用户名: 密码: 验证码:
长白山天池火山千年大喷发火山碎屑流相模式及灾害区划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长白山天池火山千年大喷发火山碎屑流分布范围广泛,是国内火山碎屑流领域重要的研究对象。前人研究表明:(1)长白山天池火山千年大喷发火山碎屑流搬运堆积机制复杂,且火山碎屑流近源、中源部分一般分布在人迹罕至尚未开发的地方,火山碎屑流相模式尚未系统建立;(2)火山碎屑流是长白山地区主要灾害类型,尚未有专题的灾害区划图;(3)早期粒度分析主要采用人工法测试,精度低,误差大,大量微米级碎屑的动力学信息流失。针对上述问题,本文开展了长白山天池火山千年大喷发火山碎屑流研究工作。
     1.研究内容
     (1)建立火山碎屑流纵向厚度分布图,分析其平面分布形态特征,探讨分布形态与天池原始地貌之间的关系;(2)通过野外地质调查,分别建立近源、中源和远源地层堆积构造组合特征,对火山碎屑流的流体性质及搬运方式进行探讨;(3)通过岩石学和地球化学数据分析,分别建立近源、中源和远源的岩相特征,探讨不同阶段火山碎屑流的流体性质;(4)建立中源、远源纵向和垂向粒度分布剖面对比图,研究粒度(<64mm)的碎屑粒度、成分和形貌分布规律,并对细火山灰直方图分布特征进行研究,探讨粒度分布与火山碎屑流流体性质之间的关系;(5)以白西林场火山碎屑流的地浪堆积地层为研究对象,分析其成因、探讨其搬运堆积模式;(6)以天池火山地貌TIN和DEM图为基础,选取火山碎屑流搬运的物理模型和数学计算模型,计算不同规模喷发碎屑流动距离,建立火山碎屑流灾害区划图。
     2.研究思路和方法
     (1)确定研究对象,在野外寻找一套完整的现象明显的火山碎屑流;(2)系统研究火山碎屑流地质特征、采集样品和获取第一手数据,其中地质特征包括空间分布、岩相特征、地层构造特征、矿物学特征、岩石化学特征等,建立火山碎屑流相模式;(3)室内分析碎屑粒度特征(区分出浮岩、岩屑、晶屑),对比研究各种碎屑的分布特征。用SEM方法研究对应碎屑显微形貌特征及其形成机制。对两者结果进行对比,并得出结论;(4)研究火山碎屑流地层有规律的堆积构造特征;(5)在以上研究基础上,研究天池火山火山碎屑流灾害区划。在以上研究中,主要用到岩石学、地球化学、地层学和沉积学的研究方法,具体包括薄片分析、全岩分析、粒度分析、统计学分析、显微形貌特征分析和形态分析等方法。
     3.主要结论及认识
     本篇论文主要从分布形态、地层堆积构造、岩石学、地球化学、火山碎屑特征和搬运堆积模式六个方面对长白山天池火山千年大喷发火山碎屑流进行研究,并在此基础上建立了天池火山碎屑流灾害区划图。本次研究主要得到以下九点结论:
     (1)天池火山千年大喷发火山碎屑流分布形态严格受到天池火山原始地貌的影响:以十二道白河为例,在大概0~10km范围内,在火山锥体峡谷底部堆积,厚度在1-4m;大概10-20km范围内,为峡谷堆积,厚度在10-40m;20-50km为扇状堆积。根据形态和厚度分布特征,天池火山碎屑流分布形态为火山碎屑裙,厚度一般小于10m。
     (2)近源火山碎屑流地层堆积构造组合有斑杂构造、类熔岩构造等;中源火山碎屑流地层堆积构造组合有柱状节理、块状构造(垮塌成因)、强熔结条带、底部岩屑富集带、浮岩富集带等,此外发育逃气孔、峰从等构造;远源火山碎屑流地层堆积构造组合有粗尾粒序层理、爬升地层和地浪堆积地层等,次生改造程度高。
     (3)近源岩石一般为碱性粗面质熔结凝灰岩;中源岩性为碱性粗面质熔结凝灰岩;远源为碱流质浮岩松散堆积。
     (4)近源、中源黑色浮岩为粗面岩;远源灰白色浮岩为碱流岩。
     (5)中源和远源松散堆积的小于64mm的碎屑,随着与火口距离的增加,纵向上火山碎屑中值有变大的趋势,随着剖面深度的增加,火山碎屑中值变小的趋势;随着与火口距离的增加,随着与火口距离的增加,4-8mm火山碎屑的球形度整体变化趋势是增大,但增势较缓,反映了近源火山碎屑流流体密度高;随着与火口距离的增加,岩屑含量减少,反映了重力分异作用,一定程度上揭示了流体密度的降低。
