用户名: 密码: 验证码:
青藏高原东缘高寒草甸群落花期物候研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物候学是研究生命周期随季节变化的一门基础学科。对植物群落物候的翔实观测研究有助于人们认识群落结构及其功能在时间梯度上的变化规律。青藏高原高寒草甸生态系统是陆地生态系统的重要组成部分,其变化能够预示陆地生态系统变化动态。在全球变化背景下,对青藏高原草地群落物候学研究不仅有助于深入认识草地群落构建机制,并有助于对其功能属性的深入探究,更重要的是为青藏高原高寒草甸生态系统的预测和评估提供基础研究。本研究以青藏高原东缘兰州大学高寒草甸与湿地生态系统定点研究站—瓦拉卡实验点的天然草甸为研究对象,在2006年和2007年通过对高寒草甸封育群落中53种植物,施肥群落18种植物和放牧群落28种植物的物候观测及其群落结构分析,得出如下结果:
     1.高寒草甸群落气候因素具有明显的季节分布性,气候因素的季节性变化影响群落花期物候分布。对气候因素主成分(PCA)分析表明,日平均温度、生长时间和降水量是高寒草甸群落主要气候因子,其信息贡献率为97.11%。在2006年和2007年降水量从5月下旬到8月中旬集中分布,年度日均最高温度在7月中旬出现,在一年中日最低温度大于0℃天数大约100d。随着群落盖度和高度的增加,群落光合有效辐射(PAR)在各处理中都减小,在施肥群落冠层中60cm以下PAR减弱率显著大于封育群落冠层中PAR减弱率,放牧群落冠层中30cm以下PAR减弱率显著低于封育群落冠层中PAR减弱率,这一结果显示群落冠层差异显著改变PAR在群落中的分布。
     2.高寒草甸群落花期峰值期呈集中分布。本研究对群落种间花期峰值期分布模式检验结果表明,封育群落53个种,放牧群落28个种和施肥群落18个种的种间花期峰值期均为集中分布。根据科内种间花期峰值期分布检验结果,在封育群落和放牧群落中科内种间开花峰值期为随机分布;在施肥群落中禾草类种间开花峰值期为集中分布,其它科内种间开花峰值期为随机分布。根据群落中物种开花期在生长季节内分布比率,封育群落、放牧群落和施肥群落中多数植物种在群落生长中期集中开花。
     3.高寒草甸群落中种间选择不同花期物候对策。在物种水平上对花期物候变化分析表明,群落生长早期进入花期的多数种,如匙叶龙胆(Gentiana spathulifolia)、银叶火绒草(Leontopodium souliei)、矮藨草(Scirpus distigmaticus)等其始花期和终花期年际变化差异显著,在群落生长中期和后期进入花期的多数种其始花期和终花期年际变化差异不显著,其种内花期物候年际差异表现在花期持续期和花期同步性上。
     4.在封育群落中53个种的平均花期持续期为8.1±3.22d,在群落水平上花期持续期和花期同步性分别与始花期负相关。在群落生长早期开花植物其花期持续期短,同步性高,在群落生长中期开花植物其花期持续期长,花期同步性低。
     5.物种性状差异影响生长型间花期物候分离。在高寒草甸群落中,植物生长类型间花期峰值期分离明显。垫状类植物在群落返青期进入花期,花期持续期短,种内花期同步性低,开花峰值期在生长季节内随机分布,种内花期年际变化差异显著,花期持续期与始花期正相关,花期同步性与始花期负相关。莎草类在群落生长早期进入花期,先开花种花期持续期短,花期同步性高,花期物候年际变化差异显著;后开花中花期持续长,花期同步性低,种内花期物候年际变化相对稳定;莎草类花期持续期与始花期正相关,花期同步性与始花期负相关。匍匐类植物在群落生长中期进入花期,花期持续期与始花期负相关,花期同步性和始花期负相关。莲座类植物从群落生长中期到末期进入花期,花期持续期与始花期负相关。禾草类在群落生长中期进入花期,花期持续期与始花期负相关,花期同步性和始花期负相关。丛生类从群落生长中期到后期进入花期,花期持续期与始花期负相关。
     6.在不同传粉方式的植物之间花期物候存在差异。风媒花植物种始花期显著早于虫媒花植物始花期,风媒花花期持续期显著短于虫媒花花期持续期。多数风媒花植物在群落生长早期进入花期,多数虫媒花植物在群落生长中期进入花期。在群落生长早期花冠颜色以白色花和黄色花为主,在群落生长中期群落花冠颜色组成除了白色花和黄色花外,蓝色花和紫色花比例增加。群落生长中期花冠颜色多样性和均匀度高于群落生长早期和后期花冠颜色的多样性和均匀度。
     7.群落开花期与生物量和高度相关,在生长型间资源利用对策存在差异。根据对封育群落38个常见种花期生物量PCA分析结果,总生物量、茎生物量、叶生物量和高度是群落开花期相关的主要因子,其信息贡献率为83.03%。群落开花期与花期生物量和高度相关。根据各生长型开花期与生物量相关性,匍匐类开花期与叶生物量正相关,与花生物量和高度负相关;莲座状类开花期与高度负相关;丛生类开花期与花生物量和高度正相关,莎草类开花期与高度和总生物量正相关;禾草类开花期与高度和茎生物量正相关。在生长季节内群落水平上叶分配比率与始花期负相关,茎生物量分配比率与始花期正相关,花生物量分配比率在群落生长早期和后期高,群落生长中期低。
     8.群落生长型间花期物候对施肥响应存在差异。在施肥群落中丛生类、莲座类、匍匐类和莎草类始花期、开花峰值期和终花期轻度推迟或提前,花期持续期轻度延长或缩短;禾草类始花期、开花峰值期、终花期显著推迟,花期持续期未发生显著变化。
     9.根据放牧群落28个种花期物候分布,在放牧条件下垫状类、莎草类和匍匐类始花期显著提前,终花期显著推迟,花期持续期显著延长,而禾草类和丛生类花期物候无显著变化。
     总之,高寒草甸群落开花期受系统发育、环境胁迫和种间作用影响在生长季节内集中分布。群落组分种通过物候补偿机制实现生态位分化,植物种性状差异是生态位分化的基础。
Phenology studies the seasonal timing of life cycle events, it is the fundamental of ecology, and affects nearly all aspects of ecology and evolution, an exhaustive research of phenolgy is crucial to the understanding of plant community assembly and its functions in variable environments. The Qinghai-Tibet grassland ecosystem is the integrate part of terrestrial ecosystems in China, due to unique ecogeography of the ecosystems, study of phenology of Qinghai-Tibetan grassland can be use to infer the phonological trends of other terrestrial ecosystem in global changes. Moreover, studying on the grassland phenology in the Qinghai-Tibetan plateau can be use to address many fundamental topics, e.g species coexist and community assembly, as well as exploring the relationship between vegetation process and ecosystem functioning in rapidly changing environment. We carried out during 2006 and 2007 two years intensively comparative experiment in the field grassland of the Research Station for Alpine Meadow and Wetland Ecosystems of Lanzhou university in East Qinghai-Tibetan Plateau, namely Walaka site. By monitoring the phenology and species abundance of 53,28 and 18 comonpent species in enclosed (Ck), nomadic grazed communities (Gr) and fertilized community(Fr), respectively, we gained the following results:
     1.The environmental cues seasonally distribute in the alpine habitats, which influence the distributions of community flowering phenology.The daily average temperature, date and precipitations are the most important climate factors in determining to plant phonology, with cumulative proportion is 97.11% under the principal component analysis (PCA). The precipitations concentrated from the end of May to early August, the daily maximum temperatures occurred in the mid July, the days of annual daily minimum temperatures above 0℃were 100d during 2006 and 2007.With the increases in canopy covers and heights from mid to end of growing periods, photosynthetic active radiation (PAR)decreased dramatically from top to bottom, in Fr canopy PAR reduced more significantly under 60cm than Ck canopy, in Gr canopy PAR reduced less significantly under 30cm than Ck canopy, the PAR distributions significantly varied across canopies.
