用户名: 密码: 验证码:
缅因湾及邻近海域浮游植物水华年际变化及其生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物水华作为近海重要的生物过程,其动态变化对生态系统内的营养传递、生产力水平和各生源要素的循环等均有重要影响。随着气候变化对生态系统影响的研究的深入,浮游植物水华生物气候学研究已成为当前生物海洋学研究的热点。论文选择了缅因湾及其邻近海域为研究对象,通过SeaWiFS卫星观测资料和现场观测资料分析以及生态模型数值模拟,研究了缅因湾及其邻近海域浮游植物春季和秋季藻华的空间和年际变化,分析了控制藻华发生时间(以峰值发生时间表示)和藻华强度(以平均叶绿素浓度表示)的主要环境因子,并探讨了与气候变化有关的藻华动态变化可能产生的生态效应。
     卫星遥感资料分析结果发现,缅因湾及其邻近海域春季藻华发生时间在空间上存在较显著由东向西推移的分布特征,而秋季藻华则相反,呈由西向东推移的整体规律。春季和秋季藻华平均叶绿素浓度的空间分布规律较为一致,即东部的斯科舍陆架区叶绿素浓度较低,而西部的缅因湾区域叶绿素浓度较高。年际变化上,春季藻华发生早的年份,秋季藻华一般发生较晚,二者呈现显著的负相关性(r=-0.235,P<0.05);但同一年份的春季和秋季藻华的平均叶绿素浓度间无显著相关性。春季藻华发生时间的年际变化与海表盐度的变化显著正相关(r=0.415,P<0.01),但秋季藻华发生时间与海表盐度和海表温度两因子存在显著负相关性(r=-0.28,P<0.05;r=-0.317,P<0.01)。这是由于:海表盐度低,意味着水体垂直结构相对稳定,促进层化作用的形成,这就导致春季藻华发生较早,而秋季藻华发生较晚;海表温度与秋季藻华发生时间之间的相关性,主要是由于低温低盐的表层流的年际变化导致海表温度与海表盐度间的正相关性所致。
     利用1-D生态模型成功模拟了缅因湾和斯科舍陆架区1984-2007期间的浮游植物水华和浮游生物生产力的年际和年代际变化。模拟结果发现,缅因湾和斯科舍陆架区春季和秋季藻华发生时间和藻华强度均存在显著的年际变化,藻华发生时间的年际变化幅度约为±2-3周,藻华强度的变化范围可高至~1 mg Chl m-3。较早的春季藻华和较晚的秋季藻华主要与盐度较低的表层水或0-50m层间较大的盐度差增加的水体稳定性有关。单因子实验结果表明,盐度是影响春季和秋季藻华动态(尤其是藻华发生时间)的主要环境因子;海表温度和海表风对水体垂直结构的影响不如盐度梯度显著,因而对藻华动态变化影响较弱;营养盐水平控制藻华强度,但对藻华发生时间的影响较弱。此外,模型模拟的初级生产力、中型浮游动物生产力和颗粒输出通量的年际变化幅度较小(标准差小于平均值的10%)。年初级生产力高值一般出现在春季藻华发生较早的年份(缅因湾:r=-0.205;斯科舍陆架:r=-0.51),但初级生产力与藻华发生时间(或水体稳定性)相关性不显著。春季藻华期间大粒径浮游植物占据绝对优势,而秋季藻华则以小粒径浮游植物为主;两季节藻华期间浮游动物生物量均主要由中型浮游动物贡献。缅因湾和斯科舍陆架区藻华发生时间的年际变化范围较大,但浮游生物生产力的年际变化幅度较小,由此可以侧面的得出该区域渔业资源的年际变化主要受藻华发生时间的控制,而不是受每年总的生产力水平的控制。
As one of the most important biological processes in coastal oceans, the phytoplankton bloom dynamics can affect the coupling of pelagic food chains, thus can have important ramifications for trophic interactions, overall system productivities and biogeochemical processes. Phytoplankton phenology has been one of the research hot-spots in the field of biological oceanography to understand the impact of climate change on marine ecosystem. In this thesis, Gulf of Maine and its adjacent coastal waters were selected as the study area. Remotely sensed ocean color data (SeaWiFS) and field observations analysis and numerical modeling have been used to study the spatial and inter-annual variability of both spring and fall phytoplankton blooms in the Gulf of Maine (GoM) and its adjacent coastal waters. The main environmental factors controlling the bloom timing and magnitude (peak timing and mean chlorophyll concentration during blooms were selected as the indices) have been identified, and the ecological effects of the climate-change-related bloom dynamics were also discussed.
