用户名: 密码: 验证码:
久效磷对马粪海胆(Hemicentrotus pulcherrimus)胚胎发育神经毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,关于有机磷农药发育神经毒性的研究备受关注。久效磷作为一种高毒有机磷杀虫剂,由于具有水溶性特点,易在水环境中残留,对环境污染严重,甚至威胁着动植物乃至人类的健康。越来越多的研究表明有机磷农药对神经细胞复制和分化、轴突和树突的发生、乃至树突功能的影响都将导致行为上的缺陷。海胆的早期胚胎发育是研究农药胚胎和神经毒性的理想生物模型。因此,本文以马粪海胆胚胎和幼虫为实验材料,通过观察久效磷暴露条件下幼虫的形态发生和泳动行为,研究其对血清素和前多巴胺能系统调节功能的影响;采用整体免疫组化技术,从神经元形态发生的水平上,研究了久效磷对血清素顶系神经节及其受体细胞网络的抑制作用;并进一步探讨了血清素神经节异常情况下,轴突导向因子—HpNetrin的时空分布情况。主要研究结果如下:
     (1)形态学方面,久效磷会导致H.pulcherrimus幼虫腕长和体长的短小;运动行为方面,久效磷暴露条件下扰乱幼虫向上泳动的行为,甚至导致泳动能力的丧失,具有剂量-效应关系。
     (2)久效磷能够延迟早期神经发育进程,表现为减少血清素能神经细胞的数量和显著地抑制轴突的生长;血清素能神经元形态发生异常,特别是SRCN的重要组成部分口突横向纤维(oltort)的缺失,间接导致了血清素受体细胞网络(SRCN)的紊乱。
     (3)从10μg/ml久效磷暴露组开始HpNetrin在时间和空间上的表达异常,主要体现在棱柱幼虫时期动物极处无HpNetrin的富集,二腕幼虫时期沿纤毛带分布的HpNetrin信号较弱。采用免疫印迹技术对对照、10μg/ml和30μg/ml久效磷暴露组中HpNetrin蛋白从15-hpf到48-hpf阶段的表达量的半定量分析结果表明:久效磷扰乱了HpNetrin的表达模式,表现为15-hpf表达量较高,随后表达量逐渐降低,RT-PCR结果和免疫印迹结果相一致,说明久效磷从基因表达水平上扰乱了HpNetrin的表达。
     (4)0.1μg/ml久效磷暴露使绝大多数胚胎单细胞丧失重聚的能力,单细胞震动频率变小,但仍然存活;结合EpithⅡ免疫染色和台盼蓝染色法,我们发现久效磷对细胞膜具有较强的破坏作用;久效磷对重聚细胞团的毒性作用还表现在对血清素能神经元发生的影响。0.1μg/ml久效磷暴露后,仍然可以在重聚细胞团内检测到血清素细胞的阳性信号,但是无法检测到血清素受体细胞形成的神经纤维束结构,说明胚胎重组细胞模型可以用来检测血清素细胞的发生及其轴突的生长情况,而海胆幼体则更适合于研究久效磷对血清素受体细胞网络形成的影响。
     (5)久效磷暴露条件下,浮游囊胚期能够检测到DRD1阳性信号,但是与对照组相比颗粒数较少,而且分布不规则。通过Brdu免疫组化实验证明,48-hpf时延纤毛带分布的DRD1增殖数量显著降低,表明久效磷对多巴胺受体DRD1的时空表达具有抑制作用。
Recently, more and more attention has been paid on the neurodevelopmental toxicity of organophosphorous pesticides. Monocrotophos is a kind of highly toxic organophosphorous pesticide. Due to its water-solubility, monocrotophos is apt to contaminate the environment with residue and even threaten the health of human's. More and more researches demonstrated that the influence of organophosphorous on reproduction and differentiation of neurocyte, genesis of axon and dendrite and function of dendrite can cause defected behavior. Sea urchin embryo is an idealistic model for studying the toxicity of pesticide to embryo and nervous system. Therefore, in this study we use embryos and larvae of H. pulcherrimus as model to study the effects of monocrotophos on the formation and function of serotonergic and pre-dopaminergic nervous systems. As both serotonergic and pre-dopaminergic nervous systems have the function of regulate embryo and larvae's swimming behavior. The morphology and swimming behavior of larvae were also observed here. The neurogenesis of serotonergic nervous system was illustrated by whole-mount immunohistochemistry and immunoblotting. Since the axon growth and serotonin receptor network formation were inhibited by monocrotophos. We also further studied spatio-temporal expression of HpNetrin in the sea urchin H. pulcherrimus during serotonergic axon extension. The mainly results are as follow:
     (1) Morphologically, MCP inhibited the body and arm growth of pluteus larvae; besides, larvae lost the ability of upright swimming, and this effect is dose dependant.
