用户名: 密码: 验证码:
应用硅藻释读南海晚第四纪以来的古环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对取自南海的62个站位的表层样品和3个柱状岩芯进行了硅藻、沉积物粒度和地球化学分析,结合14C测年结果和已有的研究资料,查明了该海区硅藻的种类组成及分布特点,探讨了硅藻分布与现代海洋环境之间的关系,进而对南海西、南部晚第四纪以来古海洋环境演变进行了较为详细的研究。
     本次从南海表层沉积物和南海西、南部两个柱样沉积物中,共鉴定到硅藻272种和变种、变型,隶属57属,并附27个图版。其中记录2个新种和6个我国首次记录的种。新种是双角缝舟藻四角变型Rhaphoneis amphiceros f. tetragona Sun et Lan和珠网斑盘藻Stictodiscus arachne Sun et Lan;新记录种分别是Asterolampra grevillei, Dictyoneis marginata, Plagiogramma Papille, Rutilaria radiate, Triceratium contumax和Triceratium suboffieiosum。
     南海表层沉积硅藻种类丰富,以热带外洋种为优势,伴有一定量的热带—亚热带近岸种和广布种。优势种类为非洲圆筛藻、结节圆筛藻、柱状小环藻、楔形半盘藻、具槽直链藻、海洋菱形藻、方格罗氏藻、菱形海线藻、离心列海链藻以及长海毛藻。其中,热性种结节圆筛藻在南海分布最广,是主要的优势种类。由于各海区环境因素的差异,硅藻遗壳含量分布是不同的,总体上,从陆架至深海盆,其数量呈递增趋势。沉积硅藻的分布受海底地形地貌、水动力、沉积速率、水文气候等环境条件综合作用的影响。
     根据沉积硅藻中具有指示意义的硅藻种的分布和生态变化,可将该海区分成6个硅藻组合带。各组合分别反映不同的海洋环境,其分布主要受到海洋环流的影响,表现为黑潮暖流、印度洋暖水的入侵以及沿岸流对南海表层沉积硅藻分布的影响。其中,Coscinodiscus africanus、Coscinodiscus nodulifer、Hemidiscus cuneiformis和Nitzshia marina等热性硅藻种类可作为黑潮暖流及印度洋暖水入侵南海的指示种。而Cyclotella stylorum、Cyclotella striata、Melosira sulcata、Diploneis bombus、Diploneis crabro和Trachyneis antillarum等则可作为判断沿岸流对南海水域影响强度的指示种。沿岸种具槽直链藻在半深海一些区域的大量出现,可能是受到沿岸水的入侵,也或者是受到浊流沉积搬运的影响。长海毛藻Thalassiothrix longissoma在深海沉积物中大量出现可以作为南海水体高初级生产力的指示种。
     对南海西、南部的两个柱状样SA13-76和SA08-34沉积硅藻研究表明,两孔的硅藻均呈现氧同位素旋回变化特征。根剧表层沉积硅藻研究结果可以认为在上升流作用的高生产力区,历史时期的沉积硅藻相比钙质生物能更好地反映古季风演变。南海西、南部海区明显存在冰期时夏季风弱,全新世夏期风强的特点。季风是驱动上升流加强的主要因素。不论在冰期亦或全新世,南海夏季风均存在不稳定性和旋回性的特征。
     综合分析地球化学指标和微体古生物指标认为南海西、南部的古生产力演化趋势在氧同位素1、3、5期表现为高的特征,2、4期表现为相对较低的特征。对SA08-34孔各古生产力指标对比研究认为,硅藻和有孔虫、CaCO3在MIS3期显著的差异,可能是因为有孔虫和CaCO3均发生了较强的溶解作用。也可能与影响各个指标变化的主要因素不同有关,比如有孔虫受季风气候影响的程度可能比硅藻要小。古生产力演化过程的主要控制因素推测主要受季风影响。
     本次研究的三个柱状样中记录的一些气候突变事件,初步认为可能与首先在北半球高纬地区发现的YD事件及H事件(H1-H5)分别有关。根据SA08-34和SA09-90钻孔研究分析,推算南海南部末次冰盛期大约在13.1~13.4kaBP左右结束而进入冰消期。综合南海西、南部三个钻孔所揭示的沉积环境演变非常一致,三个钻孔反映的南海西、南部的古生产力、古季风、古气候演变趋势大致相同,初步认为晚第四纪以来南海西、南部气候均主要受东亚夏季风控制。
The South China Sea (SCS) is one of the largest marginal sea of the West Pacific Ocean, which plays an important role in the monsoon climate variation of the East Asia. Diatom is one of the dominant groups found in marine. The ecological distributions of diatoms are closely related to physical, chemical and hydrological properties of the water masses and controlled mainly by ocean circulation. The diatoms in sediments can provide lots of information on paleoceanographical environments and paleoclimate variations, which contain invaluable data for the global environmental changes and climatic processes.
     The present study is based on a quantitative analysis of diatom from 72 water samples and 71 surface sediments samples collected in the SCS, and integrated with grain size as well as other relevant information. This paper present the influence of the coastal currents in SCS and the intrusion of Kuroshio Current and Indian oceans warm water in the paleoenvironment, discussed the preservative mechanism of the diatom remains under the ocean environment. The results are shown as follows:
     The diatom species composition and cell density were investigated from water sample collected in summer of 2007 in South China Sea. In total,35 diatom species belonging to 28 genera were identified. The dominant planktonic diatoms in South China Sea were Thalassionema nitzschioides, Pseudo-nitzschia pseudodelitissima, Pseudo-nitzschia pungens, Melosira sulcata, Pleurosigma naviculaceum, Chaetoceros spp. etc. The species composition and cell abundance of phytonic diatoms were influenced by water temperature, salinity and nutrient etc.
