用户名: 密码: 验证码:
祁连山北部侵蚀速率的时空分布与构造抬升变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对青藏高原研究的逐步深入,隆升时代及其变形速率方面取得了重要进展,但最基本的理论问题之一:隆升变形模式与机制问题目前有较大分歧。位于高原最北缘的祁连山,隆升时代较晚,是高原的最新组成部分,其构造变形研究对解决高原隆升扩展机制具有重要作用。以前的研究,主要集中在祁连山西端阿尔金断裂和东部海原断裂的走滑速率和祁连山山前洪积区域的断裂变形速率方面,对于山体内部的变形及剥蚀研究较少,而且变形研究多集中在全新世。另外,由于研究点与时段的限制,对祁连山构造抬升变形的时空分布特征较少涉及,而这些研究方面的深入对理解祁连山及高原北部扩展变形模式有重要的意义。本研究针对这些问题,在祁连山北部开展了低温热年代学、河流阶地及变形、河道分析等方面的研究,在这些研究的基础上对祁连山侵蚀和抬升的时空分布特征进行分析,以探讨高原东北部抬升变形的动力学机制问题。
     祁连山东段低温热年代学研究得到西营河柏树沟磷灰石裂变径迹年龄为56-80Ma,磷灰石(U-Th)/He年龄为22-45 Ma。热历史模拟结果显示在-70 Ma至10-8 Ma期间,样品经历了较慢的冷却速率(0.41-0.74℃/Ma);10-8 Ma至今样品快速冷却,冷却速率为7.5±1.8℃/Ma。柏树沟地区10-8 Ma以来的平均剥蚀速率约为0.23mm/a。较快冷却剥蚀出现在山体较高、地形起伏较大的铧尖上游区域,下游山体较低、地形起伏较小的区域冷却剥蚀较慢。
     利用光释光、ESR、14C测年手段对祁连山东段的河流阶地形成时代进行了定年,发现晚更新世祁连山东段阶地主要形成于20-25 ka、30-37 ka、51-56 ka左右、67-71 ka。全新世以来,祁连山东段河流普遍发生1-3次下切,而形成1-3级河流阶地。结合阶地形成年代,在高精度GPS测量的基础上,计算分析得到祁连山东段河流下切速率主要分布在0.3-2.5 mm/a之间。从70 ka到10 ka之间,在各个构造区下切速率随时间变化较小,显示了区域抬升速率的稳定性。河流下切速率的空间分布特征揭示了在垂直于祁连山走向的方向上,祁连山东段的构造抬升速率存在空间差异。在皇城-塔尔庄断裂以南的区域构造抬升速率较高,祁连山北缘断裂与皇城-塔尔庄断裂之间的区域抬升速率较低。抬升速率的差异而导致皇城-塔尔庄断裂南北出现不同的地形起伏。
     由于构造变形的作用,在西营河与南营河的河谷中,阶地面发生了明显的变形,计算得到康宁桥断裂70 ka、50 ka、30 ka、10 ka以来的平均错断速率分别为0.20±0.05mm/a、0.20±0.11 mm/a、0.22±0.10mm/a、0.68±0.30 mm/a; 50ka以来,皇城-塔儿庄断裂在铧尖附近的垂直错断速率为0.22±0.07mm/a;70 ka以来清咀湾附近断裂垂直滑动速率为0.21-0.37 mm/a。50 ka以来,祁连山北部的水平缩短速率为0.33-0.54 mm/a,吸收了青藏高原高原北部约1/10的缩短量。
     分布于祁连山北翼的河流河道陡峭指数沿祁连山走向有系统的变化,在东段较小,中西段较大。通过对比分析显示岩性和降水条件对河道的陡峭指数影响有限,也没有明显的证据显示河流负载对河道的陡缓有明显的作用,河道陡峭指数的变化主要受区域构造抬升速率的影响。河道陡峭指数的变化反映了祁连山北翼构造抬升速率的分布特征:祁连山东段抬升速率较低,中、西段较高,抬升速率最大处位于中段榆木山以西区域。
     综合分析以上研究结果,得到东西绵延约1000 km的北祁连山在10 Ma之前,侵蚀速率很小,周缘沉积速率较低,多为湖湘沉积,地形较平缓。近10-8 Ma以来,整个北祁连山开始同步快速抬升,抬升速率在空间分布上的差异导致山体海拔与地形起伏的差异,在晚中新世以来祁连山的抬升有后期加速的趋势。祁连山北部抬升速率的时空分布特征显示祁连山北缘断裂在深部是一条连在一起的深大断裂,其深度应该可达到地壳以下,祁连山东段的差异性抬升也揭示了祁连山块体的刚性特征。柴达木-祁连块体向北东运动的驱动力应主要来源于高原主体逐渐向北东方向推进的动力,阿尔金断裂的走滑是柴达木-祁连块体向北运动的边界表现。10-8 Ma以来,柴达木-祁连块体与北部较稳定的阿拉善块体的挤压可能发生在整个岩石圈厚度上,同时造成祁连山的逐步抬升。
The studies on the time and rate of uplift and deformation in the Tibetan Plateau have gained significant improvement along of numerous researches on the plateau and its surrounding mountains, although one of the basic theories that the dynamic mechanism of uplift and deformation of the plateau, is still in a heated controversy. In the northeast part of the Tibetan Plateau, the Qilian Shan, as the newest part of the plateau, would be one of the key areas in studying the mechanism of uplift and extension of the plateau. Most previous studies focused on slip rates on the Alyn-Tagh Fault in west end of the Qilian Shan, the Haiyuan Fault in the east and the faults on the mountain front of the Qilian Shan. Among these studies, data are accumulated in the Holocene, and the study on the deformation rate within the mountain