     (2) MCP delayed the early neurodevelopmental process of sea urchin. The results demonstrated that serotonergic cell decreased in number, and the axon growth of serotonin apical ganglion was significantly inhibited. The malformation of neuron morphogenesis also included the disorder of serotonin receptor network, especially the lost of oltort, which is one of the most important nerve fibers.
     (3) The spatio-temporal expression of HpNetrin was disordered from the concentration of 10μg/ml MCP. The whole-mount immunohistochemistry result showed that there is no increase intensity of HpNetrin protein near the animal pole of prism larvae, and very weak signal of HpNetrin along the ciliary band of 2-arm pluteus. The immunoblotting and RT-PCR results indicated that the amount of protein expression pattern was also disorded by MCP.
     (4) Dissociated cells lost the ability to re-aggregate under the exposure of 0.1μg/ml MCP. Single cells shaked weakly, but still alive; Epith II immuno stain and Trypan Blue stain results showed that the cell membrane were destroyed by MCP; The neurogenesis of serotonergic neurons were also affect in re-aggregated cells, which is correspondence to the results obtain by study on intact organism. But the effect of MCP on the formation of serotonin receptor network formation can't be detected in re-aggregated cells. Thus, although re-aggregated cell is more sensitive than larvae, it still has limitations in the screening of neuro-toxicants.
     (5) The positive signal of dopamine receptor D1 (DRD1) can be detected since the swimming blastula stage of sea urchin. Our results illustrated that the DRD1 granules decrease obviously with the incubation of 10μg/ml MCP. We proved that reproduction of DRD1 along the ciliary band of 48-hpf larvae reduced greatly in number by BrdU incorporation experiment.
引文
Abou-Donia MB, Khan WA, Dechkovskaia AM, et al. In utero exposure to nicotine and chlorpyrifos alone, an d in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult ofspring rats. Arch Toxicol,2006,80(9): 620-631
    Aldridge J E, Levin E D, Seidler F J and Slotkin T A. Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression.Environ Health Perspect,2005a, 113:527-531
    Aldridge J E, Meyer A, Seidler F J, Slotkin T A. Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect,2005b,113:1027-1031
    Aldridge J E, Meyer A, Seidler F J and Slotkin T A. Developmental exposure to terbutaline and chlorpyrifos:pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol 2005c,203:134-144
    Aldridge J E, Seidler F J, Meyer A, Thillai I and Slotkin T A. Serotonergic systems targeted by developmental exposure to chlorpyrifos:effects during different critical periods. Environ Health Perspect,2003,111:1736-1743
    Aldridge J E, Seidler F J, Slotkin T A. Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood:critical periods and regional selectivity for effects on the serotonin transporter,receptor subtypes, and cell signaling. Environ Health Perspect,2004,112:148-155
    Aldridge J E, Meyer A, Seidler F J, et al. Alterations in central nervous system seretonerglc and dopaminergic synap tic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. En. viren Health Perspect,2005,113(8):1027-1031
    Angela S. Howard, Robert Bucelli, David A, Jett. Clorpyrifos exert opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicology and applied pharmacology. 2005,207:112-124
    Baba S A and Mogami Y. High time-resolution analysis of transient bending patterns during ciliary responses following electric stimulation in sea urchin embryos. Cell Motil. Cytoskeleton,1987a,7:198-208
    Baba S A. Developmental changes in the pattern of ciliary response and the swimming behavior in some invertebrate larvae. In swimming and Flying in Natrue. Plenum, New York,1975, 317-323
    Babich H, Goldstein S H, Borenfreund E. In vitro cyto- and genotoxicity of organomercurials to cells in culture. Toxicol. Lett.1990,50:143-149
    Bal-Price A K, Sunol C, Weiss D G, van Vliet E, Westerink R H, Costa L G.. Application of in vitro neurotoxicity testing for regulatory purposes:sym posium Ⅲ summary and research needs. Neurotoxicology,2008b,29:520-531