     Diatom analysis of 71 surface sediments samples shows rich diversity of 256 species belonging to 56 genera. The dominant groups were:Chaetoceros messanensis, Coscinodiscus africanus, Coscinodiscus nodulifer, Cyclotella stylorum, Ethmodiscus rex, Hemidiscus cuneiformis, Melosira sulcata, Nitzschia marine, Roperia tesselata, Thalassionema nitzschioides, Thalassiosira excentrica and Thalassiothrix longissoma etc. The hot water species Coscinodiscus nodulifer was the dominant species in the surface sediment. A diatom genus-Rutilaria, was recorded for the first time in China. And 13 new recorded species were observed:Asterolampra grevillei, Biddulphia turrigera, Cocconeis citronella, Cocconeis ocellata, Cocconeis cyclophora, Dictyoneis marginata, Entogonia davyana, Nitzschia campechiana, Plagiogramma Kinkeri, Plagiogramma Papille, Rutilaria radiate, Triceratium castelliferum, Triceratium contumax. The distribution pattern of diatoms reflected the difference of environmental conditions. The concentration of diatom in surface sediments varied between 71 and 623,438 valves pergram of dry sediment, the abundances of diatom frustule increased sharply from littoral to deep sea basin area. Diatoms distribution in surface sediments was influenced by submarine geomorphology, hydrodynamics and hydroclimate etc.
     Seven diatom assemblages were distinguished and the distribution of these assemblages is correlated with oceanic current patterns in the region. AssemblageⅠ: Melosira sulcata-Coscinodiscus nodulifer-Pyxidicula weyprechtii-Diploneis spp.;Ⅱ: Cyclotella stylorum-Melosira sulcata-Coscinodiscus nodulifer;Ⅲ:Coscinodiscus nodulifer-Thalassiothrix longissoma-Roperia tesselata;Ⅳ:Coscinodiscus nodulifer-Roperia tesselata-Thalassiothrix longissoma;Ⅴ:Coscinodiscus nodulifer-Thalassiosira excentrica-Roperia tesselata;Ⅵ:Coscinodiscus nodulifer-Melosira sulcata-Cyclotella stylorum;Ⅶ:Coscinodiscus nodulifer-Trachyneis antillarum-Hemidiscus cuneiformis. These assemblages may be of great importance for future palaeoceanographic studies.
     After dissolution, transfer, sediment and resediments, The diatom from sediments can reflect the composition of plantonic diatom groups partially.
     In paleoceanographic reconstruction of the area, Coscinodiscus nodulifer, Coscinodiscus africanus, Nitzshia marina, Hemidiscus cuneiformis may be used as indicators of the warm Pacific Ocean water, perhaps including the Kuroshio Current flowing into the SCS. Whereas Cyclotella striata, Cyclotella stylorum, Diploneis bombus, Diploneis crabro, Melosira sulcata, Trachyneis antillarum could be used to identify the influence of the coastal currents in SCS. And the occurrences of Thalassiothrix longissoma might be used as a signal of high primary productivity conditions.
引文
[1]陈国成,郑洪波,李建如等.南海西部陆源沉积粒度组成的控制动力及其反映的东亚季风演化.科学通报,2007,52(23):2768~2776
    [2]陈建芳,郑连福,Wiesner W G等.基于沉积物捕获器的南海表层初级生产力及输出生产力估算.科学通报,1998,43(6):639~642
    [3]陈建芳,郑连福,陈荣华.南海颗粒物质的通量、组成及其与沉积物积累率的关系初探.沉积学报,1998,16(3):14~19
    [4]陈建芳.古海洋学研究中的地球化学新指标.地球科学进展,2002,17(3):402~409
    [5]陈建芳.南海沉降颗粒物的生物地球化学过程及其在古环境研究中的意义.博士学位论文.上海:同济大学,2005.1~136
    [6]陈木宏,王汝建,韩建修,等.南海南部晚中新世的放射虫及其环境探讨.热带海洋学报,2002,21(2):66~74
    [7]陈木宏,郑范,陆钧.南海南部陆坡区沉积物粒级指标的物源特征及古生态意义.科学通报2005,50(7):684~690
    [8]陈木宏.谭智源.南海中、北部晚沉积物中的贫射虫.北京科学出版社.1996.271.
    [9]陈荣华,汪东军,徐建等.南海东北部表层沉积中钙质和硅质微体化石与沉积环境.海洋地质与第四纪地质,2003,23(4):15~21
    [10]陈荣华,郑玉龙,Wiesner M G,等.1993~1996年南海中部海洋沉降颗粒通量的季节和年际变化.海洋学报,2006,28(3):72~80
    [11]陈史坚,陈特固,徐锡桢等.浩瀚的南海.北京:科学出版社,1985,116~123
    [12]程兆第,高亚辉,刘师成.福建沿岸微型硅藻.北京:海洋出版社,1993
    [13]地质与第四纪地质,2002,22(3):19~25
    [14]郭玉洁,钱树本.中国海藻志(第五卷硅藻门).北京:科学出版社,2003
    [15]国家海洋局,GB/T13909-92《海洋调查规范》:海洋地质地球物理调查.北京:中国标准出版社
    [16]国家海洋局.浮游生物[A].南海中部海域环境资源综合调查报告.北京:海洋出版社,1988,162~215,223~230
    [17]韩舞鹰,黄西能.调查海区的海水化学,南海海区综合调查研究报告(二).北京:科学出版社,1985,274~295
    [18]韩舞鹰,吴林兴,黄西能等.南海中部海水化学要素的研究,南海海区综合调查研究报告(一).北京科学出版社,1982,159~175
    [19]胡鸿钧,李尧英,魏印心等..中国淡水藻类.上海:上海科学技术出版社,1980
    [20]黄成彦,刘师成,程兆第等.中国湖相化石硅藻图集.北京:海洋出版社,1998
    [21]黄良民,陈清潮.南沙群岛海区冬季叶绿素a分布及初级生产力估算.中国科学院南沙综合科学考察队.南沙群岛海区生态过程研究(一).北京:科学出版社,1997:1-11
    [22]黄维,汪品先.末次冰期以来南海深水区的沉积速率.中国科学(D辑),1998,20(1):13~17
    [23]黄永样.南海北部海盆晚第四纪钙质超微化石及其古海洋学初步研究.海洋地质与第四纪地质,1993,13(3):75~84
    [24]黄元辉,蒋辉.南海北部15kaBP以来表层海水温度变化:来自海洋硅藻的记录.海洋地质与第四纪地质,2007,27(5):65~74
    [25]黄元辉,蓝东兆.南海东北部末次冰期以来的沉积环境演变.海洋地质与第四纪地质,2005,25(4):9-14
    [26]剪知湣,汪品先,赵泉鸿等.南海北部上新世晚期东亚冬季风增强的同位素和有孔虫证据.第四纪研究,2001,21(5)461~468
    [27]剪知湣.从稳定同位素与微体化石看南海南部末次冰消期古海洋变化之阶段性.中国科学(D辑),1998b,28(2):118~124
    [28]剪知湣.南海冰期深部水性质的稳定同位素证据.中国科学(D辑),1998a,28(3):250-256
    [29]翦知湣,王律江,M.Kienast.南海晚第四纪表层古生产力与东亚季风变迁.第四纪研究,1999,(1):32~40
    [30]蒋辉,吕厚远,支崇远等.硅藻分析与第四纪定量古地理和古气候研究.2002,22(3):113~122
    [31]蒋辉.我国某些常见化石硅藻的环境分析.植物学报,1987,29(4):440~448.