range is lack. Limited by few study areas and relatively short time period, the temporal and spatial distributions of the deformation rates in the Qilian Shan are poorly displayed. Due to these problems, we conducted series studies on low-temperature thermochronology, river incision rates and stream long profiles in the northern Qilian Shan. Based on these studies, the temporal and spatial distributions of erosion rates and deformation in the Qilian Shan are analyzed in order to better recognize the deformation pattern of the Qilian Shan, and which will strongly help us to understand the dynamic mechanism of the uplift and extension in the northeastern Tibetan Plateau.
     In the eastern Qilian Shan, low-temperature thermochronology of apatite from Baishugou gives Fission Track ages of 56-80 Ma B.P. and (U-Th)/He ages of 22-45 Ma B.P. Modeling of thermo history by Fission Track length data indicates that rock has experienced a low cooling rate of 0.41-0.74℃/Ma from 80 Ma B.P. to 10 Ma B.P., and experienced a relatively fast cooling rate of 7.5±1.8℃/Ma since 10-8 Ma B.P. Spatial distributions of fission track ages and modeling cooling histories suggest that fast cooling/erosion rate is located in the upstream area of Huajian, where has a high topography and high relief, and that relatively lower cooling/erosion rate is located in downstream area of Huajia, where has a lower topography and a lower relief.
     Studies on the terrace ages in eastern Qilian Shan with OSL, ESR, and 14C dating methods document that rivers incision mainly happened on five periods:67-71 ka B.P.,-50 ka B.P.,30-37 ka B.P.,20-25 ka B.P. and recent 10 ka. During Holocene, rivers incised 1-3 times, and correspondingly 1-3 terraces were formed. With precisely GPS survey on terrace heights, rates of river incision are determined within 0.3 mm/a and 2.5 mm/a. From 70 ka B.P. to 10 ka B.P, incision rates did not change along with time in individual tectonic area, but vary among different tectonic area. These distribution characters of incision rates showed a steady state of tectonic uplift since 70 ka B.P. in each tectonic area and a different uplift rate in different area. In the Xiying River and the Nanying River, terrace surfaces were apparently deformed by tectonic deformation. The average vertical slip rates on Kangning thrust fault are calculated as 0.20±0.05 mm/a,0.20±0.11 mm/a,0.22±0.10mm/a and 0.68±0.30 mm/a, since 70 ka B.P.,50 ka B.P.,30 ka B.P. and 10 ka B.P., respectively. The average vertical thrust rate of Huangcheng-Taerzhuang fault in Huajian is determined as 0.22±0.07 mm/a since 50 ka B.P., and the average vertical slip rate of Nanying fault near Qinzuiwan is 0.21-0.37 mm/a since 70 ka B.P.