     (6)火山碎屑粒度越小,碎屑棱边改造越少,碎屑形态越丰富,火山碎屑搬运机制越趋于单一化;细火山分布特征具有相似性,呈单峰态负偏态分布。
     (7)灰云浪和地浪直方图特征相似,向细粒集中,反映流体密度低。火山碎屑流流动单元直方图分布呈多峰态,反映搬运方式复杂。
     (8)天池火山西坡白西林场千年大喷发火山碎屑流在搬运过程中有水作用参与。
     (9)以天池火山为中心,喷发柱高度为10km,灾害区划最大半径为13.69km;喷发柱高度为20km,灾害区划最大半径为35.42km;喷发柱高度为30km,灾害区划最大半径为57.8km。以千年喷发火山碎屑流分布格局为参考,根据天池火山周边地区地貌特征制作出天池火山火山碎屑流不同规模喷发灾害区划图。
     4.创新点
     在研究过程,主要有以下四点创新:
     (1)本篇论文首次通过长白山天池火山火山碎屑流分布形态、地层堆积构造、岩石学、地球化学、粒度分析和地浪地层搬运模式的研究,采用了扫描电镜、形态分析和激光粒度仪等实验分析方法,建立了长白山天池千年大喷发火山碎屑流相模式,提出近源火山碎屑流流体密度高,搬运能力强,堆积厚度薄,岩相特征为碱性粗面质熔结凝灰岩;中源火山碎屑流流体密度有所减弱,重力分异作用明显,堆积厚度巨大,岩相特征为碱性粗面质熔结凝灰岩;远源火山碎屑流流体密度最低,湍流和地浪等流体化作用明显,堆积厚度薄,岩相特征为碱流岩。
     (2)本文首次对火山碎屑流和火山碎屑涌流细火山灰(小于62.5μm)粒度分布特征进行了研究,主要有以下两个发现:发现了火山碎屑流细火山灰直方图具有一定相似性,呈单峰态、负偏态分布特征;发现了火山碎屑涌流在0.1μm-1μm之间仍有碎屑分布,而火山碎屑流基本上无小于1μm的碎屑,从粒度分析角度证明了射汽岩浆爆破式喷发作用导致的碎屑破碎化程度要高于岩浆爆破式喷发作用。
     (3)本文通过地层分析、扫描电镜分析和粒度分析等方法对长白山地区天池火山白西林场地层进行系统研究,提出了白西林场火山碎屑流有水作用参与,并建立了白西林场火山碎屑流搬运堆积模式,初步划分为碎屑淬火、蒸汽膨胀和堆积三个阶段。
     (4)国内首次运用滑块模型对天池火山火山碎屑流流动距离进行计算。
Changbaishan Tianchi volcano is the largest composite volcano, which is located in the northeast of China, at the boundary between China and North Korea. In 1215(±15), there was a large plinian eruption in Tianchi volcano which is called millennium eruption. Millennium eruption produced widespread pryolcatic-flow deposits. According to the previous study, there are three problems about the pyroclastic-flow deposits. First, there is no systematic facies about that pyroclastic-flow. Most of the pyroclastic flow deposited in the wild place which is undeveloped. Second, there is no hazard zonation for pyroclasitc-flow which is a major disaster in Changbaishan area. Third, grain-size analysis has not reached to the micron level.
     In order to answer these problems, some research works have been developed in this paper.