    Barone S, Das K P, Lassiter T L,White L D. Vulnerable processes of nervous system development: a review of markers and methods.Neurotoxicology,2000,21:15-36
    Bashaw G J and Goodman C S. Chimeric axon guidance receptors:the cytoplasmic domains of slit and Netrin receptors specify attraction versus repulsion.Cell,1999,97:917-926
    Berger-Sweeney J and Hohmann C F. Behavioral consequences of abnormal cortical development: insights into developmental disabilities.Behav. Brain Res.1997,86:121-142
    Bigbee J W, Sharma K V, Gupta J J, Dupree J L. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environ. Health Perspect,1999,107:81-87
    Bigbee J W, Sharma K V, Gupta J J, Dupree J L. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environ. Health Perspect.1999,107:81-87
    Bisgrove B W and Burke R D. Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis. Cell Tissue Res.1987,248:335-343
    Brimijoin S and Koenigsberger C. Cholinesterases in neural development:new findings and toxicologic implications. Environ. Health Perspect,1999,107:59-64
    Buzinkov G A, Nikitina L A, Rakic L M, Milosevic I, Bezuglov V V, Lauder J M, et al. The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiple neurotransmitter mechanisms for effects of chlorpyrifors:Therapeutic interventions and a comparison with the monoamina depleter, reserpine. Brain Res Bull 2007,74 (4): 221-31
    Buznikov G A, Nikitina L A, Bezuglov V V, Lauder J M, Padilla S and Slotikin T A. An invertebrate model of the developmental neurotixicity of insecicides:effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ Health Perspect,2001,109 (7): 651-61
    C Falugi, A Diaspro and C Angelini. Three-dimensional mapping of cholinergic molecules by confocal laser scanning microscopy in sea urchin larvae. Micron.2002,33:233-239
    C N Pope. Organophosphorus pesticides:do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health,1999,2:161-181
    Campbell C G, Seidler F J, Slotin T A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull,1997,43:179-189
    Casida J E and Quistad G B. Organophosphate toxicology:safety aspects of nonacetycholinesteirase secondary targets.Chem Res Toxicol,2004,17:983-998
    Caughlan A, Newhouse K, Namgungi U, et al. Chlolpyrifos induces apo ptosis in rat coaical neurons that is regulated by a balan ce be-twe'en p38 and ERK/JNK MAP kinazes. Toxicol Sci,2004,78(1):125-134
    Chisholm A and Tessier-Lavigene M. Conservation and divergenece of axon guidance mechanisms. Curr Opin Neurobiol,1999,9:603-615
    Coecke S, Goldberg A M, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, et al. Workgroup report:incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ. Health Perspect,2007,115, 924-931
    Cremer H, Chazal G, Carleton A, Goridis C, Vincent J D and Lledo P M. Long-term but not short-term plasticity at mossy fiber synapsesis impaired in neural cell adhesion molecule-deficient mice. Proc. Natl. Acad. Sci. U.S.A.1998,95:13242-13247
    Crumpton T L, Seidler F J and Slotkin T A. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro:effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res.2000a,857:87-98
    Crumpton T L, Seilder F J and Slotkin T A. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res. Dev. Brain Res.2000b,121:189-195
    D. Pesando, P. Huitorel, V. Dolcini and C. Angelini. Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Marine Envrionmental Research.2003,55:39-57
    Dam K, Seidler F J and Slotkin T A. Transcriptional biomarkers distinguish between vulnerable periods for developmental neuretoxicity of chlorpyrifos:Implications for toxicogenomics. Brain Res Bull,2003,59(4):261-265
    Das K P and Barone J RS. Neuronal differentiation in PC 12 cells is inhibited by chlorpyrifos and its metabolites:is acetycholinesterase inhibition the site of action? Toxicol. Appl. Pharmacol. 1999,160:217-230
    Degawa M, Mogami Y and Baba S A. Developmental changes in Ca2+ sensitivity of sea urchin embryos cilia. Comp. Biochem. Physiol.1986,85A:83-90
    Deiner M S and Sretavan D W. Altered midline axon pathways and ectopic neurons in the developing hypothalamus of Netrin-1 and DCC-deficient mice. Neurosic,1999,19(22): 9900-9912.