    [32]蒋辉.中国近海表层沉积硅藻.海洋学报,1987,9(6):735~743
    [33]金秉福,林振宏.海洋沉积环境和物源的元素地球化学记录释读.海洋科学进展,2003,21(1):99~106
    [34]金德祥,陈金环,黄凯歌.中国海洋浮游硅藻类.上海:上海科学技术出版社,1965
    [35]金德祥,程兆第,林均民等.中国海洋底栖硅藻类.上卷.北京:海洋出版社,1982
    [36]金德祥,程兆第,林均民.东海表层沉积硅藻.海洋学报,1980,2(1):97~108
    [37]金德祥,程兆第,刘师成等.中国海洋底栖硅藻类.下卷.北京:海洋出版社,1991
    [38]蓝东兆,陈承惠,陈峰.九龙江口岩芯中的硅藻特征及其地质意义.台湾海峡,1999,18(3):283~290
    [39]蓝东兆,陈承惠,李超.冲绳海槽末次冰期以来的黑潮流游移在沉积硅藻中的记录.古生物学报,2003,2(3):466~472
    [40]蓝东兆,陈承惠.太平洋美拉尼西亚海盆L1007柱样硅藻生物地层学的初步研究.海洋通报,1986,5(1):47~50
    [41]蓝东兆,陈承惠.晚玉木冰期台湾海峡的沉积环境.海洋学报,1998,20(4):83~90
    [42]蓝东兆,程兆第,刘师成.南海晚第四纪沉积硅藻.北京:海洋出版社,1995
    [43]蓝东兆,方琦,廖连招.冲绳海槽表层沉积硅藻对黑潮流的响应.台湾海峡,2002,21(1):1~5
    [44]蓝东兆,许江,陈承惠.冲绳海槽晚第四纪沉积硅藻及其古海洋学意义.台湾海峡,2000,19(4):419~425
    [45]蓝东兆,张维林,陈承惠等.晚更新世以来台湾海峡西部的海侵及海平面变化.海洋学报,1993,15(4):77~84
    [46]蓝东兆.台湾海峡西部海域表层沉积物中的硅藻和硅鞭毛藻的分布.台湾海峡,1989,8(4):322~328
    [47]雷坤,杨作升,郭志刚.东海陆架北部泥质区悬浮体的絮凝沉积作用.海洋与湖沼,2001,32(3):288~295
    [48]李超,蓝东兆,方琦.东海陆架晚第四纪沉积硅藻及其古海洋学意义.台湾海峡,2002,21(3):351~359
    [49]李粹中.南海深水碳酸盐沉积作用.沉积学报,1989(7):35~43
    [50]李家英.冲绳海槽第四纪硅藻及其意义,东海陆架新生代古生物群—微体古植物分册.北京地质出版社,1989,170~201
    [51]李家英.南海北部陆坡OPD1144站位第四纪硅藻及其古环境演变.地质论评,2002,48(5):542~551
    [52]李绍全,李双林,陈正新等.东海外陆架EAOI孔末次冰期最盛期的三角洲沉积.海洋
    [53]李扬.中国近海海域微型硅藻的生态学特征和分类学研究.厦门大学博士学位论文,2006
    [54]刘长建,杜岩,张庆荣等.南海次表层和中层水团平均和季节变化特征.海洋与湖沼,2008,39(1):55~64
    [55]刘师成,高亚辉,程兆第.福建沿岸(冬季)微型硅藻研究.海洋学报,1994,16(5):80~84
    [56]刘师成,金德祥,蓝东兆.南黄海及东海近岸海域表层沉积硅藻.海洋学报,1984,5(增):927~946
    [57]刘以宣.南海新构造与地壳稳定性.北京:科学出版社,1994
    [58]陆钧,陈木宏,陈忠.南海南部现代水体与表层沉积硅藻的分布特征.科学通报,2006,51(增刊Ⅱ):66~70
    [59]陆钧.南海深海表层沉积硅藻的分布.海洋地质与第四纪地质,2001,21(2):27~30
    [60]陆钧.南海深海表层沉积中的硅藻组合及其环境特征.热带海洋,1999,18(1):16~22
    [61]吕厚远,蒋辉,郑玉龙.对应分析在海洋沉积环境解释中的应用.海洋通报,1991,10(1):39~44
    [62]毛树珍,谢以萱.南海中部及北部海底地形特征,南海海区综合调查研究报告(一)北京:科学出版社,1982,25~38
    [63]齐雨藻,李家英.中国淡水藻志.第十卷,硅藻门,羽纹纲(无壳缝目,拟壳缝目)北京:科学出版社,2004
    [64]齐雨藻,钱锋,陈菊芳.中国沿海赤潮.北京:科学出版社,2003
    [65]齐雨藻,张玉兰,张子安等.从化石硅藻分析东江三角洲的沉积相.热带地理,1981,(3):45~50
    [66]齐雨藻,郑磊,徐宁等.中国沿海赤潮.北京:科学出版社,2003b
    [67]钱建兴.晚第四纪以来南海古海洋学研究.北京:科学出版社,1999,68~111
    [68]冉莉华,蒋辉.南海某些表层沉积硅藻的分布及其古环境意义.微体古生物学报,2005,22(1):97~106
    [69]容志明.南海冬季表层海流特征及分析.海洋预报,1994,11(2):47~51
    [70]沈国英,施并章.海洋生态学(第二版).北京:科学出版社,2002
    [71]苏纪兰,许建平,蔡树群.南海的环流和涡旋.见:丁一汇,李崇银.南海季风暴发和演变及其与海洋的相互作用.北京:气象出版社,1999,66~72
    [72]苏纪兰主编,袁业立副主编.中国近海水文.北京:海洋出版社,2005
    [73]孙军,宋书群,乐凤凤等.2004年冬季南海北部浮游植物.海洋学报,2007,29:132~145.