     The ocean color data reveal a general pattern of westward progression of spring phytoplankton bloom (SPB), and an eastward progression of fall phytoplankton bloom (FPB) from the Nova Scotian Shelf (NSS) to GoM perspective. The spatial pattern of mean chlorophyll concentration in spring is similar to that in fall, with a lower concentration in the NSS and higher in the GoM. Inter-annually, there is a weak but significant tendency for years with earlier (delayed) SPBs to be followed by delayed (earlier) FPBs (r=-0.235, P<0.05), but the mean chlorophyll concentrations during SPBs are not correlated with that during FPBs. The inter-annual variability of SPB timing is significantly correlated with the sea surface salinity (SSS, r=0.415, P <0.01), but the FPB timing is correlated with both SSS and sea surface temperature (SST) (r=-0.28, P<0.05; r=-0.317, P<0.01). Further analysis shows that low SSS means a relatively stable water column and promotes the formation of stratification, which causes an earlier SPB and a delayed FPB. The correlation between SST and FPB timing is contrary to the theoretic mechanism. In reality, high (low) SST anomalies are often associated with high (low) SSS anomalies in this region. This is mainly due to variations in the advection of cold, fresh waters flowing into the study region.
     A 1-D ecosystem model, driven by surface heat and wind forcing and relaxed toward observed salinity profiles, was applied to simulate the inter-annual and decadal-scale variability of the phytoplankton blooms and plankton production from 1984-2007 in the Nova Scotian Shelf (NSS) and Gulf of Maine region (GoM). The model captured the mean observed timing and magnitude of the spring phytoplankton bloom (SPB) and fall phytoplankton bloom (FPB) in both systems, as well as observed inter-annual variations in SPB peak timing. Model simulations for both the GoM and NSS exhibited marked inter-annual variability in SPB and FPB timing (±2-3 weeks) and magnitude (up to~1 mg Chl m-3). Earlier SPBs and delayed FPBs are linked to enhanced water column stability generated by less saline surface water or sharper salinity gradients over the top 50m of the water column. The process-oriented numerical modeling experiments suggest that 1) salinity is the main factor influencing the bloom timing and magnitude in the NSS-GoM region, especially for the timing of SPBs; 2) compared to buoyancy forcing induced by vertical salinity gradient, the impact of surface heating and surface wind stress on the blooms variability is much weaker; and 3) the nutrient level controls bloom magnitude, but only has minor effect on bloom timing. Moreover, the modeled variation in annual primary productivity, mesozooplankton productivity, and particle export flux was modest (<10% of the mean). Years with high primary production were weakly associated with early SPBs (GoM: r=-0.205; NSS:r=-0.51), but there was no significant relationship with water column stability. Large phytoplankton is dominant in SPB, while small phytoplankton is dominant in FPB. Mesozooplankton biomass is the main part of zooplankton biomass in both SPB and FPB. Inter-annual variations in fisheries production due to changes in annual productivity are thus likely secondary to profound shifts in fisheries recruitment and production that have been linked to variations in SPB and FPB timing.