    Dickson B J. Molecular mechanisms of axon guidance. Science,2002,298:1959-1964
    Dishovski K, Panova I, Uzunov P. Effect of the organophosphorus compound neguvon on the dopamine content in the rat brain. Eksp Med Morfol,1981,20(2):62-68
    Ehrich M, Intropido L and Costa L G. Interaction of organophosphorus compounds with muscarinic receptors in SH-SY5Y human neuroblastoma cells. J. Toxicol. Environ. Health, 1994,43:51-63
    Falugi C, Lammerding-Koppel M and Aluigi MG. Sea urchin development:an alternative model for mechanistic understanding of neurodevelopment and neurotoxicity. Birth Defects Res C Embryo Today,2008,84:188-203
    Gaicia S J, Seidler F J, Crumpton T L and Slotkin T A. Does the developmental neurotoxicity of chlorpyrifos involved glial targets? Macromolecule systhesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res. 2001,891:54-68
    Garcia S J, Seidler F J, Curmption T L, et al. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res,2001,891(1-2):54-68
    Garcia S J, Seidler F J, Botkin T A. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos expo sure:efects on neurospecifie proteins indicate changing vulnerabilities. Environ Health Perspect,2003,111(3):297-303
    Garcia S J, Seidler F J, Crumpton T L, et al. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, andformation ofreactive oxygenin05 glioma cells. Brain Res,2001, 891(1-2):54-68
    Garcia S J, Seidler F J, Qiao D, et al. Chlorpyrifo-targets developing a:efects on slia fibrilary acidic protein. Brain Res Dev Brain Res,2002,133(2):151-161
    Grandjean P, Harari R, Barr DB, et al. Pesticide exposure and stunting as independent predictors of neurobehavioral deficits in Ecuadorian school children. Pediatarics,2006,117 (3):546-5 56
    Guizzetti M, Pathak S, Giordano G, Costa L G. Effects of organophosphorus insecticides and their metabolites on astroglial cell proliferation. Toxicology,2005,215:182-190
    Gupta RC. Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates.Toxicol Mech Methods,2004,14:103-143
    Hamon M, Bourgoin S, Chanez C and De Vitry F. Do serotonin and other neurotransmitters exert a trophic influence on the immature brain? Dev Neurobiol 1989,12:171-183
    Hatcher JM, Richardson JR, Guilot"IS, et al. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine sys—tem. Experimental Neurology,2007,204(2):619-630
    Helio RS, Wagner MC, Yasco A, et al. Pine density and dendritic branching pattern of hippocampal CA1 pyramidal neurons on neonatal rats chronically exposed to the organophosphate paraoxon. Albuquerque Neurotoxicol,2004,25 (3):481-494
    Helio RS, Wagner MC, Yasco A, et al. Pine density and dendritic branching paaem of hippocampal CA1 pyramidal neurons in neonatal rats chronically expor t to the organophosphate paraoxon. Albuquerque Neurotoxicol,2004,25(3):481-494
    Hogberg H T, Agnieszka Kinsner-Ovaskainen and Thomas Hartung. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicology and applied pharmacology.2009,235:268-286
    Hohmann CF and Berger-Sweeney J. Cholinergic regulation of cortical development and plasticity: new twists to an old story. Perspect Dev Neurobiol,1998,5:401-425
    Howard A S, Robert Bucelli Jett D A, Donald Bruun, Dongren Yang and Lein P J. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicology and Applied Pharmacology,2005,207:112-124
    Howard A S, Robert Bucelli, Jett D A, Donald Bruun, Dongren Yang and Lein P J. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicology and Applied Pharmacology,2005,207:112-124