     2. The distributions of the peak flowering days are aggregated in the alpine meadow communities. The tests for 53 species in Ck,28 species in Gr and 18 species in Fr support that distributions of the peak flowering days(PFD) in communities are aggregated, PFDs within families are randomly distributed in Ck and Gr communities, whereas graminoids are aggregated, the other families are randomly distributed in Fr community. In the light of flowering species seasonal distribution rates, the most species bloom at the mid of growing season in Ck, Gr and Fr habitats.
     3. Species adapt the different flowering strategies. In view of annual variances of species flowering phases, the first flowering days (FFD) and last flowering days(LFD) of the early flowering species such as Gentiana spathulifolia, Leontopodium souliei and Scirpus distigmaticus, inter-annually varied significantly, where as FFDs and LFDs of the mid and late flowering species inter-annually changed insignificantly, only their flowering duration days(FDD) and flowering synchronies shifted inter-annually.
     4.In Ck community, the average FDDs the 53 observed species are 8.1±3.22d, both FDDs and flowering synchronies are negatively correlated with FFDs. Generally, the early flowering species manifest short FDDs and high flowering synchronies, the late flowering species do long FDDs and low flowering synchronies.
     5. The species trait influences the flowering phenology across growth forms. In the alpine meadows, the peak flowering phases across growth forms are separated. The most cushions bloom in early spring with short FDDs and low synchrony, usually the PFDs are randomly distributed, flowering phases inter-annually vary significantly, the FDDs are positively correlated with the FFDs, the synchronies are negatively correlated with FFDs. Sedges bloom in early growing periods, among them the early blooming species have short FDDs and high synchronies, flowering phases inter-annually vary significantly; the late blooming species have long FDDs and low synchronies, the variances of flowering phases are inter-annually stable; the FDDs are posivtively correlated with FFDs, the synchronies are negatively correlated with the FFDs. Creepers bloom in mid growing periods, the FDDs are negatively correlated with the FFDs, the synchronies are negatively correlated with the FFDs. Rosettes bloom from mid to end of growing periods, the FDDs are negatively correlated with FFDs. Graminoids bloom in mid growing periods, FDDs are negatively correlated with FFDs, the synchronies are negatively correlated with FFDs. Clusters bloom from mid to late growing periods, FDDs are negatively correlated with FFDs.
     6. The flowering phases differ among plants with different pollination modes. The FFDs of anemophilouos commence significantly earlier than entomophilouos, FDDs of anemophilouos continue significantly shorter than entomophilouos. The most anemophilouos species bloom in early growing periods, the most entomophilouos species bloom in mid growing periods. In the early growing periods the species with the white or yellow corollas bloom, in mid growing seasons besides species white and yellow corollas, the species with blue and purple corolla flower. The corolla color diversity and evenness in mid growing seasons are higher than those of both early and late growing seasons in alpine meadows.
     7. The community flowering times are correlated to biomass and height. PCA for Ck community 38 species biomass in flowering phase show that biomass, stem biomass, leaf biomass and height are the main components representing flowering time, their cumulative proportion is 83.03%.The community flowering days are positively correlated to biomass, and height. In the point of flowering time and biomass relationships across growth forms, creepers are positively correlated to biomass, negatively correlated to both flower biomass and height; rosettes are negatively correlated to height; clusters are positively correlated to flower biomass and height; sedges are positively correlated to height, and biomass, graminoids are positively correlated to height, and stem biomass. Within growing seasons, community level leaf biomass allocation rates are negatively correlated with FFDs, stem biomass allocation rates are positively correlated with FFDs, flower biomass allocation rates are high at early and late growing periods, which are low at mid growing season.
     8. Growth forms showed different responses to fertilization effects. In the fertilized community, the FFDs, PFDs and LFDs of sedges, rosettes and clusters are slightly accelerated or delayed, and the FDDs are truncated or prolonged in a small scale, whereas PFDs and LFDs of graminoids are significantly postponed, but their FDDs have no significant shifts.
     9. According to the flowering distributions of 28 species in Gr plots, under nomadic grazing the FFDs of cushions, sedges and creepers significantly accelerated, LFDs significantly retarded, FDDs significantly prolonged, whereas the flowering phases of clusters and graminoids are stable.
     In summary, under the influences of phylogeny, stress and biological interactions, the PFDs of alpine meadows are aggregated in growing seasons. The phonological complementarities promote niche differentiation in commuty, traits are the fundamentals of niche seperations.
引文
Aan, A., Hallik, L.& Kull,O. (2006). Photon flux partitioning among species along a productivity gradient of an herbaceous plant community. Journal of ecology 94(6):1143-1155.
    Adler, P. B., HilleRislambers, J.& Levine, J. M. et al(2007). A niche for neutrality. Ecology Letters 10(2):95-104.
    Al-Mufti, M. M., Sydes C. L.& Furness, S. B. et al (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65(3):759-791.
    Amano, T., Smithers, R. J.& R. J. (2010). A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal Society B 277(1693):2451-2457.
    Ansquer, P., Khaled, H. A.& Cruz. P. et al (2009). Characterizing and predicting plant phenology in species-rich grasslands. Grass and Forage Science 64(1):57-70.
    Anten, N. P. R.& Hirose, T. (1999). Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. Journal of ecology 87(4): 583-597.
    Anten, N. P. R. (2005). Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann Bot 95(3):495-506.
    Aono, Y.& Kazui, K. (2008). Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. International Journal of Climatology 28:905-914.