引文
1. 陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2003,40-43
    2. 冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999,328-333
    3. 韩君,赵亮,魏皓.近岸海域浮游植物水华动力机制研究进展和展望.中国海洋大学学报,2008,38(4):527-532
    4. 韩君.黄海物理环境对浮游植物水华影响的数值研究:[博士毕业论文].青岛:中国海洋大学,2008
    5. 韩希福,王荣.海洋浮游动物对浮游植物水华的摄食与调控作用.海洋科学,2001,25(10):31-33
    6. 胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报,2004,26(6):74-88
    7. 莱莉C M,帕森斯T R.生物海洋学导论(张志南等译).青岛:青岛海洋大学出版社,2000
    8. 刘丽萍,黄大吉,章本照.渤黄东海混合层化演变规律的研究进展.海洋科学进展,2002,20(3):84-89
    9. 宁修仁,刘子琳,蔡昱明.我国海洋初级生产力二十年.东海海洋,2000,18(3):13-20
    10.宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84
    11.宁修仁,史君贤,蔡昱明,等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,2004,26(6):96-106
    12.潘科,黄凌风,郭丰,等.夏季黄海、东海鞭毛虫的丰度与悬浮颗粒物的关系.海洋学报,2005,27(6):107-115
    13.蒲新明,潘进芬,丁德文.海洋食物网结构与生态系统退化.//丁德文,石洪华,张学雷,等.近岸海域水质变化机理及生态环境效应研究.北京:海洋出版社,2009
    14.曲利芹,管磊,贺明霞.SeaWiFS和MODIS叶绿素浓度数据及其融合数据的全球可利用率.中国海洋大学学报,2006,36(2):321-326
    15.孙军,刘东艳,钱树本.浮游植物生物量研究Ⅰ-浮游植物生物量细胞体积转化法.海洋学报,1999,21(1):114-121
    16.孙湘平.中国近海区域海洋.北京:海洋出版社,2006
    17.唐启升,苏纪兰,孙松,等.中国近海生态系统动力学研究进展.地球科学进展,2005,20(12):1288-1299
    18.唐启升,苏纪兰.中国海洋生态系统动力学研究(Ⅰ)关键科学问题与研究发展战略.北京:科学出版社,2000
    19.王保栋.黄海冷水域生源要素的变化特征及相互关系.海洋学报,2000,22(6):47-54
    20.王小冬,孙军,刘东艳,等.海洋中型浮游动物的选择性摄食对浮游植物群落的控制.海洋科学进展,2005,23:524-535
    21.魏皓,王磊,林以安,等.黄海中部营养盐的贯跃层输运.海洋科学进展,2002,20(3):15-20
    22.魏皓,赵亮,冯士筰.渤海浮游植物生物量与初级生产力变化的三维模拟.海洋学报,2003,25(增2):66-72
    23.魏皓,赵亮,刘广山,等.浅海底边界动力过程与物质交换研究.地球科学进展,2006,21(11):1180-1184
    24.魏皓,赵亮,武建平.浮游植物动力学模型及其在海域富营养化研究中的应用.地球科学进展,2001,16(2):220-225
    25.赵亮,魏皓,冯士筰.渤海氮磷营养盐的循环和收支.环境科学,2002,23(1):78-81
    26.赵亮.渤海浮游植物生态动力学模型研究:[博士毕业论文].青岛:青岛海洋大学,2002
    27. Anderson D M. Turning back the harmful red tide. Nature,1997,388(6642):513
    28. Anderson L A. The seasonal nitrogen cycle in Wilkinson Basin, Gulf of Maine, as estimated by 1-D biological model optimization. Journal of Marine Systems,2009,78(1):77-93
    29. Ashjian C J, Davis C S, Gallager S M, et al. Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2001,48(1-3): 245-282
    30. Atkins W R G. Seasonal variations in the phosphate and silicate content of sea water during 1926 and 1927 in relation to the phytoplankton crop. Journal of the Marine Biological Association of the United Kingdom,1928,15 (1):191-206
    31. Baker K S, Frouin R. Relation Between Photosynthetically Available Radiation and Total Insolation at the Ocean Surface Under Clear Skies. Limnology and Oceanography,1987, 32(6):1370-1377
    32. Balch W M. An apparent lunar tidal cycle of phytoplankton blooming and community succession in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology,1981, 55(1):65-77
    33. Beardsley R C, Butman B, Geyer W R, et al. Physical oceanography of the Gulf of Maine:an update, Proceedings of the Gulf of Maine Ecosystem Dynamics Scientific Symposium and Workshop. Report 97-1. Regional Association for Research in the Gulf of Maine, Hanover NH, USA,1997, pp 39-52
    34. Beardsley R C, Lentz S J, Weller R A, et al. Surface forcing on the southern flank of Georges Bank, February-August 1995. Journal of Geophysical Research-Oceans,2003,108 (C11), 8007:doi:10.1029/2002JC001359
    35. Bigelow H B. Plankton of the offshore waters of the Gulf of Maine. Bulletin of the United States Bureau of Fisheries,1926,40:1-509