     1. Main contents and research methodolog
     Main contents for research are:(1) to establish vertical thickness map of pyroclastic-flow in one valley, analysis shape characteristics, and discuss the relationship between shapes of pyroclastic-flow and prime topography before that eruption;(2) to separately establish the stratum characteristics for the proximal, medial and distal pyroclastic-flow, and discuss the transportation of pyroclastic-flow ;(3) to separately establish the litofacies characteristics for the proximal, medial and distal pyroclastic- flow by analyses of micro structure and major element, and discuss the fluid nature of pyroclastic-flow in different stages;(4) to establish the grain-size distribution for the medial and distal pyroclastic-flow, study fine ash distribution, and discuss the relationship between grain-size and pyroclastic- flow transportation;(5) to describe pyroclastic flow stratums at the distal part of the pyroclastic-flow in Baixi, analysis the genetic classification of the stratum, and discuss the transportation and deposition processes.(6).to establish the hazard zonation for pyroclastic-flow which is based on the slide-block model and analyses of DEM&TIN in Tianchi volcano. Research methodologies are :(1) to find a complete pyroclastic-flow in the Tianchi volocano , and determine the object of this study; (2)to study the stratum、litho and geochemistry by analysis of micro structure, major element and Scanning Electron Microscope (SEM); (3) to study the grain-size distribution by sieve instrument (Easy Sieve) and some of them by manual sieve ; (4) to describe the shape of grain-size from the median and distal pyroclastic-flow by analysis of SEM and morphological instrument (Camerasizer);(5) to analyses the fine ash distribution by laser grain-size analyzer.
     2. Main conclusions
     This paper has studied the shape, strata, litho, geochemistry, grain-size and transportation of ground–surge from pyroclasitc-flow of millennium eruption in Tianchi volcano. The main conclusions which have been got are as follows:
     (1) The shape of pyroclastic-flow in millennium eruption is strictly affected by the prime topography of Tianchi volcano. About in 0~10 km in the cone, pyroclastic-flow deposited in the valley, and the thickness is at about 1~4m. About in 10~20 km in the shield, pyoclastic-flow deposited in the valley, and the thickness is at about 10~40m. About in 20~42km, pyroclastic-flow deposited in the lava table, and the thickness is less than 10m.
     (2) The proximal strata of pyroclastic-flow are combined with the eutaxite structures and lava-like structures. The median strata are combined with massive beds、pumice-rich layers、litchis-richer layers and welded zones which are representative of the transportation processes for gravitational differentiation. And columnar joints and block structures are also developed which are representative of the deposition processes for cooling. The distal strata are combined with coarse-tail beds, ground surge beds and climbing beds. There are also some altered beds because of flood. The distal pyroclastic-flow strata have some fluidized characteristics.
     (3) The proximal ignimbrite is alkaline trachytic welded tuff. The median ignimbrite is also alkaline trachytic welded tuff. And the distal ignimbrite is alkaline rhyolite. The welded tuff is weaker from the proximal to the distal.
     (4) The proximal and median black pumice is trachyte. And the distal gray pumice is rhyolite.
     (5) The median diameters of pumice which is less than 64mm from the median and distal strata have an increasing tendency with the distance increasing from the crater. And the median diameters become smaller with the depth increasing from the top of strata. The Sphericity (Spht) has an increasing tendency with the distance increasing from the crater. And the contents of lithoclasts in number percentage decrease with the distance increasing from the crater which reveals gravitational differentiation.
     (6) With the pumice becoming smaller, there are more angles, richer irregular shapes and simpler transportation. The grain-size distributions of fine ash are similar and have a single peak which is close to the fines.
     (7) The histograms of ahs cloud and ground surge have a similar characteristic which is ladder-like and close to the fines. And the histograms of pyroclastic- flow have many peaks which are representative of the composite transportation.
     (8) There was hydration at the distal part of pyroclastic-flow, and the ground surge came from pyroclastic-flow and water interaction in Baixi.
     (9) According to computation, with 10km column height, the maxim radius of pyroclastic-low hazard zonation is 13.69km; with 20km column height, the maxim radius of pyroclastic-flow hazard zonation is 35.42km; with 30km column height, the maxim radius of pyroclastic-flow hazard zonation is 57.8km. Base on the pyroclasti -flow zonation in millennium eruption and topography of Tianchi volcano, the map of pyroclastic-flow hazard zonation has been established for different column heights which are representative of eruption scale.
     3. Innovation
     In the course of study, four innovations have been discovered as follows:
     (1)In this paper, through research of shapes, strata, lithofaices, geochemistry, grain-size, transportation and deposition processes, using SEM, Camerasizer and Laser grain-size analyzer, it is firstly proposed the facies of pyoclastic flow in millennium eruption in Tianchi volcano, Changbaishan.