    Hua Tian, Shaoguo Ru, Zhenyu wang. Estrogenic effects of monocrotophos evaluated by vitelogenin mRNA and protein induction in male goldfish (Carassisu auratus). Comparative biochemistry and physiology, Part C.2009,150:231-236
    Jacobs B L, van Prig H, Gage F H. Adult brain neurogenesis and psychiatry:a novel theory of deression. Mol Psychiat,2000,5(3):262-269
    Jason R. Neurochemical efects of repeated gestational exposure to chlorpyrifos in developing rats. Toxical Sci,2004,77(1):83-90
    Julie Marc, Magali Le Breton, Patrick Cormier, Julia Morales, Robert Belle, Odile Mulner-Lorillon. A glyphosate-based pesticide impinges on transcription. Toxicology and Applied Pharmacology.2005,203:1-8
    K Adilaxmamma, A Janardhan and KS Reddy. Monocortophos:Reproductive toxicity rats. Indian journal of pharmacology.1994,26:126-129
    K. Dam, F J Seidler and T A Slotkin. Chlorpyrifos releases norepinephrine from adult and neonatal rat brain synaptosomes, Dev. Brain Res,1999,118:120-133
    Kal'en D J, Li W, Harp P R, etal. Striatal dopaminergic pathways a8 a target for the insecticides permethrin and chlorpyr/fos. Neure·toxicology,2001,22(6):811-817
    Katow H. Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension. Int.J. Dev. Biol,2008,52: 1077-1088
    Katow H, Yaguchi S, Kiyomoto M and Washio M. The 5-HT receptor is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mech. Dev,2004,121:325-337
    Katow H, Yaguchi S and Kyozuka K. Serotonin stimulate[Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel. J. Exp. Biol, 2007,210:403-412
    Kennedy TE. Cellular mechanisms of Netrin function:long-range and short-range actions. Biochem Cell Biol,2000,78(5):569-575
    Kinukawa M and Vacquier VD. Adenylate kinase in sea urchin embryonic cilia. Cell Motility & the cytoskeleton,2007,64:10-319
    Koch M, Murrell J R, Hunter D D, Olson P E. Jin W, Keene D R, Brunken W J and Burgeson R E. A novel member of the netrin family,β chain of laminin:Identification, expression, and function characterization. J Cell Biol,2000,151:211-234
    Kou J, Gillette J S and Bloomquist J R. Neurotoxicity in murine striatal dopaminergic pathways following co-application of permethri, chlorpyrifos, and MPTP. Pesticide Biochemistry and Physiology.2006,85:68-75.
    Landrigan. Pesticides and polychlorinated biphenyls (PCBs):an analysis of the evidence that they impair children neurobehavioral development. Mol Genet Metab,2001,73 (1):11-17
    Lassiter T, White L, Padilla S, et al. Brone S. Gestational exposure to chlorpyrifos:qualitative and quantitative neuropathological changes in the fetal neocortex. Toxicologist,2002,66 (6):632
    Lauder J M and Schambra U B. Morphogenetic roles of aectycholine. Environ Heath Perspect 1999,107:65-69
    Lein P, Locke P and Goldberg A. Meeting report:alternatives for developmental neurotoxicity testing. Environ. Health Perspect,2007,115:764-768
    Li W, Casida J E. Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol. Lett,1998,98: 139-146
    Markman B. Swimming activity of sea urchin embryos subject to increased concentration of potassium ions. Acta Embryol. Exp.1972, Suppl.407-414
    Ma T, Kranler R E, Baker R C, et al. Effects of chronic dermal exposure to noulethal doses of methyl parathion on brain regional acetyl-cholinesterase and muscarinic cholinergic receptors in female rats. Neurosci Res,2003,71(1):138-145