     Analysis of the longitudinal profiles of bedrock channels along the northern Qilian Shan reveals systematic differences in the channel steepness index along the trend of the frontal ranges. Local comparisons of channel steepness reveal that lithology and precipitation have limited influence on channel steepness. Similarly, there is little evidence suggesting that channel steepness is influenced by differences in.the sediment loads. We argue that the distribution of channel steepness in the Qilian Mountain is mostly the result of differential rates of rock uplift. Thus, channel steepness indices reveal a lower rock uplift rate in the eastern portion of the Qilian Mountain and a higher rate in the middle and west. The highest rates appear to occur in the middle-west portions of the range, just to the west of the Yumu Shan.
     Different geological evidences present that during 70 Ma B.P. and 10 Ma B.P., the northern Qilian Shan, with a low relief, had experienced a low erosion rate with low depositing rates in closure basins, and since 10-8 Ma, the mountain area began to uplift in a relatively fast rate. Comparing of thermochronology data distributed along the northern Qilian Shan indicates that the initiation of fast uplift of the mountain range was simultaneously along the northern Qilian Shan, although the uplift rate might be different, which led to different topographies. Fast river incision rate in late Pleistocene and depositing evidence showed an acceleration trend with the uplift rate since Miocene. The temporal and spatial distribution of uplift rates along the Qilian Shan reveal that the faults on the mountain front would be merging into a big fault in deep crust, and the magnitude of the fault indicates it may extend below the crust. Ohterwise, vary uplift rates bounded by thrust fault in eastern Qilian Shan also show a rigid character of the Qaidam-Qilian block. Based on these evidences, we propose that the movement of the Qaidam-Qilian block to northeast is probably driven by the movement of the Tibet Plateau in corresponding to the collision of Indian and Euro-Asian plates, and the slip of the Alyn-Tagh fault is acting as a boundary condition of the Qaidam-Qilian block. Since 10-8 Ma, the collision of Qaidam-Qilian block with Ala-Shan block was happened in whole lithosphere, and which induced the deformation and uplift of the northern Qilian Shan.
引文
Abdrakhmatov K Y, Aldazhanovf S A, Hagert B H, et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature,1996, 384:450-453
    Avouac J P, Tapponnier P, Bai M, et al. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research,1993,98:6755-6804
    Banerjee P, Burgmann R. Convergence across the northwest Himalaya from GPS measurements. Geophysical Research Letters,2002,29, doi:10.1029/2002GL015184
    Bilham R, Larson K, Freymueller J, et al. GPS measurements of present-day convergence across the Nepal Himalaya. Nature,1997,386:61-64
    Blythe A E, Burbank D W, Carter A, et al.. Plio-Quaternary exhumation history of the central Nepalese Himalaya:1. Apatite and zircon fission track and apatite U-Th/He analyses. Tectonics,2007,26:TC3002
    Brown E T, Stallard R F, Larsen M C, et al. Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth and Planetary Science Letters,1995,129:193-202
    Bullen M E, Burbank D W, Garver J I. Building the Northern Tien Shan:Integrated thermal, structural, and topographic constraints. Journal of geology,2003,111:149-165
    Burchfiel B C, Zhang P Z, Wang Y P, et al. Geology of the Haiyuan Fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics,1991,10:1091-1110
    Burbank D W, Blythe A E, Putkonen J, et al. Decoupling of erosion and precipitation in the Himalays. Nature,2003,426:652-655
    Burbank D, Leland J, Fielding E, et al. Bedrock incision, rock uplift and thresshold hillslopes in the northwestern Himalayas. Nature,1996,379:505-510
    Chen J, Heermance R, Burbank D W, et al. Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan. Journal of Geophysical Research,2007,112: B03S16
    Chevalier M L, Ryerson F J, Tapponnier P, et al. Slip-Rate Measurements on the Karakorum Fault May Imply Secular Variations in Fault Motion. Science,2005,307:411-414
    Clark M K, House M A, Royden L H, et al. Late Cenozoic uplift of southeastern Tibet. Geology, 2005,33:525-528