    [74]孙湘君,李逊,罗运利.南海北部深海花粉记录的环境演变.第四纪研究,1999,(1):18~26
    [75]孙有斌,高抒,李军.边缘海陆源物质中对环境敏感的粒度组分的初步分析.科学通报,2003,48(1):83~86
    [76]田正隆,陈绍勇,龙爱民.以Ba为指标反演海洋古生产力的研究进展.热带海洋学报,2004,23(3):78~86
    [77]同济大学海洋地质系,古海洋学概论.上海:同济大学出版社,1989
    [78]汪品先,翦知湣,赵泉鸿,等.南海演变与季风历史的深海证据.科学通报,2003,48(21:2228~2239
    [79]汪品先,卞云华,剪知湣.南沙海区晚第四纪的碳酸盐旋回.第四纪研究,1997,(4):293~300
    [80]汪品先,李荣凤.末次冰期南海表层环流的数值模拟及其验证.科学通报,1995,40(1):51~53
    [81]汪品先,闵秋宝,卞云华,等.十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义.地质学报,1986,60(3):2152~225
    [82]汪品先.西太平洋边缘海的冰期碳酸盐旋回.海洋地质与第四纪地质,1998,18(1):1~11.
    [83]汪品先等.十五万年来的南海.上海:同济大学出版社,1995.
    [84]王开发,蒋辉,冯文科.南海北部表层沉积硅藻及其与环境关系探讨.热带海洋,1988,7(3):19~25
    [85]王开发,蒋辉,冯文科.南海深海盆地硅藻组合的发现及其地质意义.海洋学报,1985,7(5):590~597
    [86]王开发,蒋辉,王永吉.中太平洋北部第四系硅藻.黄渤海海洋,1986,4(4):16~22
    [87]王开发,蒋辉,王永吉.中太平洋北部第四系硅藻组合及其地质意义.海洋地质与第四纪地质,1985,5(2):73~82
    [88]王开发,蒋辉,张玉兰等.黄海表层沉积物中硅藻分布与环境关系探讨.海洋与湖沼,1985,16(5):400~407
    [89]王开发,蒋辉,张玉兰.南海及沿岸地区第四纪孢粉、藻类与环境.同济大学出版社.1990,67~79
    [90]王开发,蒋辉,支崇远等.东海表层沉积硅藻组合与环境关系研究.微体古生物学报,2001b,18(4):379~384
    [91]王开发,陆继军,郑玉龙.福建沿岸晚第四纪孢粉、硅藻组合及其古环境意义.微体古生物学报,1995,12(4):388~397
    [92]王开发,孙煜华.东海沉积孢粉藻类组合.北京:海洋出版社,1986
    [93]王开发,王永吉.黄海沉积孢粉藻类组合.北京:海洋出版社,1987
    [94]王开发,张玉兰,蒋辉.中国东部海域更新世晚期的藻类,孢粉组合与环境变迁.中国科学,B辑,1987,(8):874~882
    [95]王开发,郑玉龙,支崇远.东海南部陆缘(莆泉段)全新世沉积硅藻.古生物学报,2001,4(2):273~279
    [96]王开发,支崇远,陶明华.东海陆缘(浙南段)晚第四纪硅藻的发现及古环境分析.微体古生物学报,2003b,20(4):350~357
    [97]王开发,支崇远,陶明华.厦门附近潮滩表层沉积剖面硅藻组合研究.海洋通报,2003a,22(5):15~19
    [98]王开发,支崇远,郑玉龙.东海陆缘(闽北段)晚第四纪沉积的硅藻学研究.沉积学报,2002,20(1):135~143
    [99]王开发.渤海沉积孢粉藻类组合与古环境.北京:地质出版社,1993
    [100]王律江,Samthein M.南海北部陆坡近四万年的高分辨率古海洋学记录.第四纪研究,1999,(1):28-31
    [101]王律江,卞云华,汪品先.南海北部末次冰消期及快速气候回返事件.第四纪研究,1994,l:1~12
    [102]王汝建,Abelmann A.南海更新世的放射虫生物地层学.中国科学(D辑),1999,29(2):137~143
    [103]王汝建,翦知湣,肖文申,等.南海第四纪的生源蛋白石记录:与东亚季风、全球冰量和轨道驱动的联系。中国科学D辑:地球科学,2007,37(4):521~533
    [104]王汝建.1993-1995年南海中部的硅质生物通量及其季节性变化:季风气候和El Nino的响应.科学通报,2000,45(9):974~978
    [105]吴庐山,朱照宇,邱燕等.南海西南陆坡末次冰期以来的浮游有孔虫及其古气候意义.海洋地质与第四纪地质,2006,26(6):1~8
    [106]颜文,古森昌,陈列忠等.南海97-37柱样的主元素特征及其潜在的古环境指示作用[J].热带海洋学报,2002,21(2):75~83
    [107]杨清良,陈兴群.中太平洋西部水域浮游植物的分类,西太平洋热带水域浮游生物论文集.北京:海洋出版社,1984,1~21
    [108]杨守业,李从先.元素地球化学特征的多元统计方法研究.矿物岩石,1999,19(3):63~67
    [109]杨文瑜,黄宝琦,肖洁等.南海西部浮游有孔虫记录的M IS 3期表层海洋环境变化.第四纪研究,2008,28(3):437~446
    [110]余家桢,张子安.南海中北部沉积硅藻分布特征与环境的关系.暨南大学学报,1989,1:60~68
    [111]余家桢.珠江口外表层沉积物中硅藻分布特征.热带海洋,1986,5(4):26~34
    [112]詹华平,潘玉球,许建平.1998年4-7月南海环流结构及其演变特点的初步分析.东海海洋,1999,17(4):12~18
    [113]詹玉芬.南海中部表层沉积硅藻的初步研究.东海海洋1987,5(12):48~59
    [114]张兰兰,陈木宏,陆钧等.南海南部上层水体中多孔放射虫的组成与分布特征.热带海洋,2005,24(3):55~64
    [115]赵焕庭,陈木宏,余家桢等.珠江三角洲海进层微体古生物的初步研究.热带海洋,1987,6(1):28~38
    [116]赵辉,齐义泉,王东晓等.南海叶绿素浓度季节变化及空间分布特征研究.海洋学报,2005,27(4):45~52
    [117]赵泉鸿,汪品先.南海第四纪古海洋学研究进展.第四纪研究,1999,(6):481~501
    [118]赵泉鸿,郑连福.南海表层沉积中深海介形虫分布.海洋学报,1996,18(1):61~72
    [119]赵一阳,那明才.中国浅海沉积地球化学.北京:科学出版社,1994
    [120]郑范,李前裕,陈木宏.南海北部1144站中更新世浮游有孔虫的千年尺度古气候记录.地球科学—中国地质大学学报,2006,31(6):780~786
    [121]郑玉龙,王汝建,郑连福等.南海北部1978~1988年颗粒物质和硅藻通量的季节性变化:季风气候和El Nino的响应.第四纪研究,2001,21(4):359~365
    [122]郑执中.南海东北部海区沉积生物综合生态与拟生态.武汉:湖北科技出版社,1994.
    [123]支崇远,王开发,蓝东兆等.台湾海峡表层沉积硅藻栖性生态类型及其分布.同济大学 学报(自然科学版),2005,33(7):971~975
    [124]支崇远,王开发,蓝东兆等.闽南第四纪晚期沉积硅藻组合与古环境研究.微体古生物学报,2003,20(3):244~252
    [125]支崇远,王开发,王洪根.运用多种数理统计方法研究东海南部陆缘(闽南段)晚第四纪硅藻与环境的关系.海洋地质与第四纪地质,2003,23(3):65~71
    [126]支崇远.硅藻与环境—东海南部陆缘硅藻与古环境.北京:科学出版社,2005
    [127]朱根海,宁修仁,蔡昱明等.南海浮游植物种类组成和丰度分布的研究.海洋学报(中文版),2003,25(Supp.2):8~23
    [128]朱蕙忠,陈嘉佑.中国西藏硅藻.北京:科学出版社,2000
    [129]朱照宇,邱燕,周厚云等.南海全球变化研究进展.地质力学学报,2002,8(4):315~314
    [130]Admiraal W.The ecology of estuarine sediment inhabiting diatoms.Progress Phycology Research,1984,3:269~322
    [131]An Zhi-sheng, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese loess Plateau. Catana,1991,18:125~132
    [132]Andreason D J and Ravelo A C.Tropical Pacific Ocean thermocline depth reconstruction for the last glacial maximum.Paleoceanography,1997,12(3):395~413
    [133]Barker P,Williamson D, Gibert E, Climatic and volcanic forcing revealed in a 50,000 year diatom record from Lake Massoko, Tanzania.Quaternary Research,2003,60:368-376
    [134]Barnola J M, Raynaud M et al. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature,1987,329,408~414
    [135]Berger W H, Planktonic foraminifera:selective solution and the lysocline.Marine Geology, 1970,8:111-138
