J].有色金属, 2008, 60(2):107-109.
    [62]王凤波.全尾砂胶结充填工艺在马庄铁矿的应用[J].中国矿山工程,2008,37(5):23-24,45.
    [63] Amaratunga, L. M. Cold-Bond Agglomeration of Reactive Pyrrhotite Tailings for BackfillUsing Low Cost Bingers: Gypsum ?-Hemihydrate and Cement[J]. Minerals Engineering,1995, 8(12): 1455-1465.
    [64]周益龙.湘西金矿深部全尾砂胶结充填新材料新技术研究[J].湖南有色金属, 2003,19(2): 1-4.
    [65]胡家国古德生王新民.水泥-粉煤灰-尾砂胶结充填料配比优化及特性研究[J].矿冶, 2004, 12(4): 7-10.
    [66] Kesimal, A. et al. Evaluation of paste backfill mixtures consisting of sulphide-rich milltailings and varying cement contents[J]. Cement and Concrete Research, 2004, 34:1817-1822.
    [67]姚建王新民田冬梅等.磷石膏和粉煤灰胶结充填料的性能试验研究[J].矿业研究与开发, 2006, 26( 2): 44-48.
    [68]王新民姚建张钦礼等.煤矸石作为胶结充填骨料性能的实验研究[J].矿业快报, 2006,(441): 20-23.
    [69]邓代强姚中亮杨耀亮.高浓度水泥尾砂充填材料凝结性能研究[J].中国矿业, 2006,15(8): 48-50, 65.
    [70] Ercikdi, B. et al. Cemented paste backfill of sulphide-rich tailings: Importance of binder typeand dosage[J]. Cement & Concrete Composites, 2009, 31: 268-274.
    [71] Ercikdi, B. et al. Utilization of industrial waste products as pozzolanic material in cementedpaste backfill of high sulphide mill tailings[J]. Journal of Hazardous Materials, 2009, 168:848-856.
    [72]邓代强高永涛康瑞海等.尾砂胶固充填材料的力学性能[J].石河子大学学报(自然科学版), 2009, 27(1): 88-91.
    [73] Benzaazoua, M. et al. Cementitious backfill with high sulfur content Physical, chemical, andmineralogical characterization[J]. Cement and Concrete Research, 1999, 29: 719-725.
    [74] Helwany, S.M.B. et al. Effects of backfill on the performance of GRS retaining walls[J].Geotextiles and Geomembranes, 1999, 17: 1-16.
    [75] Kashir, M. et al. Compatibility of slurry wall backfill soils with acid mine drainage[J].Advances in Environmental Research, 2000, 4: 251-268.
    [76] Kesimal, A. et al. Effect of properties of tailings and binder on the short-and long-termstrength and stability of cemented paste backfill[J].Materials Letters, 2005, 59: 3703-3709.
    [77]张钦礼过江王新民.粉煤灰全尾砂胶结充填新技术[J].有色金属, 1999, 51(2): 5-7.
    [78]王新民胡家国.粉煤灰全尾砂胶结充填中活化剂的应用[J].岳阳师范学院学报(自然科学版), 2000, 13(3): 72-74, 77.
    [79]胡家国古德生.粉煤灰作为水泥替代品用于胶结充填的试验研究[J].矿业研究与开发,2002,22(5): 5-7,14.
    [80]吴大敏.粉煤灰在矿山胶结充填中的应用[J].有色金属(矿山部分),2002, 54(1): 8-9.
    [81]杨明安.湖田铝矿赤泥充填料研究[J]. 1995, (9): 1-5.
    [82]杨立根姚中亮包东曙等.赤泥浆体泵送胶结充填采矿法研究[J].矿业研究与开发,1996, 16(3): 18-22.
    [83] Prˇikryl, R. et al. Microstructures and physical properties of‘‘backfill’’clays: comparison ofresidual and sedimentary montmorillonite clays[J]. Applied Clay Science, 2003, 23:149-156.
    [84]陈云嫩梁礼明.脱硫石膏粉煤灰胶结全尾砂充填的试验研究[J].有色金属(矿山部分), 2004, 56(2): 5-6.