    Arakawa, H. (1955). Twelve centuries of blooming dates of the cherry blossoms at the city of Kyoto and its own vicinity. Geofis. Pura Applicata-Milano 30:147-150.
    Arft, A. M., Walker, M. D.& G.urevetitch, J. (1999). Responses of tundra plants to experimental warming: meta-analysis of the international experiment Ecological Monographs 69(4):491-511.
    Armstrong, R. A.& McGehee, R. (1980). Competitive exclusion. The American Naturalist 115(2):151-170.
    Arnold et al, L. C., S. C.& Chittka, L. (2009a). Flower color phenology in European grassland and woodland habitats, through the eyes of pollinators. Israel Journal of Plant Sciences 57:211-230.
    Arnold, S. E. J, LeComber, S. C.& Chittka, L. (2009b). Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions 3(1):27-43.
    Arroyo, M. T. K., Armesto, J. J.& Villagran. C. (1981). Plant phenological patterns in the high Andean Cordillera of central Chile. Journal of Ecology 69(1):205-223.
    Ashman, T.& Schoen, D. J. (1994). How long should flowers live? Nature 371(6500):788-791.
    Ashton, P. S., Givnish, T. J.& Appanah,.S. (1988). Staggered flowering in the dipterocarpaceae:new Insights into floral Induction and the evolution of mast fruiting in the aseasonal tropics. The American Naturalist 132(1):44-66.
    Augspurger, C. K. (1980). Mass-flowering of a tropical shrub (Hybanthus prunifolius):influence on pollinator attraction and movement. Evolution 34(3):475-488.
    Augspurger, C. K. (1981). Reproductive synchrony of a tropical shrub:experimental studies on effects of pollinators and seed predators in Hybanthus Prunifolius (Violaceae). Ecology 62(3):775-788.
    Augspurger, C. K. (1983). Phenology, flowering synchrony, and fruitset of six neotropical shrubs. Biotropica 15(4): 257-267.
    Barrett, S. C. H. (2008). Major evolutionary transitions in flowering plant reproduction:an overview. International Journal of Plant Sciences 169(1):1-5.
    Bazzaz, F. A. (1990). The Response of Natural Ecosystems to the Rising Global CO2 Levels. Annual Review of Ecology and Systematics 21(1):167-196.
    Bell, J. M., Karron, J. D.& Mitchell, R. J. (2005). Interspecific competition for pollination lowers seed production and outcrossing in Mimulus ringens. Ecology 86(3):162-771,
    Bergmeier, E.& Matthas, U. (1996). Quantitative studies of phenology and early effects of non-grazing in Cretan phrygana vegetation. Journal of Vegetation Science 7(2):229-236.
    Biesmeijer et al, R., S. P. M.& Reemer, M. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351-354.
    Billings, W. D. (1974). Adaptations and origins of alpine plants. Arctic and Alpine Research 6(2):129-142.
    Blionis, G. J., Halley., J. M.& Vokou, D. (2001). Flowering phenology of Campanula on Mt Olynipos, Greece.Ecography 24(6):696-706.
    Bliss, L. C., Courtin, G. M.& Pattie. D. L. et al. (1973). Arctic Tundra ecosystems. Annual Review of Ecology and Systematics 4(1):359-399.
    Bliss, L. C. (1971). Arctic and alpine plant life cycles. Annual Review of Ecology and Systematics 2(1):405-438.
    Bloom, A. J., Chapin, F. S.& Mooney H. A. (2003). Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics 16(1):363-392.
    Bolmgren & Cowan, P. (2008). Time-size tradeoffs:a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos 117(3):424-429.
    Bonser, S. P.& Aarssen, L. W. (2001). Allometry and plasticity of meristem allocation throughout development in Arabidopsis thaliana. Journal of Ecology 89(1):72-79.
    Bullock, S. H.& Bawa, K. S. (1981). Sexual dimorphism and the annual flowering pattern in Jacaratia dolichaula (D. Smith) Woodson (Caricaceae) in a Costa Rican rain forest. Ecology 62(6):1494-1504.
    Campbell, D. R. (2009). Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany 103(9):1557-1566.
    Campbell, D. R., Bischoff., M.& Lord, J. M. et al (2010). Flower color influences insect visitation in alpine New Zealand. Ecology 91(9):2638-2649.
    Casci, T. (2004). Flower colour power. Nat Rev Genet 5(1):6-6.
    Cavaleri, M. Y., Oberbauer, S. F.& Clark, D. B. et al (2010). Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91(6):1730-1739.
    Celine, D.& Lande, R. (2010). Selection on variance in flowering time within and among individuals. Evolution 64:1311-1320.
    Chase, J. M.& Leibold, M. A., Ed. (2003). Ecological niches:linking classical and contemporary approaches, University of Chicago Press.
    Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst.31(1):343-366.
    Chiariello, N,& Roughgarden, J. (1984). Storage allocation in seasonal races of an annual plant:optimal versus actual allocation. Ecology 65(4):1290-1301.
    Chittka, L.& Schurkens, S. (2001). Successful invasion of a floral market. Nature 411(6838):653-653.
    Chuine, Ⅰ., Yiou, P.& Viovy, N. et al (2004). Grape ripening as a past climate indicator. Nature 432(7015): 289-290.
    Clark, J. E.& Margary, I. D. (1923). Nature study and phenology. Nature 111:49.
    Clark, C. M.& Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451(7179):712-715.
    Clark, C. M., Cleland, E. E.& Collins, S. L. et al (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters 10(7):596-607.
    Clarke, P. J.& Knox, K. J. E. (2009). Trade-offs in resource allocation that favour resprouting affect the competitive ability of woody seedlings in grassy communities. Journal of Ecology 97(6):1374-1382.
    Clarke, H. L. (1893). The philosophy of flower seasons. The American Naturalist 27(321):769-781.
    Cleland, E. E. et al, Chuine, I.& Menzel A. et al (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22(7):357-365.
    Cleland, E. E., Chiariello, N. R.& Laorie, S. R. et al(2006). Diverse responses of phenology to global changes in a grassland ecosystem. PNAS 103(37):13740-13744.
    Cohen, D. (1971). Maximizing final yield when growth is limited by time or by limiting resources. Journal of Theoretical Biology 33(2):299-307.
    Cohen, D. (1976). The optimal timing of reproduction. The American Naturalist 110(975):801-807.
    Cornelissen, J. H. C., Lavorel, S.& Gamier, E. et al (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4):335-380.
    Dahlgren, J. P., Eriksson, O.& Bolmgren, K. et al (2006). Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. Journal of Vegetation Science 17(5):577-582.
    Debussche, M., Gamier, E.& Thompson, J. D. (2004). Exploring the causes of variation in phenology and morphology in Mediterranean geophytes:a genus-wide study of Cyclamen. Botanical Journal of the Linnean Society 145(4):469-484.
    deMenocal, P. B. (2001). Cultural responses to climate change during the late Holocene. Science 292(5517): 667-673.