    36. Bisagni J J, Seemann K W, Mavor T P. High-resolution satellite-derived sea-surface temperature variability over the Gulf of Maine and Georges Bank region,1993-1996. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2001,48(1-3):71-94
    37. Bisagni J J. Seasonal variability of nitrate supply and potential new production in the Gulf of Maine and Georges Bank regions. Journal of Geophysical Research-Oceans,2003,108(C11)
    38. Brooks D A, Townsend D W. Variability of the coastal current and nutrient pathways in the eastern Gulf of Maine. Journal of Marine Research,1989,47:303-321
    39. Brooks D A. The Influence of Warm-Core Rings on Slope Water Entering the Gulf of Maine. J. Geophys. Res.,1987,92:8183-8196
    40. Carlos A A, Carbonel H, Valentin J L. Numerical modeling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio (Brazil). Ecological Modeling,1999,116:135-148
    41. Chavez F P, Strutton P G, Friederich G E, et al. Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Nino. Science,1999,286:2126-2131
    42. Chen C, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Special Issue entitled "Advance in Computational Oceanography". Oceanography,2006,19(1):78-89
    43. Chen C, Beardsley R, Franks P J S. A 3-D prognostic numerical model study of the Georges Bank ecosystem. Part Ⅰ:physical model. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2001,48(1-3):419-456
    44. Chiba S, Sasaoka K. Climatic forcing and phytoplankton phenology over the subarctic North Pacific 1998-2006. PICES 16th annual meeting, Victoria,2007
    45. Cleve P T. Report on the phytoplankton collected on the expedition of H.M.S. 'Research'. Ann. Rep. Fish. Bd. Scotland,1886,15:297-304
    46. Colebrook J M. Continuous plankton records:seasonal variation in the distribution and abundce of plankton in the North Atlantic and the North Sea. Journal of Plankton Research, 1979,4:435-462
    47. Cui M, Wang R, Hu D, et al. Simple ecosystem model of the central part of the east China Sea in spring. Chinese Journal of Oceanology and Limnology,1997,15(1):80-87
    48. Curry R, Mauritzen C. Dilution of the northern North Atlantic Ocean in recent decades. Science,2005,308:1772-1774
    49. Cushing D H. Marine Ecology and Fisheries. London:Cambridge University Press,1975, 1-277
    50. Cushing D H. Plankton production and year-class strength in fish populations-an update of the match mismatch hypothesis. Advances in Marine Biology,1990,26:249-293
    51. Cushing D H. The seasonal variation in oceanic production as a problem in population dynamics. Journal du Conseil International pour 1'Exploration de la Mer,1959,24:455-464
    52. Doney S C, Glover D M, Najjar R J. A new coupled, one-dimensional biological-physical model for the upper ocean:applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Research Part Ⅱ,1996,43:591-624
    53. Drinkwater K F, Petrie B, Smith P C. Climate variability on the Scotian Shelf during the 1990s. ICES Marine Science Symposia,2003,219:40-49
    54. Durbin E Q Campbell R Q Casas M C, et al. Interannual variation in phytoplankton blooms and zooplankton productivity and abundance in the Gulf of Maine during winter. Mar Ecol-Prog Ser,2003,254:81-100
    55. Durbin E G, Durbin A G, Beardsley R C. Springtime nutrient and chlorophyll-a concentrations in the southwestern Gulf of Maine. Continental Shelf Research,1995,15(4-5): 433-450