    [136]Berger W H, Smetacek V S, et al. Ocean productivity and paleoproductivity an overview. In:Berger W. H., Smetacek V. S., Wefer G. (Eds.), Productivity of the Ocean: Present and Past. Wiley, New York,1989.1-34
    [137]Bonn W J, Gingele F X,Grobe H, et al. Paleoproductivity at the Antarctic continental margin:opal and barium records for the last 400 ka.Palaeogeography, Palacoclimatology,Palaeoecology,1998,139,195~211
    [138]Broecker W S.Ocean chemistry during glacial time. Geochim. Cosmochim. Acta.46,1982, 1689-1705
    [139]Buffen A, Leventer A, Rubin A, Hutchins T. Diatom assemblages in surface sediments of the northwestern Weddell Sea, Antarctic Peninsula.Marine Micropaleontology, 2007,62,7~30
    [140]Burckle L H. Size changes in the marine diatom Coscinodiscus nodulifer A.Schmidt in the equatorial Pacific.Micropalaeontology,1977,23:216~222
    [141]Chen C P, Gao Y H & Lin P. Four newly recorded species of Bacillariophyta from the mangroves in China.Acta Phytotaxonomica Sinica,2006,44(1):95~99
    [142]Chen Y L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea Deep-Sea Res Part 1,2005,52:319-340
    [143]Chin T G, Cheng Zhaodi, Liu Junmin, Liu Shicheng, The marine benthic diatoms in China. vol 1. China Ocean Press,Beijing.1985,313pp
    [144]Chu S P. Experimental studies on the environmental factors influencing the growth of phytoplankton.Sci Technol China,1949,2:37-52
    [145]Dansgarrd W, Johnsen S J,Clausen H B et al.Evidence for general instability of past climate from a 250 kyr ice-core record.Nature,1993,364:218~220
    [146]Delmas R J, Ascencio J M and Legrand M. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present.Nature,1980,284,155~157
    [147]Ding Zhongli, Yu Zhiwei, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews,1994,13:39~70
    [148]Duce R A,Liss P S,Merrill J T,et al.The atmospheric input of trace species to the world ocean.Glob Biogeochem Cycle,1991,191(5):193~259
    [149]Dymond J, Suess E, Lyle M. Barium in deep-sea sediment:a geochemical proxy for paleoproductivity. Paleoceanography,1992,7(2):163~181
    [150]Emiliani C. Pleistocene temperatures.J.Geol.,1955,63:538~578
    [151]Flower R J. Diatom preservation:experiments and observations on dissolution and breakage in modern and fossil material.Hydrobiologia,1993,269/270:473~484
    [152]Ganeshram R S. Glacial-interglacial variability in upwelling and bioproductivity off NW Mexico:Implications for Quaternary paleoclimate,Paleoceanography,1998,13(6):634~645
    [153]Giancarlo G Bianchi, Nicholas McCave I. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature,1999,397:515~517
    [154]Gong G C,Liu K K,Liu C T. Chemical hydrography of the South China Sea and a comparison with the West Philippine seas.TAO(Taiwan),1992,3:587~602
    [155]Grootes P M, Stuiver, M, White J W C,et al.Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature,1993,366,552~554
    [156]Hajos M & Stradner H. Late Cretaceous Archaeomonadaceae, Diatomaceae and Silicoflagellatae from the South Pacific Ocean.Deep Sea Drilling Project Leg 29,site 275..Initial Reports of the Deep Sea Drilling Project.1975,29:913-1109
    [157]Hargranves P E, French F W. Diatom resting spores:significance and strategies.[A]. Fryxell G A. Survival strategies of the algae..New York,Cambridge University Press,1983, pp49-66
    [158]Hebbeln D. Marchant M,Wefer G.Paleoproductivity in the southern Peru-Chile Current through the last 33 000 yr, Marine Geology,2002,186:487~504
    [159]Hermelin J O R. and Scott D B. Recent benthic foraminifera from the central North Atlantic. Micropaleontology,1985,31(3):199~220
    [160]Huntsman M P, Ringrose S, Mackay A W, et al.Use of the geochemical and biological sedimentary record in establishing palaeoenvironments and climate change in the Lake Ngami basin, NW Botswana.Quaternary International,2006,148:51-64
    [161]Hustedt F. Die Kieselalgen Deutschlands,Osterreichs und der Schweiz. Vol.1,Koeltz Scientific Books,Koenigstein,1930,920pp
    [162]Hutson W H.The Agulhas Current during the Late Pleistocene:Analysis of modern faunal analogs.Science,1980,207:64-66