    Clark M K, Royden L H, Whipple K X, et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. Journal of Geophysical Research,2006,111: F03002
    Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration:Nature Geoscience,2010,3:209-213
    DeMets C, Gordon R G, Argus D F, et al. Current plate motions. Geophysical Journal International, 1990,101:425-478
    DeMets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic time scale on estimates of current plate motion. Geophysical Journal International,1994,21:2191-2194
    Ding Z L, Yang S L, Sun J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth and Planetary Science Letters,2001,185:99-108
    England P C, Houseman G A, Osmaston M F, et al. The mechanics of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,326:301-320
    Gabet E J, Burbank D W, Pratt-Sitaula B, et al. Modem erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters,2008,267:482-494
    Gabet E J, Pratt-Sitaula B A, and Burbank D W. Climatic controls on hillslope angle and relief in the Himalayas. Geology,2003,32:629-632
    Gao H S. Liu X F. Pan B T, et al. Stream response to Quaternary tectonic and.climatic change: Evidence from the upper Weihe River, central China. Quaternary International,2008, 186:123-131
    Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the Tianzhu gap', on the western Haiyuan Fault, Gansu (China). Geophysical Journal International,1995,120:599-645
    Geoge A D, Marshallsea S J, Wyrwoll K-H, et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology,2001,29:939-942
    Gilder S, Chen Y, Sen S. Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia. Journal of Geophysical Research-Solid Earth,2001,106:30505-30521
    Granger D E, Kirchner J W, Finkel R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediments. Journal of Geology,1996, 104:249-257
    Grujic D, Coutand I, Bookhagen B, et al., Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology,2006,34:801-804
    Harkins N, Kirby E, Heimsath A, et al. Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. Journal of Geophysical Research-Earth Surface,2007, 112:F03S04
    Hetzel R, Niedermann S, Tao M,et al. Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature,2002,417:428-432
    Hetzel R, Tao M X, Stokes S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics,2004,23:TC6006
    Hetzel R, Niedermann S, Tao M X, et al. Climatic versus tectonic control on river incision at the margin of NE Tibet:Be(10) exposure dating of river terraces at the mountain front of the Qilian Shan. Journal of geophysical Research,2006,111:F03012
    Huntington K W, Blythe A E, Hodges K V. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth and Planetary Science Letters,2006,252:107-118
    Kirby E, Harkins N, Wang EQ, et al. Slip rate gradients along the eastern Kunlun fault. Tectonics, 2007,26:TC2010
    Kohn M J, Wieland M S, Parkinson C D, et al. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters,2004,228:299-310
    Kumar S, Wesnousky S G, Rockwell T K, et al. Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science,2001,294:2328-2331
    Larson K M, Burgmann R, Bilham R. Kinematics of the india-Eurasia collision zone for GPS measurements. Journal of geophysical Research,1999,104:1077-1093
    Lasserre C, Gaudemer Y, Tapponnier P, et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. Journal of Geophysical Research,2002, 107:B112276
    Lave J and Avouac J P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research,2000,105:5735-5770
    Lave J and Avouac J P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research,2001,106:26561-26591
    Li H B, Van der Woerd J, Tapponnier P, et al. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw-7.9 Kokoxili earthquake. Earth and Planetary Science Letters,2005,237:287-299
    Li J J and Fang X M. Uplift of the Tibetan Plateau and environmental changes. Chinese Science Bulletin,1999,44:2117-2124
    Li J J, Fang X M, Ma H Z,et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Science in China. Series D, Earth Sciences,1996, 39:380-390
    Lin A M, Fu B H, Guo.J M, et al. Co-Seismic Strike-Slip and Rupture Length Produced by the 2001 Ms 8.1 Central Kunlun Earthquake/Science,2002,296:2015-2017
    Meriaux A S, Ryerson F J, Tapponnier P, et al. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research,2004,109:B06401
    Metivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China. Tectonics,1998,17:823-842
    Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International,1998,135:1-47
    Molnar P. Mio-pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica,2005,8:1-23
    Molnar P, Brown E T, Burchfiel B C, et al. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. Journal of geology,1994,102:583-602
    Molnar P and England P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature,1990,346:29-34
    Molnar P, England P C, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics,1993,31:357-396
    Molnar P and Ghose S. Seismic moments of major earthquakes and the rate of shortening across the Tien Shan. Geophysical Research Letters,2000,27:2377-2380
    Molnar P and Stock J M. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics,2009,28:TC3001
    Ouimet W, Whipple K, Royden L, et al. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere,2010,2:50-63
    Pan B T, Su H, Hu Z B, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:evidence from a 1.24 Ma terrace record near Lanzhou, China. Quaternary Science Reviews,2009,28:3281-3290
    Pan B T, Burbank D, Wang Y X, et al. A 900 ky record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology,2003,31:957-960
    Pan B T, Gao H S, Wu G J, et al. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China. Earth Surface Processes and Landforms,2007,32:143-154
    Pan B T, Geng H P, Hu X F, et al. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, NW China. Earth and Planetary Science Letters,2010,292:148-157
    Paul J, Burgmann R, Gaur V.K, et al. The motion and active deformation of India. Geophysical Research Letters,2001,28:647-650
    Powers P M. Lillie R J. Yeats R S. Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India. Geological Society of America Bulletin,1998,110:1010-1027
    Rea D K, Snoeckx H, and Joseph L H. Paleooceanography_Late Cenozoic eolian deposion in the North Pacific:Asian drying, Tibetan uplift, and, cooling of the northern hemisphere. Paleoceanography,1998,13:215-224
    Reigber C, Michel G W, Galas R, et al. New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters,2001,191:157-165
    Reiners P, Ehlers T, Mitchell S, et al. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature,2003,426:645-647
    Rowley D B and Currie B S. Palaeo-altimetry of the late Eocene to Micocene Lunpola basin, central Tibet. Nature,2006,439:677-681
    Scharer, K M, Burbank D W, Chen J, et al. Kinematic models of fl uvial terraces over active detachment folds:Constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan. GSA Bulletin,2006,118:1006-1021
    Shen Z K, Lu J N, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research-Solid Earth,2005,110: B11409
    Shen Z K, Wang M, Li Y, et al. Crustal deformation along the Altyn Tagh Fault system, western China, form GPS. Journal of Geophysical Research,2001,105:30607-30621
    Shen Z K, Zhao C K, Yin A, et al. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. Journal of Geophysical Research-Solid Earth,2000, 105:5721-5734
    Seong, Y B, Owen L A, Bishop M P, et al. Rates of fluvial bedrock incision within an actively uplifting orogen:Central Karakoram Mountains, northern Pakistan. Geomorphology,2008,97: 274-286
    Tapponnier P, Ryerson F J, Van der Woerd J, et al. Long-term slip rates and characteristic slip:keys to active fault behaviour and earthquake hazard. C R Acad Sci Paris, Earth Planet Sci,2001a, 333:483-494
    Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001b,294:1671-1677
    Thiede R C, Bookhagen B, Arrowsmith J R, et al. Climatic control on rapid exhumation along the Southern Himalayan Front. Earth and Planetary Science Letters,2004,222:791-806
    Thiede R C, Ehlers T A, Bookhagen B,et al. Erosional variability along the northwest Himalaya. Journal of Geophysical Research-Earth Surface,2009,114:F01015
    Thompson S C, Weldon R J, Rubin C M, et al. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research-Solid Earth,2002, 107:B92203
    Van der Woerd J, Ryerson F J, Tapponnier P, et al. Uniform slip-rate along the Kunlun Fault: Implications for seismic behavior and large-scale tectonics. Geophysical Research Letters, 2000,27:2353-2356.
    Van der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International,2002,148: 356-388.