    [85]韩克峰.高炉水渣细磨产品在全尾砂胶结充填中的应用[J].金属矿山, 2001, (7):45-47.
    [86]袁积余郭生茂.矿山井下低成本充填胶凝材料的开发研究[J].甘肃冶金, 2008, 30(1):18-21.
    [87]邓飞李永辉.全尾砂高水固化胶结充填工艺前景展望[J].中国矿业, 2007, 16(8):41-42.
    [88]孙恒虎.全尾砂速凝固化胶结充填新工艺的试验研究[J].有色金属, 1993, 45(2): 7-13.
    [89]杨小聪贯鸿林.全尾砂高水速凝充填材料特性的研究[J].矿冶, 1995, 4(4): 5-12.
    [90]黄玉诚孙恒虎刘文永.高水材料胶结充填工艺在焦家金矿的应用研究[J]. 1998, 19(3):25-27.
    [91]王新民过江张钦礼等.铁铝型高水速凝材料作为井下充填胶结剂的试验研究[J].矿冶工程,1998, 18(1): 1-4.
    [92]鲍勇峰过江彭续承.铁铝型高水速凝全尾砂充填材料的试验研究[J].中南工业大学学报,1998, 29(6): 531-534.
    [93]田斌.高水固化材料与尾砂用于胶结充填[J]. IM&P化工矿物与加工,1999, (2): 15-16.
    [94]王洪江.高水速凝材料在高浓度尾砂胶结充填中的应用[J]. IM &P化工矿物与加工,2000, (12): 16-18,4.
    [95]王怀佳蒋秀香白忠民.新型胶结材料充填采空区的研究与实践[J].采矿技术,2002,2(3): 35-37.
    [96] Huynh, L. et al. Effect of polyphosphate and naphthalene sulfonate formaldehyde condensateon the rheological properties of dewatered tailings and cemented paste backfill[J]. MineralsEngineering 2006, 19: 28-36.
    [97]赵传卿胡乃联.充填胶凝材料的发展与应用[J].黄金,2008, 29(1): 25-29.
    [98]王新民肖卫国王小卫等.金川全尾砂膏体充填料浆流变特性研究[J].矿冶工程, 2002,22(3): 13-16.
    [99] Benzaazoua, M. et al. Chemical factors that influence the performance of minesulphidicpaste backfill[J]. Cement and Concrete Research, 2002, 32: 1133–1144.
    [100]王天刚黄玉诚李飞跃.在稳定流状态下似膏体料浆流变特性研究[J].有色矿山,2003, 32(6):8-10, 21.
    [101]周华强侯朝炯等.固体废物膏体充填不迁村采煤[J].中国矿业大学学报, 2004, 33(2):154-158.
    [102]瞿群迪.采空区膏体充填岩层控制的理论与实践[D].中国矿业大学博士论文, 2007.
    [103]瞿群迪周华强等.煤矿膏体充填开采工艺的探讨[J].煤炭科学技术, 2004, 32(10):66-69.
    [104] Kesimal, A. et al. The effect of desliming by sedimentationon paste backfill performance[J].Minerals Engineering, 2003, 16: 1009–1011
    [105]胡华孙恒虎黄玉诚.似膏体充填料浆流变特性及其多因素影响分析[J].有色金属(矿山部分), 2003, 55(3): 4-7.
    [106]胡华孙恒虎黄玉诚等.似膏体粘弹塑性流变模型与流变方程研究[J].中国矿业大学学报, 2003, 32(2): 119-122.
    [107]黄玉诚孙恒虎.尾砂作骨料的似膏体料浆流变特性实验研究[J].金属矿山, 2003, (6):8-10.
    [108]许毓海许新启.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,2004, 13(3): 16-19.
    [109]孙文标孙恒虎刘建庄等.似膏体充填料浆配合比的实验研究[J].中国矿业, 2005,14(8): 70-71.
    [110]赵龙生孙恒虎孙文标等.似膏体料浆流变特性及其影响因素分析[J].中国矿业,2005, 14(10): 45-48.
    [111]赵才智周华强瞿群迪等.膏体充填料浆流变性能的实验研究[J].煤炭科学技术,2006, 34(8): 54-56.