    [163]Jian Zhimin, Li Baohua, Huang Baoqi, et al. Globorotalia truncatulinoides as indicator of upper ocean thermal structure during the Quaternary:evidence from the South China Sea and Okinawa Trough. Palaeogeogr Palaeoclimatol. Palaeoecol.,2000,162:287~298
    [164]Jiao N Z, Gao Y H. Ecological Studies on Nanoplanktonic Diatoms in Jiaozhou Bay, Chian. In:Ecological Studies of Jiaozhou Bay,A Serial book of Ecosystem Studies in China,(ed. Dong J. H. and Jiao N. Z.) Beijing:Science Publication Co.1995,96-102
    [165]Johnson T C.The dissolution of siliceous microfossils in surface sediments of the Eastern Tropical Pacific.Deep Sea Res,1974,21:851~864
    [166]Jouse A P, Kozlova O G, Muhina V V.Distribution of diatoms in the surface layer of sediment from the Pacific Ocean.In:Riedel W R,Funnell B M (Eds.),The Micropaleontology of the Oceans.Cambridge University Press,Cambridge,1971,pp. 263~269
    [167]Juggins S. Diatoms in the Thames estuary, England:ecology,paleoecology,and salinity transfer function.Bibliotheca Diatomologica,1992,25:1~216
    [168]Kamatani, A. Dissolution rates of silica from diatoms decomposingat various temperatures..Marine Biology,1982,68,91-96
    [169]Karlen W. Highly variable Northern Hemisphere temperatures reconstructed from low and high resolution proxy data.Nature,2005,433:613~617
    [170]Karpuz K N, Jansen E.A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea:Documentation of rapid climatic changes.Paleoceanography,1992,7(4): 499~520
    [171]Kemp A E S, Baldauf J G,Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean.Nature,1993,362:141~144
    [172]Kemp A E S, Baldauf J G, Pearce R B. Origins and paleoceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean. Proc. ODP.Sci. Results, 1995,138:641~645
    [173]Khursevich G K, Karabanov E B. Prokopenko A A, et al.Biostratigraphic significance of new fossil species of the diatom genera Stephanodiscus and Cyclotella from Upper Cenozoic deposits of Lake Baikal,Siberia. Micropaleontology,2001,47:47~71
    [174]Klump J, Hebbeln D,Wefer G. High concentrations of biogenic barium in Pacific sediments after Termination I-a signal of changes in productivity and deep water chemistry. Marine Geology,2001,177:1~11
    [175]Koning E, Van Iperen J M, Van Raaphorst, et al. Selective preservation of upwelling-indicating diatoms in sediments off Somalia, NW Indian Ocean.Deep-Sea Research 1,2001,48:2473~2495
    [176]Kooistra W H C F & Medlin L K. Evolution of the diatoms (Bacillariophyta)IV.A reconstruction of their age from small subunit RNA coding regions and fossil record.Molecular Phylogenetics and Evolution,1996,6:391-407
    [177]Kuwae M, Yamashita A, Hayami Y, et al. Sedimentary Records of Multidecadal Scale Variability of Diatom Productivity in the Bungo Channel, Japan,Associated with the Pacific Decadal Oscillation.Journal of Oceanography,2006,62:657-666
    [178]Lan D Z,Chen C H. A Preliminary Study On Diatoms and Silicoflagellates in Cores from CC Zone,NE Pacific.Acta Oceanologica Sinica,2000,4 (19):107~116
    [179]Lapointe M. Modern diatom assemblages in surface sediments from the Maritime Estuary and the Gulf of St.Lawrence,Quebec (Canada).Marine Micropaleontology,2000,40:43~65
    [180]Lee Y G.The marine diatom genus Chaetoceros Ehrenberg flora and some resting spores of the Neogene Yeonil Group in the Pohang Basin,Korea. Journal of Paleontological Society of Korea,1993,9:24~52
    [181]Liu K K,Chao S Y,Shaw P T,et al.Monsoon-forced chlorophyll distribution and primary production in the South China Sea:observations and a numerical study. Deep Sea Res Part 1,2002,49:1387~1412
    [182]Lisitzin A P. Sedimentation in the World Ocean.Society of Economic Paleontologists and Mineralogists,Spec.Pub.1972,17:218
    [183]Lopes C, Mix A, Abrantes F. Diatom in northeast Pacific sediments as paleoceanographic proxies.Marine Micropaleontology,2006,60:45-65
    [184]M, Tu X, Zheng F. Relations between sedimentary sequence and paleoclimatic changes during last 200 ka in the southern South China Sea. Chin. Sci. Bull.2000,45 (14) 1334~1340
    [185]Mann A. Report on the diatoms of 'Albatross' voyages in the Pacific Ocean,1888~1904. Contributions United States National Herbarium.1907,10:221~419
    [186]Mannion A M. Diatoms:their use in physical geography [J].Progress in Physical Geography,1982,6(2):233-259