    56. Durbin E G, Runge J A, Campbell R G, et al. Late fall early winter recruitment of Calanus finmarchicus on Georges Bank. Marine Ecology-Progress Series,1997,151(1-3):103-114
    57. Dutkiewicz S, Follows M, Marshall J, et al. Interannual variability in phytoplankton abundances in the North Atlantic. Deep Sea Research, Part 2,2001,48:2323-2344
    58. Edwards M, Richardson A J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature,2004,430:881-884
    59. Findlay H S, Yool A, Nodale M, et al. Modelling of autumn plankton bloom dynamics. Journal of plankton research,2006,28:209-220
    60. Friedland K D, Hare J A, Wood G B, et al. Does the fall phytoplankton bloom control recruitment of Georges Bank haddock, Melanogrammus aeglefinus, through parental condition? Canadian Journal of Fisheries and Aquatic Sciences,2008,65:1076-1086
    61. Friedland K D, Hare J A, Wood G B, et al. Reply to the comment by Payne et al. on "Does the fall phytoplankton bloom control recruitment of Georges Bank haddock, Melanogrammus aeglefinus, through parental condition?". Canadian Journal of Fisheries and Aquatic Sciences, 2009,66:873-877
    62. Friehe C A, Schmitt K F. Parameterization of air-sea interface fluxes of sensible heat and moisture by the bulk aerodynamic formulas. Journal of Physical Oceanography,1976,6(6): 801-809
    63. Gargett A E. The optimal stability "window":a mechanism underlying decadal fluctuations in North Pacific salmon stocks. Fisheries Oceanography,1997,6(2):109-117
    64. Geider R J, MacIntyre H L, Kana T M. Dynamic model of phytoplankton growth and acclimation:responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series,1997,148:187-200
    65. Gran H H, Braarud T. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observation on hydrography, chemistry and turbidity). Journal of the Biological Board of Canada,1935,1:279-467
    66. Greene C H, Pershing A J. Climate drives sea change. Science,2007,315:1084-1085
    67. Greve W, Prinage S, Zidowitz H, et al. On the phenology of North Sea ichthyoplankton. ICES J. Mar. Sci.,2005,62(7):1216-1223
    68. Hansen P J, Bjornsen P K, Hansen B W. Zooplankton grazing and growth:scaling within the 2-2000-mm body size range. Limnology and Oceanography,1997,42:687-704
    69. Hardy A C. The continuous plankton recorder:a new method of survey. Rapp. P.-V. Riun. Cons. Int. Explor. Mer.,1935,95:35-77
    70. Haren H V, Mills D K, Wetsteyn P M J. Detailed observations of the phytoplankton spring bloom in the stratifying central North Sea. Journal of Marine Research,1998,56:655-680
    71. Harris G.P. Phytoplankton Ecology:Structure, Function and Fluctuation. Cambridge: Cambridge University Press,1986
    72. Hays G C, Richardson A J, Robinson C. Climate change and marine plankton. Trends in Ecology & Evolution,2005,20:337-344
    73. Hjort J. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp..P.-V.Reun.Cons.Int.Explor.Mer.,1914,1:5-38
    74. Holliday N P, Waniek J J, Davidson R, et al. Large-scale physical controls on phytoplankton growth in the Irminger Sea Part I:Hydrographic zones, mixing and stratification. Journal of Marine Systems,2006,59:201-218
    75. Hu S, Townsend D W, Chen C, et al. Tidal pumping and nutrient fluxes on Georges Bank:A process-oriented modeling study. Journal of Marine Systems,2008,74(1-2):528-544.