    Wang Q, Zhang P, Freymueller J T, et al. Present-day crustal deformation in China constrained by Global Positioning System (GPS)measurements.Science,2001,294:574-577
    Wang X, Wang B, Qiu Z, et al. Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth and Planetary Science Letters,2003,208:253-269
    Wesnousky S G, Kumar S, Mohinda R, Thakur V C. Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics,1999,18:967-976
    Whipple K X, Kirby E, and Brocklehurst S H. Geomorphic limits to climate-induced increases in topographic relief. Nature,1999,401:39-43
    Wobus G, Heimsath A, Wipple K, et al. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature,2005,434:1008-1011
    Wobus C, Pringle M, Whipple K, et al. A Late Miocene acceleration of exhumation in the Himalayan crystalline core. Earth and Planetary Science Letters,2008 269:1-10
    Yin A, Dang Y, Wang L, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. GSA Bulletin,2008,120:813-846
    Yin A and Harrison T M. Geologic Evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci,2000,28:211-280
    Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin,2002, 114:1257-1295
    Zhang P Z, Molnar P, Burchfiel B C, et al. Bounds on the Holocene slip rate of the Haiyuan Fault, north-central China. Quaternary Research,1988,30:151-164
    Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,2004,32:809-812
    Zhang P Z, Molnar P and Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature,2001,410:891-897
    Zhang P Z, Molnar P, and Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics,2007,26:TC5010
    安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长.第四纪研究,2006,26:678-693
    陈发虎,李吉均,张维信.兰州黄土地层研究.In:中国第四纪冰川与环境研究中心,中国第四纪研究委员会(eds)中国西部第四纪冰川与环境.科学出版社,北京,pp 120-130
    陈杰,卢演俦,丁国瑜.祁连山西段酒西盆地区阶地构造变形的研究.西北地震学报,1998,20:28-36
    陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析(博士学位论文).北京:中国地震局地质研究所,2003:32-55
    方小敏,李吉均,朱俊杰.甘肃临夏盆地新生代地层绝对年代测定与划分.科学通报,1997,42:1457-1471
    方小敏,宋春晖,戴霜,等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录.地学前缘,2007,14:230-242
    方小敏,赵志军,李吉均,等.祁连山北缘老君庙北斜晚新生代磁性地层.中国科学D辑:地球科学,2004,34:97-106
    高红山,潘保田,邬光剑,等.祁连山东段河流阶地的形成时代与机制探讨.地理科学,2005,25:197-202
    国家地震局地质研究所,国家地震局兰州地震研究所.祁连山-河西走廊活动断裂系.北京:地 震出版社.1993,76-95
    何文贵,刘百篪,吕太乙.老虎山断裂带的分段性研究.西北地震学报,1994,16:66-72
    何文贵,刘百篪,袁道阳.冷龙岭活动断裂滑动速率研究.西北地震学报,2000,22:90-97
    李传友.青藏高原东北部几条主要断裂带的定量研究(博士学位论文).北京:中国地震局地质研究所.2005:193-203
    李吉均,方小敏,潘保田.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21:381-391
    刘建生,刘百篪,袁道阳.肃南断裂晚第四纪活动特征及古地震初步研究.中国活动断层研究,北京:地震出版社,1994,p.36-41
    潘保田,高红山,李炳元,等.青藏高原层状地貌与高原隆升.第四纪研究,2004,24:50-58
    潘保田,李吉均,朱俊杰,等.兰州地区黄河阶地发育与地貌演化.科学出版社,北京,1991,pp 271-277
    潘保田,邬光剑,王义祥.祁连山东段沙沟河阶地的年代与成因.科学通报,45:2669-2675
    宋春晖,方小敏,李吉均,等.青藏高原北缘酒西盆地13 Ma以来沉积演化与构造隆升.中国科学(D辑),2001,31:155-162
    汪新,Hubert-Ferrari A, Suppe J晚更新世以来南天山阿克苏地区地壳缩短率.地质科学,2001,36:195-202
    王瑜,万景林,李齐,等.阿尔金北段阿克塞-当金山口一带新生代山体抬升和剥蚀的裂变径迹证据.地质学报,2002,76:191-198
    闻学泽,徐锡伟,郑荣章,等.甘孜-玉树断裂的平均滑动速率与近代大地震破裂.中国科学(D辑),2003,33:200-208
    徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑),2003,33:151-162
    许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6:139-151
    袁道阳,张培震,方小敏.青藏高原东北缘临夏盆地晚新生代构造变形记过程.地学前缘,2007,14:243-250
    张培震.天山及其前陆盆地的晚新生代构造变形.科学通报,2003,48:2499-2500
    张培震,郑德文,尹功明.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究,2006,26:5-13
    郑德文,张培震,万景林,等.六盘山盆地热历史的裂变径迹证据.地球物理学报,2005,48:157-164