    [187]Mark B E, Stoermer E F. Ecological,evolutionary,and systematic significance of diatom life histories.Journal of Phycology,1997,33:897~918
    [188]Martinson D G, Piasias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages:development of a high resolution 0 to 300 000-year chronostratigraphy. Quat Res, 1987,27:1~29
    [189]McDonald D, Pedersenc T F, Crusius J. Multiple late Quaternary episodes of exceptional diatom production in the Gulf of Alaska.Deep Sea Research 11,1999,46:2993-3017
    [190]McManus J, Berelson M, Hammond E, et al. Barium Cycling in the North Pacific: Implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography,1999,14(1):53~61
    [191]Mcquoid M R, Hobson L A. Diatom resting stages.Journal of Phycology,1996,32,889~902
    [192]Medlin L K, Kooistra W H C F, Gersonde R, et al.Is the origin of the diatoms related to the end-Permian mass extinction?Nova Hedwigia,1997a,65:1~11
    [193]Medlin L K, Kooistra W H C F, Potter D, et al. Phylogenetic relationships of the "golden algae" (hepatophytes, heterokont chrysophytes) and their plastids [J].Plant Systematics and Evolution,1997b,Supplement 11:187~210
    [194]Metzger E, Hurlburt H.Coupled dynamics of the South China Sea,the Sulu Sea,and the Pacific Ocean.J Geophys Res,1996,101:12331~12352
    [195]Natori Y, Haneda A, Suzuki Y. Vertical and seasonal differences in biogenic silica dissolution in natural seawater in Suruga Bay, Japan:Effects of temperature and organic matter.Marine Chemistry,2006,102:230-241
    [196]Ning X, Chai F, Xue H, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary pro duction in the South China Sea. J. Geophys. Res.,2004,109, C10005,doi:10.1029/2004JC002365
    [197]Patricia A S, David G M, Linda K M. Evolution of the diatoms:insights from fossil,biological and molecular data.Phycologia,2006b,45(4):361-402
    [198]Paytan A,Kastner M, Chavez F P. Glacial to Interglacial Fluctuations in Productivity in the Equatorial Pacific as Indicated by Marine Barite, Science,1996,274:1355~1357
    [199]Pflaumann W, Jian Z. Modern distribution patterns of plantonic foraminifera in the South China Sea and Western Pacific:A new transfer technique to estimate regional sea-surface temperatures. Marine Geology,1999,156:41~83
    [200]Prakash Babu C, Brumsack H J, Schnetger B et al. Barium as a productivity proxy in continental margin sediments:a study from the eastern Arabian Sea, Marine Geology,2002, 184:189~206
    [201]Pudsey C J, Turner J, Wolff E. Recent rapid regional climate warming on the Antarctic Peninsula [J].Climatic Change,2003,60:243-274
    [202]Qu T.Upper layer circulation in the South China Sea.Phys Oceanogr,2000,30:1450-1460
    [203]Ravlo A C, Fairbanks R G, Philander S G H. Reconstructing tropical Atlantic hydrography using plantonic foraminifera and ocean model. Paleoceanography,1990,5(3): 409~431
    [204]Redfield A C.The biological control of chemical factors in the environment.Am Sci, 1958,46:205~221
    [205]Roberts D, McMinn A, Cremer H, et al. Melles M. The Holocene evolution and palaeosalinity history of Beall Lake,Windmill Islands (East Antarctica) using an expanded diatom-based weighted averaging model. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,208:121~140
    [206]Roberts D, McMinn A. A weighted-averagingregression and calibration model for inferring lakewatersalinity from fossil diatom assemblages insaline lakes of the Vestfold Hills: implications forinterpreting Holocene lake histories in Antarctica. Journal of paleolimnology,1998,19:99-113
    [207]Ross R. A revision of Rutilaria Greville (Bacillariophyta).Bulletin of the Natural History Museum.Botany,1995,25(1):1~93
    [208]Round F E, Crawford R M, Mann D G.The diatoms:biology and morphology of the genera. Cambridge University Press.1990
    [209]Sancetta C & Silvestri S. Pleistocene-Pleistocene evolution of the North Pacific ocean-atmosphere system,interpreted from fossil diatoms.Paleoceanography,1986,1(2):163-180
    [210]Sancetta C.Oceanography of the North Pacific during the last 18.000 years:Evidence from fossil diatoms.Marine Micropaleontology,1979,4:103~123