    [112] Fall, M. Influence of curing temperature on strength, deformation behaviourand porestructure of cemented paste backfill at early ages[J]. Construction and Building Materials,2006, (in press).
    [113] Ouellet, S. Reactivity and mineralogical evolution of an underground minesulphidiccemented paste backfill[J].Minerals Engineering, 2006: 19: 407–419.
    [114]刘海洋王海霞李维明等.稳定流状态下似膏体料浆管输临界流速的研究[J].西部探矿工程, 2007, (6): 86-88.
    [115]王新民曹刚龚正国.煤矸石作充填骨料的似膏体料浆流动性能试验研究[J].矿业快报, 2008, (1): 20-23.
    [116]黄玉诚李晓明耿向慧等.似膏体充填料浆流型和流态的研究[J].中国矿业, 2009,18(4): 96-98, 101.
    [117] Yilmaz, E. Effect of curing under pressure on compressive strength developmentofcemented paste backfill[J].Minerals Engineering, 2009, 22: 772-785.
    [118] Fall, M. Effect of high temperature on strength and microstructural properties of cementedpaste backfill [J]. Fire Safety Journal , 2009, 44: 642-651.
    [119] Fall, M. Saturated hydraulic conductivity of cemented paste backfill[J]. MineralsEngineering, 2009, (in Press).
    [120]潘志华方永浩赵成朋等.碱—矿渣—赤泥水泥的研究[J].硅酸盐通报, 1999, (3):34-39, 52.
    [121]潘志华方永浩吕忆农等.碱矿渣赤泥水泥[J].水泥, 2000, (1): 53-56.
    [122]马伟东古德生王劼.用于充填采矿的高性能水淬渣胶凝材料[J].有色金属, 2006,58(1): 86-88.
    [123]韩桂华刁江京.高水基充填材料的研制与生产[J].中国建材科技, 1996, 5(2): 26-30.
    [124]王新民尹新才陈昌民.铁铝型高水速凝充填材料物化性能的研究[J].金属矿山,2001, (10): 49-51, 54.
    [125] Woodley, J. N. L. et al. MRDE experience with pump packing[J]. The Mining Engineer,1980, 140(231): 437-443.
    [126] Clark, C. A. et al. A review of monolithic pumped packing systems[J]. The MiningEngineer, 1985, 144(282): 491-495.
    [127]颜志平漆泰岳张连信等. ZKD高水速凝材料及其泵送充填技术的研究[J].煤炭学报, 1997, 22(3): 270-275.
    [128]孙恒虎宋存义.高水速凝材料及其应用[M].徐州:中国矿业大学出版社,1994.
    [129]翟奎林富潮.高水速凝材料的研制及充填试验[J].矿业快报, 2000, (23): 3-4.
    [130]常钓程新芦令超等.含钡硫铝酸盐水泥基高水材料的制备[J].材料研究学报, 2000,14(5): 513-516.
    [131]过江张钦礼郑双春.矿用低成本高水速凝材料的开发及应用研究[J].有色全属(矿山部分), 2003, 55(1): 13-14.
    [132]何全洪.高水材料巷旁充填留巷效果分析[J].矿山压力与顶板管理, 1998, (3): 37-38.
    [133]冯光明.高水材料巷旁充填矿压观测与研究[J].矿山压力与顶板管理, 1998, (4):13-15.
    [134]耿建平.高水材料巷旁充填沿空留巷技术探讨[J]. 2003, 29(3): 67-68.
    [135]冯光明侯朝炯贺永年.高水材料及其在井筒注浆堵水工程中的应用[J].东北煤炭技术, 1998, (6): 22-24.
    [136]殷艳玲张贵才唐亮.高水材料用于油井堵水的室内研究[J].钻采工艺, 2008, 31(2):110-112.
    [137]冯建华冯杰.高水材料与粉煤灰封堵采空区灭火[J].煤矿安全, 2004, 35(4): 16-17,55.
    [138]韩宗凯张二小张俊民.用高水材料治理古拉本矿区煤层火灾的可行性分析[J].内蒙古煤炭经济, 2001, (2): 81-82.