     (2)It is first to discovery that the grain-size distributions of fine ash are similar and have a single peak which is close to the fines in the pyroclastic-flow strata from median to distal. Compared with the fine ashes in pyroclastic-surge in Longquanlongwan volcano, Longgang volcanic cluster, it is found some differences between pyroclastic-flow and pyroclastic-surge. The grain-size of fine ashes in pyroclastic-surge can reach to 0.1μm, and the grain-size of fine ashes in pyroclastic-flow only reach to 1μm. The pyroclastic-surge which is produced by phreat-magma explosive eruption has more fine fragments than pyroclastic-flow which is produced by magma explosive eruption.
     (3) Through the analysis of SEM, stratum and grain-size, it is found that there was hydration at the distal part of pyroclastic-flow and the ground surge came from pyroclastic-flow and water interaction in Baixi.
     (4) In this paper, it is first to use the sliding block model computing the distance of pumice transportation.
引文
Bursik M I, Woods A W. 1996. The dynamics and thermodynamics o large ash flows. Bulletin of Volcanology, 113:30-54
    Buttner R, Dellino P, Zimanowski B. 1999. Identifying magma–water interaction from the surface features of ash particles. Nature, 401: 688-690
    Branney M J, Kokelaar P. 2002. Pyroclastic denstiy currents and the sedimentation of ignimbrites. The Geological Society London, 100-101
    Brown W K. 1989. A theory of sequential fragmentation and its astronomical applications. JAstrophys Astron, 10: 401-412
    Carey S N. 1991. Transport and deposition of tephra by pyroclastic flows and surges. In: Fisher, R. V. &Smith, G. A. (eds) Sedimentation in volcanic setting. SEPM. Special Publications, 45: 39-57
    Carey S, Sigurdsson H, Mandeville C et al. 1996. Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volcanol, 57: 493-511
    Cas RAF, Wright JV. 1987. Volcanic Successions. Modern and Ancient. London: Allen &Unwin, 93-95
    Dade WB, Huppert HE. 1996. Emplacement of the Taupo ignimbrite by a dilute, turbulent flow. Nature, 381: 509-512
    Dellino P, Volpe LL. 2000. Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano Aeolian Islands, Italy. Journal of Volcanology and Geothermal Research, 96: 57-58
    Dellino P, Isaia R, La Volpe L et al. 2001. Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy. Bull Volcano, 63: 443-461
    Dellino P, Liotino G. 2002. The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. Journal of Volcanology and Geothermal Research, 113: 1-18
    Fisher RV. 1966. Mechanism of deposition from pyroclastic flows. American Journal Sceience. 264: 350-363
    Fisher RV, Schmincke HU. 1984. Pyroclastic Rocks. Springer, Berlin
    Francis, PW. 1993. Volcanoes: a planetary perspective. Oxford University Press, Oxford.
    Freundt A. 1999. Formation of high-grade ignimbrite-partⅡ: A pyroclastic suspension current model with implications also for low-grade ignimbrites. Bulletin of Volcanology, 60: 545-576
    Freundt A, Wilson CJN, Carey SN. 2000. Ignimbrites and block-and-ash flow deposits. In: Sigurdsson, H. H,.Houghton, et al.(eds)Encyclopedia of volcanoes. Academic Press, London, 581-600
    Heiken G, Wohletz K. 1985. Volcanic Ash. Berkeley: University of California Press:1-246
    Inman DL. 1952. Measures for describing the size distribution of sediments. J. Sed. Petrol, 22:125-145
    Marshall JR. 1987. Clastic Particles. New York:Van Nostrand Reinhold Company, 65-135
    Jon Wieringa. 1993. Representative roughness parameters for homogeneous terrain Boundary. Layer Meteorology, 63: 323-363
    Murai I. 1961. A study of the textural characteristics of pyroclastic flow deposits in Japan. Tokyo university Earthquake Research Institute Bulletin, 39: 133-248
    Esposti O, Neri TM, Macedonio, AG etal. 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling II: Analysis of flow variables. Bull Volcanol, 64: 178-191
    Saucedo R, Mac?as JL, Sheridan MF etal. 2005. Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. Journal of Volcanology and Geothermal Research, 139: 103-115
    Selley RC. 1978. Ancient sedimentary environments. 2nd edn. London: Chapman&Hall. Sheridan MF. 1976. Compaction of ash-flow tuffs. In: Chilingarian, G.V. & Wolff, K.H(eds) Compaction of coarse-grained sediments. H. Developments in Sedimentology. Elsevier, Amsterdam, 677-713
    Sheridan MF, Wohletz KH., Dehn J. 1987. Discrimination of grain-size subpopulations in pyroclastic deposits. Journal of Geology, 15:367-370
    Sparks, RSJ. 1976. Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentolgy, 23: 147-188
    Todesco M, Neri A, Ongaro ET etal. 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy)by using numerical modeling. I. Large-scale dynamics. Bull Volcanol, 64: 155–177
    Wallace PJ, Dufek J, Anderson AT etal. 2003. Cooling rates of Plinian-fall and pyroclastic-flow deposits in the Bishop Tuff: inferences from water speciation in quartz-hosted glass inclusions. Bull Volcanol, 65: 105–123
    Walker GPL. 1971. Grain size characteristics of pyroclastic deposits[J].J Geol, 79:696-7 14
    Walker GPL. 1983. Ignimbrite types and ignimbrite problems[J].Volcanol Geotherm Res, 17: 65-88.