    [211]Sarno D, Kooistra W H C F, Medlin L, et al. Diversity in the genus Skeletonema (Bacillariophyceae),II.An assessment of the taxonomy of S costatum-like species with the description of four new species.Journal of Phycology,2005,41:151~176
    [212]Schmitz N B. Barium,equatorial high productivity,and the northward wandering of the Indian continent. Paleoceanography,1987,2:63-77
    [213]Schrader H J nd Schuette G. Marine diatoms. In The Oceanic Lithosphere,ed. by C.Emiliani,John Wiley&Sons,Inc.1981:179~1232
    [214]Shackleton N J, Opdyke N D. Oxygen-isotope and Paleomagnetic stratigraphy of pacific core V28-239:Late Pliocene to latest Pleistocene.In:Investigation of Latw Quaternary paleoceanography and paleoclimatology (R.M.Cline and J.D.hays eds),Mem.Geol.Soc.Am., 1976,145:449~464
    [215]Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific Core V28-238:Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale.Quaternary Research,1973,3(1):39~55
    [216]Shaw P T. Seasonal variation of the intrusion of the Philippine sea water into the South China Sea. J Geophys Res,1991,96:821~827
    [217]Shepard F P. Nomenclature based on sand silt clay ratios [J].Journal of Sedimentary Petrology,1954,24:151-158
    [218]Simonsen R.The diatom system:ideas on phylogeny.Bacillaria,1979,2:9-71
    [219]Sims P A. A revision of the genus Rattrayella De Toni including a discussion of related genera.Diatom Research,2006a,21:125~158
    [220]Smayoa T J. Normal and accelerated sinking of phytoplankton in the sea[J].Marine Geology,1971,11,105~122
    [221]Suto I.Periptera tetracornusa sp. nov.,a new middle Miocene diatom resting spore species from the North Pacific[J].Diatom,2003,19:1~7
    [222]Turner R E, Milan C S, Rabalais N N.A retrospective analysis of trace metals,C,N and diatom remnants in sediments from the Mississippi River delta shelf. Marine Pollution Bulletin,2004,49:548~556
    [223]Urey HC.The thermodynamic properties of isotopic substances. J.Chem.Soc.,1947,562-581
    [224]Van B, Berger A J, Van der G G W, et al. Primary productivity and the silica cycle in the Southern Ocean (Atlantic Sector).Palaeogeography, Palaeoclimatology, Palaeoecology, 1988,67:19~30
    [225]Van Heurch H. A treatise on the Diatomaceae.William Wesley & Son,London.1896.558pp
    [226]Vos P C & De Wolf H. Reconstruction of sedimentary environments in Holocene coastal deposits of the southwest Netherlands; the Poortvliet boring,a case study of palaeoenvironmental diatom research.Hydrobiologia,1993a,269/270:297~306
    [227]Vos P C, De Wolf H. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects.Hydrobiologia,1993b,269/270:285-296
    [228]Wang L, Jian Z, Chen J. Late Quternary pteropods in the South China Sea:Carbonate preservation and paleoenvironmental variation. Mar. Micropaleontol,1997,32:115~126
    [229]Wang P, Wang L, Bian Y et al. Late Quaternary paleoceanography of the south China Sea: Surface circulation and carbonate cycles. Marine Geology,1995,127:145~165
    [230]Weaver P P E, Kuijpers A. Climatic control of turbidite depositionon the Madeira abyssal plain. Nature,1983,306:360~363
    [231]Wells P. et al. Response of deep-sea benthic foraminifera to Late Quaternary climate changes, southeast Indian Ocean, offshore weatern Australia. Mar. Micropaleontol, 1994,23:185~229.
    [232]Wiesner M Q Zheng L,Wong H K.Fluxes of particulate matter in the South China Sea.In:Ittekkot V,Schafer P,Honjo S,et al.Particle Flux in the Ocean.New York:John Wiley and Sons,1996.91~154
    [233]Xiao Jule, Zheng Hongbo, Zhao Hua. Variation winter monsoon intensity on the Loess Plateau, Central China during the last 130 000 years:evidence from the grain size distribution. Quaternary Research,1992,31:13~19
    [234]Xu Xue-dong and M Oda. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar Geol,1999,156:285~304
    [235]Zhou B, Zhao Q. Allochthonous ostracods in the Marine Geology, South China Sea and their significance in indicating downslope sediment contamination.. Marine Geology, 1999,156(1-4):187~195
    [236]Zingone A, Percopo I, Sims P A, et al.Diversity in the genus Skeletonema (Bacillariophyceae),I.A reexamination on the type material of S. costatum with the description of S.grevillei sp.Nov. Journal of Phycology,2005,41:140~150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700