    Diaz, S., Acosta A.& Cabido, M. (1992). Morphological analysis of herbaceous communities under different grazing regimes. Journal of Vegetation Science 3(5):689-696.
    Diaz, S., Acosta. A.& Cabido, M. (1994). Grazing and the phenology of flowering and fruiting in a montane grassland in Argentina:a niche approach. Oikos 70(2):287-295.
    Diaz, S., Lavorel, S.& McIntyre, S. et al (2007). Plant trait responses to grazing-a global synthesis. Global Change Biology 13(2):313-341.
    Diggle, P. K. (1999). Heteroblasty and the evolution of flowering phenologies. International Journal of Plant Sciences 160(6):S123-S134.
    Dumont, B., Garel, J. P.& Ginane, C. et al (2007). Effect of cattle grazing a species-rich mountain pasture under different stocking rates on the dynamics of diet selection and sward structure. Animal 1(7):1042-1052.
    Dunne, J. A., Harte, J.& Taylor, K. J. (2003). Subalpine meadow flowering phenology responses to climate change: intergrating experimental and gradient methods. Ecological Monographs 73(1):69-86.
    Eckert, C. G, Ozimec, B.& Herlihy, C. R. et al (2009). Floral morphology mediates temporal variation in the mating system of a self-compatible plant. Ecology 90(6):1540-1548.
    Elton, C. (1946). Competition and the structure of ecological communities. Journal of Animal Ecology 15(1): 54-68.
    Endler, J. A. (1993). The Color of light in forests and its implications. Ecological Monographs 63(1):2-27.
    Evans, E. W., Smith, C. C.& Gendron, R. P. (1989). Timing of reproduction in a prairie legume:seasonal impacts of insects consuming flowers and seeds. Oecologia 78(2):220-230.
    Fabbro, T.& Komer, C. (2004). Altitudinal differences in flower traits and reproductive allocation. Flora 199(1): 70-81.
    Falster, D. S.& Westoby, M. (2003). Leaf size and angle vary widely across species:what consequences for light interception? New Phytologist 158(3):509-525.
    Falster, D. S.& Westoby, M. (2003). Plant height and evolutionary games. Trends in Ecology & Evolution 18(7): 337-343.
    Fargione, J.& Tilman, D. (2005). Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143(4):598-606.
    Feldman, T. S., Morris, W. F. and Wilson, W. G. (2004). When can two plant species facilitate each other's pollination? Oikos 105(1):197-207.
    Fenner, M. (1998). The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics 1(1):78-91.
    Fensham, R. J, Fairfax, R. J.& Dwyer, J. M. (2010). Vegetation responses to the first 20 years of cattle grazing in an Australian desert. Ecology 91(3):681-692.
    Finke, D L.& Snyder, W. E. (2008). Niche partitioning increases resource exploitation by diverse communities.Science 321(5895):1488-1490.
    Fitter, A. H & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science 296(5573): 1689-1691.
    Fitter, A. H., Fitter, R. S. R. and Harris, I. T. B. et al (1995). Relationships between first flowering date and temperature in the flora of a locality in central England. Functional Ecology 9(1):55-60.
    Forrest, J.& Miller-Rushing, A. J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B 365(1555):3101-3112.
    Fridley, J. D. (2002). Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132(2):271-277.
    Fridley, J. D. (2003). Diversity effects on production in different light and fertility environments:an experiment with communities of annual plants. Journal of Ecology 91(3):396-406.
    Galen, C.& Stanton, M. L. (1991). Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae). American Journal of Botany 78(7):978-988.
    Gentry, A. H. (1974). Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6(1):64-68.
    Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology 94(2):295-304.
    Gillson, L.& Hoffman, M. T. (2007). Rangeland ecology in a changing world. Science 315(5808):53-54.
    Goldberg, D. E.& Miller, T. E. (1990). Effects of different resource additions of species diversity in an annual plant community. Ecology 71(1):213-225.
    Golluscio, R. A.,& Oesterheld, M.& Aguiar. M. R. (2005). Relationship between phenology and life form:a test with 25 Patagonian species. Ecography 28(3):273-282.
    Gomez, J. M. (1993). Phenotypic selection on flowering synchrony in a high mountain plant, Hormathophylla spinosa (Cruciferae). Journal of Ecology 81(4):605-613.
    Gordo, O.& Sanz, J. J. (2010). Impact of climate change on plant phenology in Mediterranean ecosystems.Global Change Biology 16:1082-1106.
    Gotelli, N. J.& Graves, G. R., Ed. (1996). Null models in ecology. Washongton and London, the Smithsonian Institution Press.
    Grabherr, G., Gottfried. M.& Pauli. H. (1994). Climate effects on mountain plants. Nature 369(6480):448-448.
    Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature 250(5461):26-31.
    Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111(982):1169-1194.
    Grime, J. P. (1979). Plant strategies and vegetation processes. Chichester., John Wiley & Sons
    Grinnell, J. (1917). The niche-relationships of the California thrasher. The Auk 34(4):427-433.
    Grubb, P. J. (1977). The Maintenance of species-richness in plant communities:the importance of the regeneration niche. Biological Reviews 52(1):107-145.
    Gulmon, S. L.I, Chiariello, N. R. and Mooney H. A. et al (1983). Phenology and resource use in three co-occurring grassland annuals. Oecologia 58(1):33-42.
    Harder, L. D.& Barrett.S. C.H. (2006). Ecology and evolution of flowers. New York, Oxford University Press.
    Hautier, Y. et al, Niklaus. P. A.& Hector. A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science 324(5927):636-638.
    Heideman, P. D. (1989). Temporal and spatial variation in the phenology of flowering and fruiting in a tropical rainforest. Journal of Ecology 77(4):1059-1079.
    Heinrich, B. (1976). Flowering phenologies:bog, woodland, and disturbed habitats. Ecology 57(5):890-899.
    Hesketh, J.& Hellmers, H. (1973). Floral initiation in four plant species growing in CO2-enriched air. Environmental Control in Biology 11:51-53.
    Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century:ecological and evolutionary perspectives. PNAS 106(Supplement 2):19659-19665.
    Holway, J. G. & Ward, R. T. (1965). Phenology of apine plants in Northern Colorado. Ecology 46(1/2):73-83.
    Hovenden, M. J. et al, Wils. K. E & V.andr Sshoor. J. K. et al(2008). Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New phytologist 178(4):815-822.
    Hubbell, S. P. (1997). A unified theory of biogeography and relative species abundance and its application to tropical rainforests and coral reefs. Coral Reefs 16:S9-S21.
    Hulber, K., Winkler. M.& Grabherr. G.. (2010). Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Functional ecology 24:245-252.
    Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54(2):187-211.
    Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harb.Symp. Quant. Biol.22:415-427.
    Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93(870):145.
    Jablonski, L. M., Wang., X. Z.& Curtis P. S. (2002). Plant reproduction under elevated CO2 conditions:a meta-analysis of reports on 79crop and wild species. New Phytologist 156(1):9-26.
    Jackson, S. T.& Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology 26(4):194-220.
    Johnson, S. D. (1993). Climatic and phylogenetic determinants of flowering seasonality in the Cape flora. Journal of Ecology 81(3):567-572.
    Korner, C.& Basler, D. (2010). "Phenology under global wanning. Science 327(5972):1461-1462.
    Keddy, P. A. (1989). Competitive hierarchies and centrifugal organization in plant communities. San Diego, Academic Press,Inc.,.
    Keller, F.& Korner, C. (2003). The role of photoperiodism in alpine plant development. Arctic, Antarctic, and Alpine Research 35(3):361-368.
    King, D. A. (1990). Allometry of saplings and understorey trees of a Panamanian forest. Functional Ecology 4(1): 27-32.
    Kish, G R., Sheptall, W. L.& Reinman, J. et al (2010). First Florida phenology workshop, Gainesville, Florida. Bulletin of the Ecological Society of America 91(2):262-263.
    Klein, J. A., Harte, J.& Zhao, X. Q. (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications 17(2):541-557.
    Klein, J. A., Harte. J.& Zhao, X. Q. (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems 11(5):775-789.
    Kochmer, J. P.& Handel, S. N. (1986). Constraints and competition in the evolution of flowering phenology. Ecological Monographs 56(4):303-325.
    Kohler, F., Verhulst, J.& Van Klink, R. (2008). At what spatial scale do high-quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes? Journal of Applied Ecology 45(3):753-762.
    Kolb, A., Barsch, F.& Diekmann, M. (2006). Determinants of local abundance and range size in forest vascular plants. Global Ecology and Biogeography 15(3):237-247.
    Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55:521-535.
    Kraft, N. J. B.& Ackerly, D. D. (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological monographs 80(3):401-422.
    Kraft, N. J. B.,, Cornwell., W. K.& Webb C. O. et al (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist 170(2):271-283.
    Kremen et al, W., N. M.& Aizen, M. A. et al (2007). Pollination and other ecosystem services produced by mobile organisms:a conceptual framework for the effects of land-use change. Ecology Letters 10(4):299-314.
    Kremen, C., Williams, N. M.& Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification.99:16812-16816.
    Kronfeld-Schor, N.& Dayan, T. (2003). Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics 34(1):153-181.
    Kudo, G, Ida, T. Y.& Tani, T. (2008). Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants. Ecology 89(2):321-331.
    Lazaro, A. et al, Hegland, S. and Totland,0. (2008). The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia 157(2):249-257.
    Lacey, E. P., Roach, D. A.& Herr, D. et al (2003). Multigenerational effects of flowering and fruiting phenology in Plantago lanceolata. Ecology 84(9):2462-2475.
    Langley, J. A.& Megonigal, J. P. (2010). Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466(7302):96-99.
    Lavoie, C,& Lachance, D.(2006). A new herbarium-based method for reconstructing the phenology of plant species across large areas. Am. J. Bot.93(4):512-516.
    Lawton, J. H. (1999). Are there general laws in ecology? Oikos 84(2):177-192.
    Leakeyet, A. D. B., Uribelarrea, M.& Ainsworth, E. A. et al. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought1>[OAlPlant Physiol.140(2):779-790.
    Lee, M., Manning, P.& Rist. J. et al (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Phil Trans R Soc B 365(1549):2047-2056.
    Levandowsky, M. (1972). Ecological niches of sympatric phytoplankton species. The American Naturalist 106(947):71-78.
    Levin, D. A.& Anderson, W. W. (1970). Competition for pollinators between simultaneously flowering species.The American Naturalist 104(939):455-467.
    Loreau, M. (2010). Linking biodiversity and ecosystems:towards a unifying ecological theory. Philosophical Transactions of the Royal Society B:365(1537):49-60.
    Luo, Y. J., Qin, G L.& Du, G Z. (2006). Importance of assemblage-level thinning:a field experiment in an alpine meadow on the Tibet plateau. Journal of Vegetation Science 17(4):417-424.
    Margary, I. D. (1926). The marsham phenological record in Norfolk,1736-1925, and some others. Quarterly Journal of the Royal Meteorological Society 52(217):27-54.
    Marini, L., Fontana, P.& Battisti, A. et al (2009). Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland-forest mosaic:a multi-scale approach. Insect Conservation and Diversity 2:213-220.
    Marion, T. J. (1966). Effects of microclimate on spring flowering phenology. Ecology 47(3):407-415.
    Marquis, R. J. (1988). Phenological variation in the neotropical understory shrub Piper Arielanum:causes and consequences. Ecology 69(5):1552-1565.
    Martinkova, J., Smilaur, P.& Mihulka, S. (2002). Phenological pattern of grassland species:relation to the ecological and morphological traits. Flora 197(4):290-302.
    McEwen, J. R.& Vamosi, J. C. (2010). Floral colour versus phylogeny in structuring subalpine flowering communities. Proceedings of the Royal Society B 277(1696):2957-2965.
    McKane, R. B., G.rigal, D. F.& Russelle. M. P. (1990). Spatiotemporal differences in 15N uptake and the organization of an old-field plant community. Ecology 71(3):1126-1132.
    McLaren, J. R.& Turkington, R. (2010). Ecosystem properties determined by plant functional group identity. Journal of Ecology 98(2):459-469.
    McNaughton, S. J. (1985). Ecology of a grazing ecosystem:The Serengeti. Ecological Monographs 55(3): 260-294.
    Meacher, T. R.& Antonovics, J. (1982). The population biology of Chamaelirium luteum, a dioecious member of the lily family:life history studies. Ecology 63(6):1690-1700.
    Memmott, J., Craze, P. G & Waser, N. M. et al (2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters 10(8):710-717.
    Menzel, A.& Fabian, P. (1999). Growing season extended in Europe. Nature 397(6721):659-659.
    Menzel, A. (2002). Phenology:its importance to the global change community. Climatic Change 54(4):379-385.
    Miller-Rushing, A. J.& Primack, R. B. (2008). Global warming and flowering times in Thoeau's concord:a community perspective. Ecology 89(2):332-341.
    Miller-Rushing, A. J.& Weltzin, J. (2009). Phenology as a tool to link ecology and sustainable decision making in a dynamic environment.New phytologist 184(4):743-745.