    Meyer A, Seider FJ, Aldridge JE, et al. Developmental exposure to terbutalinealters cel signalinginmature rat brainregion-and augments the efects of subsequent neonatal expo sure to the organophosphorus insecticide chlorpyrifos. Toxicol Appl Pharmacol,2005,203(2): 154-166
    Meyer A, Seidler F J, Aldfidge J E, et al. Critical periods for chlorpyrifos—induced developmental neurotoxieity:alterations in adenylyl cyclase signaling in aduh mt brain regions after gestational or nt2~-atal exposure. Environ Health Perspect,2004,12(3): 295-301
    Mileson B E, Chambers Chen W L. Ehrich M, Eldefrawi A T, Gaylor D W, Hamernik K, et al. Common mechanism of toxicity:a case study of organophosphorus pesticides. Toxicol. Sci, 1998,41:8-20
    Mogami Y, Watanabe K, Ooshima C, Kawano A and Baba SA. Regulation of ciliary movement in sea urchin embryos:dopamine and 5-HT change the swimming behavior. Comp. Biochem. Physiol,1992,110C:251-254
    Motoo N, Pan GH, Jessie J, et al. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytoxicity with tumor nerosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res,2000,60:847-853
    Nakajima Y, Burke RD and Noda Y. The structure and development of the apical ganglion in the sea urchin pluteus larvae of Strongylocentrotus droebachiensis and Mespilia globules. Dev Growth Differ,1993,35:531-538
    Pesando D, Huitorel P, Dolcini V, Angelini C, Guidetti P and Falugi C. Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Marine environmental research,2003,55:39-57
    Pope, C.N. Organophosphorus pesticides:do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health, B. Crit. Rev.1999,2:161-181
    Preeti R. Revankar and S.K. Shyama. Genotoxic effects of monocrotophos, an organophosphorous pesticide, on an estuarine bivalve, Meretrix ovum. Food and Chemical Toxicology,2009,47:1618-1623
    Qadri Y H. Swamy A N and Rao J V. Species difference in brain acetylcholinesterase response to monocrotophos in vitro. Ecotoxicol.Environ. Saf,1994,28:91-98
    Qiao D, Seidler FJ, Padilla S and Slotkin TA. Developmental neurotoxicity of chlorpyrifos:what is the vulnerable period? Environ Health Perspect,2002,110:1097-1103
    Qiao D, Seidler FJ, Tate CA, Cousins MM and Slotkin TA. Fetal chlorpyrifos exposure:adverse effects on brain cell development and cholinergic biomarkers emerge psotnatally and continue into adolescence and adulthood. Environ Health Perspect,2003,111:536-544
    Qiao D, Seidler FJ, Abreu-Vilaea Y et al. Chlorpyrifos exposure during neurulation:cholinergic synaptic dysfunction and cellular al—terations in brain regions at adolescence and adulthood. Developmental Brain Res,2004,148(1):43-52
    Qiao D, Nikitina LA, Buznikov GA, Lauder JM, Seidler FJ and Slotkin TA. The sea urchin embryos as a model for mammalian developmental neurotoxicity:ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity. Environmental Health Perspectives.2003,111:1731-1735
    Qiao D, Seidler FJ, Tate CA, Cousins MM and Slotkin TA. Fetal chlorpyrifos exposure:adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ. Health Perspect.2003,111:536-544
    Quiniou F, Guillou M and Judas A. Arrest and delay in embryonic development in sea urchin populations of the bay of Brest (Brittany, France):Link with environmental factors. Marine Pollution Bulletin,1999,38:401-406
    RD Burke, LM Angerer, MR Elphick. A genomic view of the sea urchin nervous system. Developmental Biology,2006,300:434-460
    Raines KW, Seidler FJ, Slotkin TA. Alterations in serotonin trails. po rter expression in brain rions of rats exposed neonatally to chlorpyrifos[J]. Brain Res Dev Brain Res,2001,130(1):65-72.