    [139]张英华梁铜柱崔景昆.高水材料在“三软”煤层注水、防尘、封孔技术中的应用研究[J].煤炭学报, 2003, 28(1): 46-49.
    [140]颜志平朱赞凌.高水速凝材料-软土凝固体力学特征的研究[J].华南理工大学学报(自然科学版), 2000, 28(6): 79-84.
    [141]颜志平.高水速凝材料应用于软土地基处理的可行性研究[J].广东公路交通, 1999,(Supp.): 72-77.
    [142]冯光明张少华马中国.高水材料用于U型钢支架壁后充填[J].矿山压力与顶板管理, 2000, (1): 46-48.
    [143]颜志平袁建华冯光明.高水灰渣材料的壁后充填研究[J].矿山压力与顶板管理,1993, (3-4): 225-230.
    [144]高江淮.高水速凝材料注浆在软岩加固中的应用实践[J].煤矿开采, 2005, 10(4):62-63.
    [145]侯林涛唐军务蒋凯辉.高水材料的基本特性及其在港口工程中的应用[J].水运工程,2007, (5): 54-56.
    [146]中国矿业大学国家“七?五”攻关项目组.灰渣应用于井下充填的研究.鉴定报告,1991.
    [147]陈益民.由铁铝酸钙水化生成钙矾石的动力学[J].硅酸盐学报, 2000, 28(4): 303-308.
    [148]王智郑洪伟韦迎春.钙矾石形成与稳定及对材料性能影响的综述[J].混凝土, 2001,(6): 44-48,56.
    [149] Cody, A.M. et al. The effects of chemical environment on the nucleation, growth, andstability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O[J]. Cement and Concrete Research, 2004,34: 869-881.
    [150] Ouhadi, V. R. et al. Ettringite formation and behaviour in clayey soils[J]. Applied ClayScience, 2008, (in press).
    [151] Long, Shizong et al. Investigation on the formation of ettringite in the presence of BaO[J].Cement and Concrete Research, 1995, 25(7): 1417-1422.
    [152]龙世宗邬燕蓉王俊春.固相反应合成钙矾石[J].硅酸盐学报, 1995, 23(2): 234-239.
    [153]薛君玕.钙矾石相的形成、稳定和膨胀-记钙矾石学术讨论会[J].硅酸盐学报,1983,11(2): 247-251.
    [154]杨长珊薛君玕. C2AS玻璃在石膏-石灰溶液中形成钙矾石过程[J].硅酸盐通报,1985(6): 1-5.
    [155]杨南如钟白茜董攀等.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,12(2):155-165.
    [156]叶铭勋卢保山许温葭等.低碱度水泥浆体中钙矾石通过液相形成的证据[J].硅酸盐通报, 1985(5): 30-34.
    [157]薜君玕吴中伟.膨胀和自应力水泥及其应用[M].北京:中国建筑工业出版社,1985:416-432.
    [158]刘崇熙.钙矾石脱水过程中晶体结构的演变[J].长江科学院院报,1989, (3):60-67.
    [159]王善拔.钙矾石热稳定性的研究[J].膨胀剂与膨胀混凝土, 2007, (1): 8-11, 22.
    [160]蓝俊康.由液相SO2-4浓度的变化解译钙矾石的热稳定性[J].桂林工学院学报, 2004,24(4): 480-482.
    [161] Pajares,I. et al. Evolution of ettringite in presence of carbonate and silicate ions[J]. Cement& Concrete Composites, 2003, 25: 861-865.
    [162]陈贤拓邹瑞珍陈霄榕.钙矾石表面碳化动力学及反应机理[J].河北轻化工学院学报,1993, 14(3): 1-5.
    [163]陈贤拓邹瑞珍陈霄榕.钙矾石表面碳化反应机理研究[J].硅酸盐学报,1994, 22(5):470-474.
    [164]宋存义程相利汪增乐.钙矾石材料硬化体风化机理[J].北京科技大学学报,1999,20(5): 459-461.
    [165]游宝坤席耀忠.钙矾石的物理化学性能与混凝土的耐久性[J].中国建材科技, 2002,(3):13-18.