    Miller-Rushing, A. J., Hoye, T. T.& Inouye, D. W. et al (2010). The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B 365(1555):3177-3186
    Miller-Rushing, A. J., Primack. R. B.& Primack. D. (2006). Photographs and herbarium specimens as tools to document phenological changes in response to global warming. Am. J. Bot.93(11):1667-1674.
    Mitchell, R. J., Flanagan, R. J.& Brown, B. J. et al (2009). New frontiers in competition for pollination. Annals of Botany 103(9):1403-1413.
    Mitchell, R. J. et al, Irwin. E. B.& Flanagan. R. J. et al(2009a). Ecology and evolution of plant-pollinator interactions. Annals of Botany 103(9):1355-1363.
    Moles, A. T.& Westoby, M. (2003). Latitude, seed predation and seed mass. Journal of Biogeography 30(1): 105-128.
    Moles, A. T., Warton, D. I..& Warman, L. et al (2009). Global patterns in plant height. Journal of Ecology 97(5): 923-932.
    Murray, K. G., Feisinger, P.& Busby, W. H. et al (1987). Evaluation of character displacement among plants in two tropical pollination guilds. Ecology 68(5):1283-1293.
    Nan, Z. B. (2005). "The grassland farming system and sustainable agricultural development in China." Grassland Science 51(1):15-19.
    Negi, G. C. S., Rikhari, H. C. and Singh, S. P. (1992). Phenological Features in Relation to Growth Forms and Biomass Accumulation in an Alpine Meadow of the Central Himalaya. Vegetatio 101(2):161-170.
    Nekovar, J. (2008). The history and current status of plant phenology in Europe, Vammalan Kirjapaino Oy.
    Newman, E. I. (1973). Competition and diversity in herbaceous vegetation. Nature 244(5414):310-310.
    Niu et al, Cholar,.P.& Zhao, B. B.et al (2009). The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands. Functional Ecology 23(2):274-283.
    Niu, K. C., Luo, Y. J.& Philippe. C. et al(2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology 9(5):485-493.
    O'Neil, P. (1997). Natural selection on genetically correlated phenological characters in Lythrum salicaria L. (Lythraceae). Evolution 51(1):267-274.
    O'Neil, P. (1999). Selection on flowering time:an adaptive fitness surface for nonexistent character combinations. Ecology 80(3):806-820.
    Oksanen, J. (1996). Is the humped relationship between species richness and biomass an artefact due to plot size? Journal of Ecology 84(2):293-295.
    Ollerton, J.& Lack, A. J. (1992). Flowering phenology:An example of relaxation of natural selection? Trends in Ecology & Evolution 7(8):274-276.
    Ollerton, J.& Lack, A. J. (1998). Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecology 139(1):35-47.
    Ostler, W. K.& Harper, K. T. (1978). Floral ecology in relation to plant species diversity in the Wasatch Mountains of Utah and Idaho. Ecology 59(4):848-861.
    Ozgul, A., Childs. D. Z.& Oli. M. K. et al(2010). Coupled dynamics of body mass and population growth in response to environmental change. Nature 466(7305):482-485.
    Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming.Global Change Biology 13(9):1860-1872.
    Parra-Tabla, V.& Vargas, C. F. (2004). Phenology and phenotypic natural selection on the flowering time of a deceit-pollinated tropical orchid, Myrmecophila christinae. Annals of Botany 94(2):243-250.
    Pearman, P. B., Guisn, A.& Broennimann, O. et al (2008). Niche dynamics in space and time. Trends in Ecology & Evolution 23(3):149-158.
    Pettorelli, N., Vik, J. O.& Mysterud, A. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change.Trends in Ecology & Evolution 20(9):503-510.
    Pheno Alp team (2010). Protocol for phenological and vegetation sampling on alpine grasslands. Pheno web site.
    Pickering, C. M.& Stock, M. (2003). Insect colour preference compared to flower colours in the Australian Alps.Nordic Journal of Botany 23(2):217-223.
    Pleasants, J. M. (1980). Competition for bumblebee pollinators in Rocky Mountain plant communities. Ecology 61(6):1446-1459.
    Poole, W. B.& Rathcke, B. J. (1979). Regularity, randomness, and aggregation in flowering phenologies. Science 203(4379):470-471.
    Post, E. S.& Inouye, D. W. (2008). Phenology:response, driver, and integrator. Ecology 89(2):319-320.
    Price, M. W.& Waser, N. M. (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology 79(4):1261-1271.
    Primack, D., Imbres. C. a. Primck. R. B. (2004). Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am. J. Bot.91(8):1260-1264.
    Primack, R. B. (1979). Reproductive effort in annual and perennial species of Plantago (Plantaginaceae).The American Naturalist 114(1):51-62.
    Primack, R. B. (1985). Longevity of individual flowers. Annual Review of Ecology and Systematics 16(1):15-37.
    R development core team (2010). R:A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.
    Rajaniemi, T. K. (2002). Why does fertilization reduce plant species diversity? testing three competition-based hypotheses. Journal of Ecology 90(2):316-324.
    Rathcke, B.& Lacey, E. P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics 16:179-214.
    Rathcke, B. (1988). Flowering phenologies in a shrub community:competition and constraints. Journal of Ecology 76(4):975-994.
    Rausher, M. D. (2008). Evolutionary transitions in floral color. International Journal of Plant Sciences 169(1): 7-21.
    Reekie, E. G.& Bazzaz, A. F.,. (2005). Reproductive allocation in plants, CAB International, Oxford.
    Ren, Z. W., Li. Q.& Chu. C. J. e. a. (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology 3(1):25-31.
    Robertson, C. (1895). The philosophy of flower seasons, and the phaenological relations of the entomophilous flora and the anthophilous insect fauna. The American Naturalist 29(338):97-117.
    Robertson, C. (1924). Phenology of Entomophilous Flowers. Ecology 5(4):393-407.
    Rodriguez-Robles, J. A., Melendez, E. J. Ackerman. J. D. (1992). Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). American Journal of Botany 79(9):1009-1017.
    Ruokolainen, L., L.inden A.& Kaitala, V. et al (2009). Ecological and evolutionary dynamics under coloured environmental variation. Trends in Ecology & Evolution 24(10):555-563.
    Russo, J & Inc, Z. (2009). The role of crop phenology in agricultural decision making. The 94th ESA Annual Meeting.
    Sargent, R. D.& Ackerly, D. D. (2008). Plant-pollinator interactions and the assembly of plant communities. Trends in Ecology & Evolution 23(3):123-130.
    Sargent, R. D.& Vamosi, J. C. (2008). The Influence of canopy position, pollinator syndrome, and region on evolutionary transitions in pollinator guild size. International Journal of Plant Sciences 169(1):39-47.
    Schemske, D. W. (1977). Flowering phenology and seed set in Claytonia virginica (Portulacaceae). Bulletin of the Torrey Botanical Club 104(3):254-263.