    Wei H, Hong H, Sparks RSJ et al. 2004. Potential hazards of eruptions around the Tianchi Caldera lake, China[J]. Acta Geologic Sinica, 78(3): 790-794
    William IR, Adam JD. 2009. EI Chichon volcano, April 4,1982: volcanic cloud history and fine ash fallout. Nat hazard, 51:363-374
    Wilson CJN. 1985. The Taupo eruption, New-zeland: The Taupo ignimbrite. Philosophical Transactions of the Royal Society of London Series A, 314: 229-310
    Wohtez KH, Sheridan MF. 1979. A model of pyroclastic surge. Geological Society of America, Speical paper 180 :177-194
    Wohletz K, Krinsley D. 1982. Scanning electron microscopy of basaltic hydromagmatic ash. Los Alamos National Laboratory Report, LA-UR 82-1433: 26
    Wohletz KH. 1986. Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bulletin of Volcanology, 48: 245-264.
    Wohletz KH, Sheridan MF, Brown WK. 1989. Particle Size Distributions and the Sequential Fragmentation/Transport Theory Applied to Volcanic Ash. Journal of Geophysical Research, 94 (B11): 15703-15721
    Wohletz KH, Brown W. 1995. Particulate size distributions and sequential fragmentation/transport theory. In: Theofanous TG and Akiyama M (Eds). Intense Multiphase Interactions. Proceedings of US (NSF) Japan (JSPS) Joint Seminar, Santa Barbara, CA, 8-13
    Wohletz Kenneth. 2002. Water/magma interaction: some theory and experiments on peperite formation. Journal of Volcanology and Geothermal Research, 114:19-35
    Wright JV. 1981. The Rio Caliente ignimbrite:analysis of a compound intraplinian ignimbrite from a major late Quaternary Mexican eruption. Bulletin of Volcanology, 44: 189-212
    Yokoyama S. 1974. Flow and emplacement mechanism of the ito pyroclastic flow from Aria caldera, Japan. Tokyo Kyoliku Daigaku Scientific Report, C12: 17-62
    Zimanowski B, Wohletz K et al. 2003. The volcanic ash problem. Journal of Volcanology and Geothermal Research, 122: 1-5
    白志达,徐德斌,张秉良,张焘,卜璟. 2006.龙岗火山群第四纪爆破式火山作用类型与期次研究.岩石学报, 022(06): 1473-1480
    崔钟燮,金东淳,李霓. 2000.长白山天池火山1199-1200年大喷发历史记载的发现及其意义.岩石学报, 16(2): 191-193
    崔钟燮,张三焕,田景. 1997.长白山全新世以来的火山喷发活动与森林火灾研究.地理研究, 16(1): 191-193
    邓晋福,赵海玲,莫宣学等. 1996.中国大陆根一柱构造.北京:地质出版社, 40—58.