    Rao JV. Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos.Chemosphere. 2006,65:1814-1820
    Riccer IL, Markina N, Valanzano A, et al. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice.Toxicol Appl Pharmacol, 2003,191(3):189-201
    Roy IS, Seidler FJ, Slotkin TA. Morphologic efects of subtoxic neonatal chhrpyrifos exposure in developing rat brain:regionaly se—lective alterations in neuron-and glia. Brain Res Der Brain Res,2004,148(2):197-206
    Roy TS, Seidler FJ and Slotkin TA. Morphologic effects of subtoxic neonatal chlorpyrifos exposure in developing rat brain:regionally selective alterations in neurons and glia. Brain Res. Dev. Brain Res,2004,148:197-206
    Roy TS, Seidler FJ and Slotkin TA. Morphologic effects of subtoxic neonatal chlorpyrifos exposure in developing rat brain:regionally selective alterations in neurons and glia. Brain Res. Dev. Brain Res,2004,148:197-206
    Roy TS, Sharma V, Seidler FJ, et al. Quantitative morphological assessmentreveals neuronalan d glial deficits in hippoeampus after a brief subtoxic exposure to chlorpyrifos in neonatal rats. Brain Res Dev Brain Res,2005,155(1):71-80
    S.N.mandhane and C.T.chopde. Neurobehavioral effects of acute monocrotophos administration in rats and mice. Indian Journal of pharmacology,1995,27:245-249
    Sachana M, Flaskos J, Alexaki E, Glynn P and Hargreaves AJ. The toxicity of chlorpyrifos towards differentiating mouse N2a neuroblastoma cells. Toxicol. In Vitro,2001,15:369-372
    Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6.1994,78(3):409-424
    Slotin TA, Seidler FJ. Comparative developmental neurotoxicity of organophosphates in vivo: Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Research Bulletin,2007,72:232-274
    Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants:nicotine, environmental tobacco smoke, organophosphates. Toxicol. Appl. Pharmacol,2004,198: 132-151
    Slotkin TA, Tatec A Cousins MM, et al. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlopyrifos exposure. Developmental Brain Research,2002,133:163-173
    Slotkin TA, Mackillop EA, Ryde IT et al. Ameliorating the developmental neurotoxicity of chlorpyrifos:a mechanisms—based approach in PC 12 cels. Environ Health Perspect,2007, 115(9):1306-1313
    Slotkin TA, Tate CA, Cousins MM, et al. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure[J]. Brain Res Der Brain Res,2002,133(2):163—173
    Slotkin TA, Cousins MM, Tate CA et al. Persistent cholinergic pre—synaptic deficits after neonatal cMorpyrifos exposure. Brain Res,2001,902(2):229-243
    Song X, Violin JD, Seidler FJ and Slotkin TA. Modeling the developmental neurotoxicity of chlorpyrifos in vitro:macromolecule systhesis in PC 12 cells. Toxicol. Appl. Pharmacol. 1998,151:182-191
    Song X, Seidler FJ, Saleh JL, Zhang J, Padilla S and Slotkin TA. Cellular mechanisms for developmental toxicity of chlorpyrifos:targeting the adenylyl cyclase signaling cascade. Toxicol. Appl. Pharmacol.1997,145:158-174
    Song X, Violin JD, Seidler FJ and Slotin TA. Modeling the developmental neurotoxicity of chlorpyrifos in vitro:macromolecule synthesis in PC 12 cells. Toxicol, Appl. Pharmacol.1998, 151:182-191.
    Stephens RE. Ciliogenesis, ciliary function, and selective isolation.ACS Chemical Biology[Electronic Resource].2008,3:84-86
    Strathmann RR. Time and extent of ciliary response to particles in a non-filtering feeding mechanism. Biol Bull.2007,212:93-103
    Tessier-Lavigne M, Placzek M, Lumsden AG, et al. Chemotropic guidance of developing axons in the mammalian central nervous system.Nature,1988,336, (6201):775-778
    Thangnipon W, Luangpaiboon P and Chinabut S. Effects of the organophosphate insecticide, monocrotophos, on acetylcholinesterase activity in the nile tilapia fish (Oreochromis niloticus) brain. Drug Chem Toxicol.2002,25(1):65-74