    76. Hughes L. Biological consequences of global warming:is the signal already apparent?. Trends in Ecology & Evolution,2000,15 (2),56-61
    77. IOCCG. Guide to the Creation and Use of Ocean-Colour, Level-3, Binned Data Products. Canada:Reports of the International Ocean-Colour Coordination Group, No.4. IOCCG, Dartmouth,2004
    78. IOCCG. Minimum Requirements for an Operational, Ocean-Colour Sensor for the open Ocean. Canada:Reports of the International Ocean-Colour Coordination Group, No.1. IOCCG, Dartmouth,1998
    79. Iverson R L. Control of marine fish production. Limnology and Oceanography,1990,35(7): 1593-1604
    80. Ji R, Chen C, Franks P J S, et al. Spring bloom and associated lowertrophic level food web dynamics on Georges Bank:1-D and 2-D model studies. Deep-Sea Research Ⅱ,2006(a), 53(23-24):2656-2683
    81. Ji R, Chen C, Franks P J S, et al. The impact of Scotian ShelfWater "cross-over" on the plankton dynamics on Georges Bank:A 3-D experiment for the 1999 spring bloom. Deep-Sea Research Ⅱ,2006(b),53(23-24),2684-2707
    82. Ji R, Davis C S, Chen C, et al. Influence of ocean freshening on shelf phytoplankton dynamics. Geophys Res Lett,2007,34:doi:10.1029/2007GL032010
    83. Ji R, Davis C S, Chen C, et al. Modeling the influence of low-salinity water inflow on winter-spring phytoplankton dynamics in the Nova Scotian Shelf-Gulf of Maine region. Journal of Plankton Research,2008,30:1399-1416
    84. Ji R. Plankton in a changing climate:Gulf of Maine case study. WHOI biology seminar, Woods Hole,2009
    85. Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society,1996,77(3):437-471
    86. Kelly-Gerreyn B A, Anderson T R, Holt J T, et al. Phytoplankton community structure at contrasting sites in the Irish Sea:a modeling investigation. Estuarine, Coastal and Shelf Science,2004,59:363-383
    87. Large W G, Pond S. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography,1981,11(3):324-336
    88. Loder J W, Platt T. Physical controls on phytoplankton production at tidal fronts. In:P.E. Gibbs (Editor), Proceedings of the Nineteenth European Marine Biology Symposium. Cambridge University Press,1985,3-21
    89. Lorenzen C J. Extinction of Light in the Ocean by Phytoplankton. ICES J. Mar. Sci.,1972, 34(2):262-267.
    90. Marshall S M, Orr A P. The photosynthesis of diatom cultures in the sea. Journal of the Marine Biological Association of the United Kingdom,1928,15 (1):321-360
    91. Mellor G L, Yamada T. Development of a turbulence closure model for Geophysical Fluid Problems. Reviews of Geophysical and Space Physics,1982,20:851-875
    92. Mellor G L. Users Guide for a three-dimensional, primitive equation, numerical ocean model (POM). Princeton:Princeton University,2004
    93. Miller C B. Biological Oceanography. Oxford:Blackwell Publishing,2004
    94. Mills E L, Fournier R O. Fish production and the marine ecosystems of the Scotian Shelf, eastern Canada. Marine Biology,1979,54:101-108
    95. Mountain D G, Strout G A, Beardsley R C. Surface heat flux in the Gulf of Maine. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1996,43(7-8):1533-1546
    96. Mountain D, Manning J. Seasonal and interannual variability in the properties of the surface waters in the Gulf of Maine. Continental Shelf Research,1994,14:1555-1581
    97. Mousseau L, Fortier L, Legendre L. Annual production of fish larvae and their prey in relation to size-fractionated primary production (Scotian Shelf, NW Atlantic). ICES J. Mar. Sci.,1998,55(1):44-57
    98. Nybakken J W. Marine Biology:An Ecological Approach. New York:Harper and Row,1982
    99. O'Reiley J E, Evans-Zetlin C, Busch D A. Primary production. In:Backus R H ed. Georges Bank. Cambridge, MA:The MIT Press,1987,220-233
    100. O'Reilly J E, Evans-Zetlin C E, Busch D A, et al. Primary production. In:Georges Bank. MIT Press, Cambridge, Massachusetts,1987,220-233