    丁喜桂,叶思源,高宗军. 2005.粒度分析理论技术进展及其应用.世界地质, 24(2): 203-207
    樊祺诚,隋建立,王团华等. 2006.长白山天池火山粗面玄武岩的喷发历史与演化岩石学报, 22(6): 1449-1457
    樊祺诚,刘若新,魏海泉等. 1999.白山天池火山全新世喷发与岩石地球化学特征.地质论评, 45(增刊): 263-271
    樊祺诚,隋建立,王团华等. 2007.长白山火山活动历史、岩浆演化与喷发机制探讨高校地质学报, 13(2): 175—19
    郭正府,刘嘉麒,邓晋福. 1998.普里尼式火山喷发柱最大高度定量计算模式探讨.地质科技情报, 17(1): 103-107
    和瑞莉,吉俊峰,牛占,何丽. 2007.泥沙粒度分析中激光法与传统法的对比试验.人民黄河, 29(5): 74-75
    洪汉净,吴建平,王庆良等. 2007.中国火山危险性等级与活动性分类.地震地质, 29(3): 447-458
    胡汉祥,丘克强. 2006.激光粒度分析结果在形貌分析中的应用.理化检验-物理分册, 42(2):72-74
    吉林省地震局. 2003.长白山天池火山近代活动历史, 65-70
    吉林省地质局.1974.白头山幅1:20万区域地质调查报告, 45-50
    金伯禄,张希友. 1994.长白山火山地质研究吉林延吉:延边东北朝鲜民族出版社, 12-14
    计风菊,李建平,郑荣章. 1999.长白山天池火山近代喷发物的热释光(TL)年代学初步研究地质论评, Vol45(增刊): 282-286
    金东淳,崔钟燮. 1999.长白山天池火山喷发历史文献记载的考究.地质论评, Vol45(增刊): 304-307
    靳克,彭玉鲸,王彦生,许文良. 2000.中国—朝鲜长白山区新生代火山事件的划分及对比长春科技大学学报, 30(2): 125-130
    聂保锋,刘永顺,彭年. 2009.长白山天池火山泥石流分布特征及其形成模式研究.首都师范大学学报(自然科学版), 30(1): 70—75
    李春锋,吕纪宁,王军亮等. 1999.长白山天池火山的危险性和火山碎屑流灾害评估.东北地震研究, 15(3): 64-73
    李春锋,张兴科,王瑜等. 2006.长白山天池火山的地质构造背景.地震地磁观测与研究, 27(5): 43-49
    李花淑,崔天日. 2005.图们江流域中更新世火山泥石流分布及其特征.吉林地质, 24(3): 73-77
    李霓. 2007.长白山天池火山全新世爆炸喷发的岩浆脱气作用研究.中国地震局地质所博士论文10-12
    李世麟. 1985.火山碎屑岩的粒度分析及其应用.矿物岩石, 1: 12-25
    李文凯,吴玉新,黄志民等. 2007.激光粒度分析和筛分法测粒径分布的比较.实验分析, 5: 10-13
    刘嘉麒. 1988.中国东北新生代火山幕.岩石学报, 9(1):1-10
    刘嘉麒,王松山. 1982.长白山火山与天池形成时代.科学通报, 21: 1312-1315
    刘嘉麒. 1989.论中国东北大陆裂谷系的形成与演化[J ].地质科学, 3: 3-10
    刘克斌. 1989.长白山浮岩的综合利用.吉林地质, 2:80-82
    刘明军,顾梦林,孙振国等. 2004.长白山天池火山主断裂活动与热液蚀变带.中国地震, 20(1): 64-72
    刘强,魏海泉,许建东等. 2009.吉林龙岗四海火山碎屑物粒度分析与地质意义.地震地质, 31(1): 112-121
    刘若新,李继泰,魏海泉等. 1992.长白山天池火山——一座具有潜在喷发危险的近代火山. 地球物理学报, 35 (5): 661-665
    刘若新,仇士华,蔡莲珍等. 1997.长白山天池火山最近一次大喷发年代研究及其意义.中国科学(D)辑, 27(5): 437-441
    刘若新,魏海泉,李继泰. 1998.长白山天池火山近代喷发.北京:科学出版社, 1-15
    刘若新. 2000.中国的活火山.北京:地震出版社, 1-5
    刘若新. 1995.火山作用与人类环境.北京:地震出版社, 21-27
    刘祥. 1989.长白山地区新生代火山活动分期.吉林地质, 3: 30-41
    刘祥,向天元. 1997.中国东北地区新生代火山和火山碎屑堆积物资源与灾害.长春:吉林大学出版社, 94-105
    刘祥. 1999.中国东北地区新生代火山活动构造控制及火山灾害.世界地质, 12
    刘祥. 2004.长白山天池地区全新世以来火山活动及其特征.第四纪研究, 24(6): 638-644