    Schemske, D. W., Willson. M. F.&. Melampy. M. N. e. a. (1978). Flowering ecology of some spring woodland herbs. Ecology 59(2):351-366.
    Schmitt, J. (1983). Density-dependent pollinator foraging, flowering phenology, and temporal pollen dispersal patterns in Linanthus bicolor. Evolution 37(6):1247-1257.
    Schoener, T. W. (1974). Resource partitioning in ecological communities. Science 185(4145):27-39.
    Schwartz, M. D. (2003). Phenology:an integrative environmental science. Dordrecht, The Netherlands, Kluwer Academic Publishers.
    Schwinning, S.& Weiner, J. (1998). Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113(4):447-455.
    Sherry, R. A., Zhou. X. H.& Gu S. L. et. al. (2007). Divergence of reproductive phenology under climate warming. PNAS 104(1):198-202.
    Silvertown, J., Dodd, M.& Gowing, D. (2001). Phylogeny and the niche structure of meadow plant communities. Journal of Ecology 89(3):428-435.
    Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology & Evolution 19(11):605-611.
    Simpson, G. G. & Dean, C. (2002). Arabidopsis, the rosetta stone of flowering time? Science 296(5566):285-289.
    Sjodin, N. E., Bengtsson. J.& Ekbom, B. (2008). The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. Journal of Applied Ecology 45(3):763-772.
    Smith-Ramirez, C.& Armesto, J. J. (1994). Flowering and fruiting patterns in the temperate rainforest of Chiloe, Chile--ecologies and climatic constraints. Journal of Ecology 82(2):353-365.
    Smith, M. M., Knapp. A. K.& Collins. S. L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90(12):3279-3289.
    Sneath, D. (1998). State policy and pasture degradation in Inner Asia. Science 281(5380):1147-1148.
    Sola, A. J.& Ehrlen, J. (2007). Vegetative phenology constrains the onset of flowering in the perennial herb Lathyrus vernus. Journal of Ecology 95(1):208-216.
    Sparks, T. H. (2007). Lateral thinking on data to identify climate impacts. Trends in Ecology& Evolution 22(4): 169-171.
    Sparks, T. H., Menzel, A.& Stenseth, N. C. (2009). European cooperation in plant phenology. Climate Research 39(3):175-177.
    Specht, C. D.& Bartlett, M. E. (2009). Flower evolution:the origin and subsequent diversification of the Angiosperm flower. Annual Review of Ecology, Evolution, and Systematics 40(1):217-243.
    Spehn, E.M., Hector, A.& Joshi, J. et al (2005). Ecosystem effects of biodiversity manipulations in European grasslands.Ecological Monographs 75(1):37-63.
    Steffan-Dewenter, I. Munzenberg, U.&Burger, C. et al (2002). Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83(5):1421-1432.
    Stein, C., Unsicker. S. B.& Kahmen. A. et. al. (2010). Impact of invertebrate herbivory in grasslands depends on plant species diversity. Ecology 91(6):1639-1650.
    Steltzer, H.& Post, E. (2009). Seasons and life cycles. Science 324(5929):886-887.
    Stevens, M. H. H.& Carson, W. P. (2001). Phenological complementarity, species diversity, and ecosystem function. Oikos 92(2):291-296.
    Stevens, M. H. H.& Carson, W. P. (2002). Resource quantity, not resource heterogeneity, maintains plant diversity. Ecology letters 5(3):420-426.
    Stevens, C. J., Dise. N. B.&. Mountford, J. O. e. a. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science 303(5665):1876-1879.
    Stiles, F. G (1977). Coadapted competitors:the flowering seasons of hummingbird-pollinated plants in a tropical forest. Science 198(4322):1177-1178.
    Stokstad, E. (2006). Pollinator diversity declining in Europe. Science 313(5785):286a-.
    Suding, K. N., Collins, S. L.& Gough. L. et. al. (2005). Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 102(12):4387-4392.
    Tebar, F. J., Gil, L.& Llorens, L. (2004). Flowering and fruiting phenology of a xerochamaephytic shrub community from the mountain of Mallorca (Balearic islands, Spain). Plant Ecology 174(2):295-305.
    Tans et al, Fung I. Y.&. Takahashi T. (1990). Observational contrains on the global atmospheric CO2 budget. Science 247(4949):1431-1438.
    Tepedino, V. J.& Stanton, N. L. (1981). Diversity and competition in bee-plant communities on short-grass prairie. Oikos 36(1):35-44.
    Thomas, B. (2006). Light signals and flowering. J. Exp. Bot.57(13):3387-3393.
    Thompson, L. G, Mosley-Thompson, E.& Davis, M. et al (1993). "Recent warming":ice core evidence from tropical ice cores with emphasis on Central Asia. Global and Planetary Change 7(1-3):145-156.
    Thomson, J. D. (1982). Patterns of visitation by animal pollinators. Oikos 39(2):241-250.
    Tilman, D. (1980). Resources:a graphical-mechanistic approach to competition and predation. The American Naturalist 116(3):362-393.
    Tilman, D. (1982). Resource competition and community structure. Princeton, NJ, Princeton University Press.
    Tilman, D. (1985). The resource-ratio hypothesis of plant succession.The American Naturalist 125(6):827-852.
    Tilman, D. (1987). Secondary succession and the pattern ofplant dominance along experimental nitrogen gradients. Ecological Monographs 57(3):189-214.
    Tilman, D. (1988). Plant strategies and the dynamics and structure of plant communities. Princeton, NJ, Princeton University Press.
    Tooke, F.& Battey, N. H. (2010). Temperate flowering phenology. J. Exp. Bot.61(11):2853-2862.
    Vamosi, S. M., Heard, S. B. and Vamosi, J. C. et al (2009). Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18(4):572-592.
    Veresoglou, D. S.& Fitter, A. H. (1984). Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses. Journal of Ecology 72(1):259-272.
    Visser, M. E.& Both, C. (2005). Shifts in phenology due to global climate change:the need for a yardstick.Proceedings of the Royal Society B.272(1581):2561-2569.
    Visser, M. E. (2010). Fatter marmots on the rise. Nature 466(7305):445-447.
    Vojtech, E., Turnbull, L. A. and Hector A. (2007). Differences in light interception in grass monocultures predict short-term competitive outcomes under productive conditions. PLoS ONE 2(6):e499.
    Wacker, L., Baudois, O.& Eichenberger-Glinz, S. et al (2009). Diversity effects in early-and mid-successional species pools along a nitrogen gradient. Ecology 90(3):637-648.
    Walther, G, Post. E.& Convey. P. e. a. (2002). Ecological responses to recent climate change. Nature 416(6879): 389-395.
    Wang, X. M. Chen. F. H.& Zhang J. W. et. al. (2010). Climate, desertification, and the rise and collapse of China's histrorical dynasity. Human Ecology 38(1):157-172.