    Theodore A. Slotkin and Frederic J. Seidler. The alterations in CNS serotonergic mechanisms caused by neonatal chlorpyrifos exposure are permanent. Developmental Brain Research. 2005,158:115-119
    Theodore A Slotkin and Frederic J. Seidler. Comparative developmental neurotoxicity of organophosphates in vivo:Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems.Brain Research Bulletin 2007,72: 232-274
    Thullbery MD, Cox HD, Schule T, Thompson CM and George KM. Differential localization of acetycholinesterase in neuronal and non-neuronal cells. J. Cell. Biochem.2005,96:599-610
    Tian H, Shaoguo Ru, Zhenyu Wang, Wenting Cai and Wei Wang. Estrogenic effects of monocrotophos evaluated by vitellogenin mRNA and protein induction in male goldfish (Carassius auratus). Comparative Biochemistry and Physiology, Part C.2009,150: 231-236
    Torre JR, Hopker VH, Ming GL, et al. Turning of retinal growth cones in a Netrin-1 gradient mediate by the Netrin receptor DCC[J]. Neuron,1997,19 (6):1211-1224
    U.S. Environmental Protection Agency, Short-term method for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95-136. Cincinnati, Ohio.1995
    U.S.E.P.A. Revised risk assessment for chlorpyrifos. United States Environmental Protection Agency. Washington, DC.2000
    V.Zanon-Moreno P, Melo MM, Mendes-Pinto C.J. Alves. Serotonin levels in aqueous humor of patients with primary openangle glaucoma. Molecular Vision.2008,14:2143-2147
    Venkateswara Rao J, Shilpanjali D, Kavitha P and Madhavendra S.S. Toxic effects of profenofos on tissue acetycholinesterase and gill morphology in a euryhaline fish Oreochromis mossambicus. Arch. Toxicol.2003a,77:227-232
    Venkateswara Rao J, Shoba Rani C H, Kavitha P. Nageswara Rao R and Madhavendra S S. Toxic effects chloropyrifos on Oreochromis mossambicus. Bull.Environ. Contam.Toxicol.2003b. 70:985-992
    Veronesi B and Pope C. The neurotoxicity of parathion-induced acetycholinesterase inhibition in neonatal rats. Neurotoxicology 1990,11:465-482
    Wada Y, Mogami Y, and Baba S.A. Modification of ciliary beating in sea urchin larvae induced by neurotransmitters:Beat-plane rotation and control of frequency fluctuation. J. Exp. Biol. 1997,200:9-18
    Weiss ER, Maness P and Lauder JM. Why do neurotransmitters act like growth factors? Perspect Dev Neurobilo 1998,5:323-335
    Whitaker-Azmitia PM. Role of serotonin and other neurotransmitter receptors in brain development:basis for developmental pharmacology. Pharmacol Rev 1991.,43:553-561
    Whitaker-Azmitia PM. Serotonin and brain development:role in human developmental diseases. Brain Res Bull 2001,56(5):479-485
    Winberg ML, Mitchell KJ and Goodman CS. Genetic analysis of the mechanisms controlling target selection:complementary and combinatorial functions of Netrins, semaphorins, and IgCAMs.Cell,1998,93:581-591
    Yaguchi S, Kanoh K, Amemiya S, and Katow H. Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos. Dev Growth Differ.2000,42:479-488
    Yaguchi S and Katow H. Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior. J. Comp. Neurol. 2003,466:219-229
    邴欣,汝少国,姜明。久效磷对金鱼的环境雌激素效应的研究。高技术通讯,2006,16(11):1195-1199.
    陈晓萍,王香,黄海婵。2009.妊娠期暴露于毒死蜱对子一代小鼠脑部多巴胺水平的影响。Agrochemicals.48,274-281。
    程晓洁久效磷对金鱼(Carassius Auratus)的遗传毒性研究。青岛中国海洋大学,2008.
    康跃惠,张干,盛国英,等。固相萃取法测定水源地中的有机磷农药[J].中国环境科学,2000,20(1):1-4.
    李永玉,洪华生,王新红,洪丽玉,叶翠杏。厦门海域有机磷农药污染现状与来源分析[J].环境科学学报,2005,25(8):1071-1077.
    阮国洪,吴强恩,吴庆等.2007.乐果对大鼠大脑分区多巴胺神经递质的影响。卫生研究,36(1):5-8.
    史清毅,汝少国,邴欣。久效磷对雄性孔雀鱼生殖毒性研究。安全与环境学报,2007,7(3):4-9.
    汪开治,2006.毒死蜱和久效磷对胖土白蚁迁移行为影响显著。浙江林业科技。2.
    闫建国,汝少国,邴欣等。久效磷对黄鳝过氧化氢酶和Na+/K+-ATP酶活性的影响。环境科学研究,2006b,19(3):96-100.
    闫建国,汝少国,王蔚。久效磷对黄鳝乙酰胆碱酯酶、羧酸酯酶和磷酸酶活性的影响[J].安全与环境学报,2006a,6(3):61-63.
    杨景辉.土壤污染与防治.北京:科学出版社,1995,290-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700