    [166]席耀忠. Fe2O3-Al2O3钙矾石型固溶体系列[J].硅酸盐通报, 1996, (6): 16-20.
    [167]陈胡星叶青沈锦林等.钙矾石的长期稳定性[J].材料科学与工程, 2001, 19(2):69-71.
    [168]Myneni, S.C.B. et al. Ettringite solubility and geochemistry of the Ca(OH)2-Al2(SO4)3-H2Osystem at 1 atm pressure and 298 K[J]. Chemical Geology, 1998, 148: 1-19.
    [169] Cody, A. M. et al. The effects of chemical environment on the nucleation, growth, andstability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O[J]. Cement and Concrete Research, 2004,34: 869-881.
    [170] Clark, S.M. et al. Effect of pressure on the crystal structure of ettringite[J]. Cement andConcrete Research, 2008, 38: 19-26.
    [171]王燕谋苏慕珍张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999:60-61.
    [172] Harrison, R. G. et al. Bioseparations science and engineering[M]. Oxford: OxfordUniversity Press, 2003: 92-98.
    [173]陈建奎.混凝土外加剂原理与应用(第二版)[M].北京:中国计划出版社,2004.
    [174]胡曙光.特种水泥[M].武汉:武汉工业大学出版社,1999.
    [175]马素花沈晓冬黄叶平等.无水硫铝酸钙矿物的合成及形成机制[J].硅酸盐学报,2008, 36(1): 78-81.
    [176]张冠英黄文妹关建国等.无水硫铝酸钙的X射线衍射分析[J].上海建材学院学报,1991,4(1): 15-24.
    [177]潘志华程建坤.水泥速凝剂研究现状及发展方向[J].建井技术,2005,26(2): 22-27.
    [178]潘志华闾文程建坤.无碱液态水泥速凝剂的性能及其促凝机理[J].建井技术, 2006,27(5): 25-29.
    [179]李付刚潘志华傅秀新等.高效低碱液态水泥速凝剂的性能及促凝机理研究[J].建井技术, 2008, 29(6): 18-20.
    [180]王锦雷孝何文礼等.分子印迹技术的应用进展[J].化学与生物工程, 2006,23(4): 4-6.
    [181]蔡希高.缓凝外加剂缓凝作用的化学本质[J].化学建材,2007, 23(2): 41-44.
    [182] Thomas, N.L. et. al. The retarding action of sugars on cement hydration[J]. Cement andConcrete Research, 1983, 13: 830-842.
    [183]卓卫东.应用弹塑性力学[M].北京:科学出版社,2005.
    [184]张远君.流体力学大全[M].北京:北京航空航天大学出版社,1991.
    [185]沈崇棠刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989.
    [186]费祥俊.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1994.
    [187]曾祥熹郑长成.水泥浆的流变性及其对浆液运动的影响[J].华东地质学院学报,1999,22(2):137-141.
    [188]郝永真.水泥浆主要流变参数的确定与分析[J].水利水电科技进展, 2000, 20(4):32-34.
    [189]舒秋贵周申立舒成强等.固井水泥浆的时变性分析[J].天然气工业, 2008, 28(4):70-71.
    [190]舒秋贵郭昭学陈家凤等.水泥浆时变性对注水泥水力参数的影响分析[J].天然气工业, 2008, 28(11): 80-82.
    [191]王雄鹰.水泥浆液粘度随时间变化的试验研究[J].山西建筑,2009, 35(16): 10-11.
    [192]柴诚敬.化工原理(上)[M].北京:高等教育出版社,2005.
    [193]王绍周.粒状物料的浆体管道输送[M].北京:海洋出版社,1998.
    [194]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2004.
    [195]煤炭科技名词审定委员会.煤炭科技名词1996[M].北京:科学出版社,1997.
    [196]美国ANSYS公司. ANSYS基本过程手册,北京:美国ANSYS公司北京办事处,2000
    [197]钱德拉佩特拉(美)贝莱冈度(美)著.曾攀译.工程中的有限元方法(第3版)[M],北京,清华大学出版社,2006
    [198]李世平.岩石力学简明教程[M].徐州:中国矿业学院出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700