    101. Ottersen G, Planque B, Belgrano A, et al. Ecological effects of the North Atlantic Oscillation. Oecologia,2001,128:1-14
    102. Oviatt C A. The changing ecology of temperate coastal waters during a warming trend. Estuaries,2004,27 (6),895-904
    103. Payne M R, Dickey-Collas M, Nash R D M. Comment on "Does the fall phytoplankton bloom control recruitment of Georges Bank haddock, Melanogrammus aeglefinus, through parental condition?". Canadian Journal of Fisheries and Aquatic Sciences,2009,66:869-872
    104. Pershing A J, Greene C H, Jossi J W, et al. Interdecadal variability in the Gulf of Maine zooplankton community, with potential impacts on fish recruitment. ICES Journal of Marine Science,2005,62:1511-1523
    105. Peterson B J, McClelland J, Curry R, et al. Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science,2006,313:doi:10.1126/science.1122593
    106. Petrie B, Drinkwater K F. Temperature and salinity variability on the Scotian Shelf and in the Gulf of Maine 1945-1990. Journal of Geophysical Research,1993,98(11):20079-20090
    107. Petrie B, Yeats P. Annual and interannual variability of nutrients and their estimated fluxes in the Scotian Shelf-Gulf of Maine region. Canadian Journal of Fisheries and Aquatic Science, 2000,57:2536-2546
    108. Platt T, Fuentes-Yaco C, Frank K T. Spring algal bloom and larval fish survival. Nature,2003, 423:398-399.
    109. Platt T, Sathyendranath S. Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sensing of Environment,2008,112:3426-3436
    110. Platt T, White Iii GN, Zhai L, et al. The phenology of phytoplankton blooms:Ecosystem indicators from remote sensing. Ecological Modelling,2009, doi:10.1016/j.ecolmodel.2008. 11.022.
    111. Raven J A. The Twelfth Tansley Lecture, Small is Beautiful:The Picophytoplankton. Functional Ecology,1998,12:503-513
    112. Reid P, Lancelot C, Gieskes W, et al. Phytoplankton of the north-sea and its dynamics-a review. Netherlands journal of sea research,1990,26(2-4):295-331
    113. Riley G A, Stommel H, Bumpus D F. Quantitative ecology of the plankton of the Western North Atlantic. Bull Bingham Oceanogr Coll,1949,12:1~69
    114. Riley G A. The relationship of vertical turbulence and spring diatom flowering. Journal of Marine Research,1942,5:67-87
    115. Ryther J H. Photosynthesis and fish production in the sea. Science,1969,166:72-76
    116. Sameoto D. Decadal changes in phytoplankton color index and selected calanoid copepods in continuous plankton recorder data from the Scotian Shelf. Canadian Journal of Fisheries and Aquatic Sciences,2001,58:749-761
    117. Sarmiento J L, Slater R, Barber R, et al. Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles,2004,18:doi:10.1029/2003GB002134
    118. Sharples J, Ross 0 N, Scott B E, et al. Inter-annual variability in the timing of stratification and the spring bloom in the North-western North Sea. Continental Shelf Research,2006,26: 733-751
    119. Simpson J J, Paulson C A. Mid-ocean observations of atmospheric radiation. Quarterly Journal of the Royal Meteorological Society,1979,105(444):487-502
    120. Smith P C. Seasonal and interannual variability of current temperature and salinity off southwest Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences,1989,46(Suppl. 1):4-20
    121. Stenseth N C, Mysterud A, Ottersen G, et al. Ecological effects of climate fluctuation. Science,2002,297:1292-1296
    122. Stock C, Dunne J. Controls on the ratio of mesozooplankton production to primary production in marine ecosystems. Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2010,57:95-112
    123. Sverdrup H U. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International pour l'Exploration de la Mer,1953,18:287-295