    Ward, J. K., Antonovics. J.&. Thomas. R. B. (2000). Is atmospheric CO2 a selective agent on model C3 annuals.Oecologia 123:330-341.
    Warren, J.& Billington, T. (2005). Flower colour phenology in British mesotrophic grassland communities. Grass and Forage Science 60(4):332-336.
    Waser, N. M.& Real, L. A. (1979). Effective mutualism between sequentially flowering plant species. Nature 281(5733):670-672.
    Waser, N. M. (1978). Competition for hummingbird pollination and sequential flowering in two colorado wildflowers. Ecology 59(5):934-944.
    Waser, N. M. (1978). Interspecific pollen transfer and competition between co-occurring plant species. Oecologia 36(2):223-236.
    Weiner, J., Campbell, L. G & Pino, J. et al (2009a). The allometry of reproduction within plant populations. Journal of Ecology 97(6):1220-1233.
    Weiner, J., Rosenmeir, L. & Massoni, E. S. et al (2009b). Is reproductive allocation in Senecio vulgaris plastic? Botany 87:475-481.
    Weiner, J. (1990). Asymmetric competition in plant populations. Trends in Ecology & Evolution 5(11):360-364.
    Williams, J. W.& Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5(9):475-482.
    Willson, M. F.& Price, P. W. (1977). The Evolution of inflorescence size in Asclepias (Asclepiadaceae). Evolution 31(3):495-511.
    Wisheu, I. C.& Keddy, P. A. (1992). Competition and centrifugal organization of plant communities:theory and tests. Journal of Vegetation Science 3(2):147-156.
    Wright, S. J.& Calderon, O. (1995). Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology 83(6):937-948.
    Xu, Z. F., Ting, X. H.& Wang, K. Y. et al (2009). Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, Eastern Tibetan Plateau, China. Plant Species Biology 24(1):27-34.
    Yamamura, N., Fujita. N.& Hayashi, M. et. al (2007). Optimal phenology of annual plants under grazing pressure. Journal of Theoretical Biology 246(3):530-537.
    Zavaleta, E. S., Shaw. M. R.& Chiarellio. N. R. et. al. (2003). Grassland responses to three years of elevated temperature, CO2, percipitation and N deposition. Ecological Monographs 73(4):585-604.
    Zhang, L. Y, Turkington. R.&. Tang, Y. (2010). Flowering and fruiting phenology of 24 plant species on the north slope of Mt. Qomolangma (Mt. Everest). Journal of Mountain Science 7(1):45-54.
    Zimmerman, J. K., Roubik, D.& W. Ackerman. J. D. (1989). Asynchronous phenologies of a neotropical orchid and Its euglossine bee pollinator. Ecology 70(4):1192-1195.
    Zimmerman, M. (1980). Reproduction in polemonium:competition for pollinators. Ecology 61(3):497-501.
    陈效逑,王林海(2009).遥感物候学研究进展.地理科学进展28(1):33-40.
    杜国祯(1992).草本植物群落中种间时间生态位分化—群落结构组建和种多样性维持的重要机制[博士论文].兰州,兰州大学
    杜国祯,赵松岭(1997).草本群落中种多样性维持机制—花期不同步性.草业学报6(3):1-7.
    杜国祯,齐威,(2010). Trade-offs between flowering time, plant height, and seed size within and across 11 communities of a QingHai-Tibetan flora. Plant Ecology 209(2):321-333.
    黄双全,郭友好(2000). New advances in pollination biology and the studies in China. Chinese Science Bulletin45(16):1441-1447.
    李元恒(2008).内蒙古典型草原生殖物候对气候变化和人为干扰的响应[硕士论文].兰州,甘肃农业大学.
    刘志民等,闫巧玲,马君玲,等(2006).生殖物候与草甸草地多年生植物的消长.生态学报26(3):773-779.
    吴征镒,(1980).中国植被.北京,科学出版社.
    罗睿,郭建军(2010).植物开花时间:自然变异与遗传分化.植物学报45(1):109-118.
    牛克昌,赵志刚,罗燕江,等(2006).施肥对高寒草甸植物群落组分种繁殖分配的影响植物生态学报30(5):817-826.
    牛克昌(2008).青藏高原高寒草甸群落主要组分种繁殖特征对施肥和放牧的响应[博士论文].兰州,兰州大学.
    潘瑞炽(2004).植物生理学.北京,高等教育出版社.
    仁青吉,崔现亮赵彬彬.(2008).放牧对高寒草甸植物群落结构及生产力的影响.草业学报17(6):134-140.
    任继周,南志标,郝敦元(2000).草业系统中的界面论.草业学报9:1-8.
    任继周等,李向林, 侯扶江(2002).草地农业生态学研究进展与趋势.应用生态学报8(13):1017-1021.
    史顺海,杨福囤,陆国泉.(1989).矮嵩草草甸主要植物种群物候观测和生物量测定.高寒草甸生态系统国际学术讨论会论文集,中国科学出版社.
    覃林(2009).统计生态学.北京,中国林业出版社.
    唐璐璐,韩冰.(2007).开花式样对传粉者行为及花粉散布的影响.生物多样性15(6):680-686.
    宛敏渭,刘秀珍.(1979).中国物候观测方法.北京,中国科学出版社.
    王宏,李晓兵, 李霞,等.(2007).基于NOAA, NDVI和MSAVI研究中国北方植被生长季变化.生态学报27(2):504-515.
    王植,刘世荣.(2007).全球环境变化对植物物候的影响.沈阳农业大学学报9:350-353.
    吴征镒(1980).中国植被.北京,科学出版社,624-649.
    杨保,唐领余,李春海,等(2010).近550年来青藏高原中部植被演化与气候变化研究.科学通报55(21):2139-2147.
    杨利民,韩梅.李建东,等(2000).草地群落物种花期分布与多样性的关系.吉林农业大学学报22:55-58.
    杨晓(2010).青藏高原东缘高寒草甸开花物候格局及其对不同干扰方式的响应[硕士论文].兰州,兰州大学
    予茜,张颜友,郭友好(2008).传粉生物学常用术语释译.植物分类学报46(1):96-102.
    张新时(1993).全球变化研究的植被-气候分类系统.第四纪地质2:157-169.
    赵彬彬(2008).青藏高原高寒草甸植物群落组分种地上生物量分配及群落结构对放牧的响应研究[硕士论文].兰州,兰州大学
    周华坤,周兴民,赵新全(2000).模拟增温效应对矮篙草草甸影响的初步研究.植物生态学报24(5):547-553.
    竺可桢(1973).中国近五千年来气候变迁的初步研究.中国科学73(2):168-189.
    竺可桢,宛敏渭.(1980).物候学.北京,中国科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700