    刘祥. 2006.长白山火山历史上最大火山爆发火山碎屑物层序与分布.吉林大学学报(地球科学版), 36(3): 313-318
    刘祥,王锡魁. 1987.吉林省辉南县大龙湾火山基浪(base-surge)堆积物的发现.地质论评, 33(6): 577-582
    刘秀明,李文宝,邢春颖. 2007. MS2000激光粒度分析仪在沉积物分析中的应用.实验技术与管理. 24(9): 49-52
    卜璟. 2006.吉林龙岗第四纪火山机构及火山碎屑物成因研究, 20-21
    邱家骧. 1991.应用岩浆岩岩石学.北京:中国地质大学出版社, 13-14
    史兰斌,陈孝德,杨清福等. 2005.长白山天池火山千年大喷发不同颜色浮岩的岩石化学特征.地震地质, 27(1):73-82
    孙谦,樊祺诚. 2005.火山射汽岩浆喷发作用研究进展.岩石学报, 21(6):1709-1718
    孙善平,刘永顺,钟蓉等. 2001.火山碎屑岩分类评述及火山沉积学研究展望.岩石矿物学杂志, 20(3): 313-328
    田丰,汤德平. 1989.吉林省长白山地区新生代火山岩的特点及其成因.岩石学报, 2: 49-64
    王非,陈文寄,彭子成等. 2001.长白山天池火山晚更新世以来的喷发活动:高精度铀系TIMS年代学制约.地球化学, 30(1): 88-94
    魏海泉,金伯禄,刘永顺. 2004.长白山天池火山地质学研究的若干进展与灾害分析.岩石矿物学杂志, 23(4): 305-312
    魏海泉,李春茂,金伯禄等. 2005.长白山天池火山造锥喷发岩浆演化系列与地层划分.吉林地质, 24(1): 22-27
    魏海泉,刘若新,樊棋诚等. 1999.长白山天池火山一多成因中央式火山.地质论评, 45(增刊): 257-262。
    魏海泉,刘若新,李晓东. 1997.长白山天池火山造伊格尼姆岩喷发及气候效应.地学前缘4(1): 263-266
    吴才来,李兆鼐,尚如相. 1998.长白山地区新生代火山岩浆作用动力学及环境效应.中国区域地质, 17(3): 291-299
    肖晨曦,李志忠. 2006.粒度分析及其在沉积学中应用研究.新疆师范大学学报(自然科学版) , 25(3): 118-123
    谢家莹. 1995.熔结火山碎屑岩熔结程度的鉴别.火山地质与矿产, 16(1): 51-52
    许东满. 1988.长白山区火山活动的地质构造条件.东北地震研究, 4(3): 53-62
    许建东. 2006.我国火山灾害的主要类型及火山灾害区划图编制现状探讨.震灾防御技术, 1 (3): 266-272
    杨清福等. 2005.长白山天池火山碎屑流分布图报告.吉林省地震局
    杨清福,李继泰,刘若新等. 1996.长白山天池火山公元750—960年浮岩流搬运与堆积的物理机制.地震地磁观测与研究, 17(6): 11-19
    杨清福,史兰斌,张羽等. 2007.长白山天池火山千年大喷发火山碎屑流堆积的粒度特征与地质意义.地震地质, 29(3): 480-491
    尹功明,业渝光,万京林等. 1999.长白山地区近代火山岩的ESR测年研究.地质论评Vol45(增刊): 287-293
    尹功明,李盛华. 2000.白山地区最近一次火山喷发的热释光年龄.岩石学报, 16(3): 353-356
    尹金辉,郑勇刚,刘粤霞. 2005.长白山天池火山炭化木的14C年代及其意义.地震地质, 27(1): 83-88
    余斌. 2005.美国纽约州立大学布法罗分校火山碎屑流和泥石流数学模型研究近况.山地学报23(1): 126-128
    曾允孚,夏文杰. 1986沉积岩石学.地质出版社, 219-220
    张秉良,白志达,洪汉净等. 2005.吉林龙岗火山碎屑分形研究.地震地质, 27(3): 462-469
    张秉良,洪汉净,盘晓东. 2006.长白山天池火山玻璃和长石微观特征研究.地震地质, 28(3): 351-357
    张成梁. 1992.长白山火山喷发物的堆积类型及火山活动机理.吉林地质, 2: 37-45
    赵波,许健东,潘波等. 2008.吉林龙岗龙泉龙湾火山火口基浪堆积物粒度特征及搬运机制. 岩石学报, 24(11): 2631-2637
    赵明华,游志胜,赵永刚等. 2005.基于空间自相关的沉积物数字图像粒度分析方法.计算机应用研究, (5): 156-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700