    124. Taylor M H, Mountain D G. The influence of surface layer salinity on wintertime convection in Wilkinson Basin, Gulf of Maine. Continental Shelf Research,2009,29(2):433-444
    125. Thomas A C, Townsend D W, Weatherbee R. Satellite-measured phytoplankton variability in the Gulf of Maine. Continental Shelf Research,2003,23:971-989
    126. Townsend D W, Cammen L M, Holligan P M, et al. Causes and consequences of variability in the timing of spring phytoplankton blooms. Deep-Sea Research, Part Ⅰ,1994,41(5/6): 747-765
    127. Townsend D W, Cammen L M. Potential importance of the timing of spring plankton blooms to benthic pelagic coupling and recruitment of juvenile demersal fishes. Biological Oceanography,1988,5:215-229
    128. Townsend D W, Keller M D, Sierachi M E, et al. Spring phytoplankton blooms in the absence of vertical water column stratification. Nature,1992,360:59-62
    129. Townsend D W, Thomas A C, Mayer L M, et al. Oceanography of the Northwest Atlantic Continental Shelf. In:Robinson AR, Brink KH (eds) The Sea. Volume 14, Harvard University Press,2006,119-168
    130. Townsend D W, Spinard R W. Early phytoplankton blooms in the Gulf of Maine. Continental Shelf Research,1986,6:515-529
    131. Townsend D W. Influences of oceanographic processes on the biological productivity of the Gulf of Maine. Reviews in Aquatic Sciences,1991,5(3-4):211-230
    132. Ueyama R, Monger BC. Wind-induced modulation of seasonal phytoplankton blooms in the North Atlantic derived from satellite observations. Limnology and oceanography,2005,50: 1820-1829
    133. Umlauf L, Burchard H. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Continental Shelf Research,2005,25:795-827
    134. Umoh J U, Thompson K R. Surface heat flux, horizontal advection, and the seasonal evolution of water temperature on the Scotian Shelf. Journal of Geophysical Research,1994, 99:20403-20416
    135. Vargas M, Brown C W, Sapiano M R P. Phenology of marine phytoplankton from satellite ocean color measurements. Geophys Res Lett,2009,36:L01608
    136. Ware D M, Thompson R E. Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science,2005,308:1280-1284
    137. Wei H, Sun J, Moll A, et al. Phytoplankton dynamics in the Bohai Sea-observations and modelling. Journal of marine system,2004,44:233-251
    138. Wiebe P H, Boyd S, Cox J L. Relationships between zooplankton displacement volume, wet weight, dry weight, and carbon. Fishery Bulletin,1975,73(4):777-786
    139. Wiebe P H. Functional regression equations for zooplankton displacement volume, wet weight, dry weight, and carbon:a correction. Fishery Bulletin,1988,86(4):833-835
    140. Wu Y S, Platt T, Tang C C L, et al. A summer phytoplankton bloom triggered by high wind events in the Labrador Sea, July 2006. Geophysical Research Letters,2008,35(10):L10606
    141. Xue H, Chai F, Pettigrew N R. A model study of the seasonal circulation in the Gulf of Maine. Journal of Physical Oceanography,2000,30:1111-1135
    142. Yamada K, Ishizaka J. Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea. Geophysical Research Letter,2006,33:L02608
    143. Zakardjian B A, Sheng J, Runge J A, et al. Effects of temperature and circulation on the population dynamics of Calanus finmarchicus in the Gulf of St. Lawrence and Scotian Shelf: Study with a coupled, three-dimensional hydrodynamic, stage-based life history model. Journal of Geophysical Research,2003,108:1-22
    144. Zhang Y, Rossow W B, Lacis A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:Refinements of the radiative transfer model and the input data. J. Geophys. Res.,2004,109, doi:10.1029/2003JD004457
    145. Zhao L, Wei H. The influence of physical factors on the variation of phytoplankton and nutrients in the Bohai Sea. Journal of Oceanography,2005,61:335-342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700