    郑文俊,张培震,袁道阳,等.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报,2009,52:2491-2508
    朱俊杰,曹继秀,钟巍,等.兰州地区黄河最老阶地与最老黄土沉积的发现及其古地磁年代学的研究.科学出版社,北京,1995
    Armstrong P, Ehlers T, Chapman D, et al. Exhumation of the central Wasatch Mountains, Utah:1. Patterns and timing of exhumation deduced from low-temperature thermochronology data. Journal of Geophysical Research,2003,108:B32172
    Bigazzi G The problem of the decay constant λf of 238U. Nucl Tracks,1981,5:35-44
    Braun J. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Scinece Letters,2002,200:331-343
    Corrigan J D. Inversion of apatite fission track data for thermal history information. Jounal of Geophysical Research,1991,96:10347-10360
    Crowley K D. Lenmodel-a forward model for calculating length distributions and fission-track ages in apatite. Computer Geoscience,1993,19:619-626
    Doson M. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology,1973,40:259-274
    Duddy I R, Green P F, Laslett G M. Thermal annealing of fission tracks in apatite.3. Variable temperature behaviour. Chemical Geology,1988,73:25-38
    Farley K, Wolf R, Silver L. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta,1996,60:4223-4229.
    Farley K. Helium diffusion from apatite:general behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research,2000,105:2903-2914.
    Farley K. (U-Th)/He dating techniques, calibrations and applications. Reviews in Mineralogy and Geochemistry,2002,47:819-843
    Fitzgerald P, Gleadow A J W. New approaches in fission track geochronology as a tectonic tool: Examples from the Transantarctic Mountains. Nucl Tracks Radiat Meas,1990,17:351-357
    Fleischer R L, Price P B, and Walker R M. Ion explosion spike mechanism for formation of charged particle tracks in solids. JAppl Phys,1965,36:3645-3652
    Fleischer R L, Price P B, and Walker R M. Nuclear tracks in Solids:Principles and Applications. University of California Press, Berkeley,1975.
    Gleadow A J W, Belton D X, Kohn B P, et al. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry,2002,48:579-630
    Gleadow A J W, Duddy I R, Lovering J F. Fission track analysis:A new tool for the evaluation of thermal histories and hydrocarbon potential. Austral. Petrol. Explor. Assoc. J.,1983,23:93-102
    Green P F, Duddy I R, Gleadow A J W, Tingate P R, Laslett G M. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chemical Geology,1986,59:237-253
    Green P F, Duddy I R, Laslett G M, et al. Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and extension to geological timescales. Chemical Geology,1989,79:155-182
    Hurford A J, Green P F. A user's guide to fission track dating calibration. Earth and Planetary Science letters,1982,59:343-354
    Hurford A J, Green P F. The zeta age calibration of fission-track dating. Isotope Geoscience,1983,1: 285-317
    House M, Farley K and Kohn B. An empirical test of helium diffusion in apatite:borehole data from the Otway basin, Australia. Earth and Planetary Science Letters,1999,170:463-474
    House M, Wernicke B, Farley K. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature,1998,396:66-69
    House M, Wernicke B, Farley K, et al. Cenozoic thermal evolution of the central Sierra Nevada from (U-Th)/He thermochronometry. Earth and Planetary Science Letters,1997,151:167-179
    Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics:Ⅲ. Exptrapolation to geological time scales. American Mineralogy,1999,84:1235-1255
    Laslett G M, Green P F, Duddy I R, Gleadow A J W. Thermal annealing of fission tracks in apatite.2. A quantitative analysis. Chemical Geology,1987,65:1-13
    Lippolt H, Leitz M, Wernicke R S, et al. (U-Th)/He dating of apatite:experience with samples from different geochemical environments. Chemical Geology,1994,112:179-191
    Paul T A and Fitzgerald P G. Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist,1993,77:336-344
    Persano C, Stuart F, Bishop P, et al. Apatite (U-Th)/He age constraints on the development of the Great Escarpment on the southestern Australian passive margin. Earth and Planetary Science Letters,2002, 200:79-90
    Price P B, Walker R M. Fossil tracks of charged particles in mica and the age of minerals. Jounal of Geophysical Research,1963,68:4847-4862
    Reiners P, Ehlers T, Garver J, et al. Late Miocence exhumation and uplift of the Washington Cascades. Geology,2002,30:767-770
    Reiners P, Ehlers T, Mitchell S, et al. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature,2003,426:645-647
    Reiners P W, Zhou Z, Ehlers T A, et al. Post-orogenic evolution of the Dabie Shan, Eastern China, from (U-Th)/He and fission-track thermochronology. American Jounal of Science,2003,303:489-518
    Rutherford E. Present problems in radioactivity. Pop Sci Monthly (May),1905,1-34
    Warnock A, Zeitler P, Wolf R, et al. An evaluation of low-temperature apatite (U-Th)/He thermochronometry. Geochimica et Cosmochimica Acta,1997,61:5371-5377
    Willet S D. Inverse modeling of annealing of fission tracks in apatite 1:A controlled random search method. American Journal of Science,1997,297:939-969
    Wolf R, Farley K, and Silver L. Helium diffusion and low temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta,1996,60:4231-4240
    Zeitler P, Herczig A, McDougall I, et al. U-Th-He dating of apatite:a potential thermochronometer. Geochimica et Cosmochimica Acta,1987,51:2865-2868
    Zheng D, Clark M K, Zhang P, et al., Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere,2010,6:1-5
    梁恕信,孙彤彰,韩友珍,等.中国第Ⅳ号地形断面大地热流研究.科学通报,1992,2:143-146
    袁万明,保增宽,董金泉,等.新疆土屋-延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析.中国科学(D辑),1997,37:1330-1337
    Champagnac J-D., Yuan D.Y., Ge W-P, et al. Slip rate at the north-eastern front of the Qilian Shan, China. Terra Nova,2010,22:180-187
    Godfrey-Smith D I. Optical dating studies of quartz and feldspar sediment extracts. Quaternary Science Reviews,1998,7:373-380
    Hurley D J. Optical dating of sediments. Nature,1985,313:105-107
    Pan B T, Gao H S, Wu G J, et al. Dating erosion surface and terraces in the eastern Qilian Shan, northwest China. Earth Surface Processes and Landforms,2006,32:143-154
    Rendell H M. Underwater bleaching of signals from sediment grains, new experimental data. Quaternary Geochronology,1994,13:433-435
    陈莹莹.晚更新世以来祁连山东段河流阶地研究.兰州大学硕士学位论文.2005.
    高红山,潘保田,李吉均.祁连山东段金塔河流域层状地貌时代与成因探讨.山地学报,2005,23:129-135
    高红山,潘保田,邬光剑,等.祁连山东段河流阶地的形成时代与机制探讨.地理科学,2005,25:197-202
    潘保田,邬光剑,王义祥,等.祁连山东段沙沟河阶地的年代与成因.科学通报,2000,45:2669-2675
    潘保田,高红山,李炳元等.青藏高原层状地貌与高原隆升.第四纪研究,2004,24:50-57
    邬光剑.祁连山东段0.8 Ma以来的构造隆升与气候变化.博士毕业论文,2001,p.60-68
    尹功明,林敏.沉积物电子自旋共振测年现状.核技术,2005,28:399-402
    业渝光,刁少波,和杰,等.南海ZQ_2孔和ZQ_4孔晚更新世ESR年代学研究.核技术,1997,8:46-49
    业渝光,刁少波,和杰.南黄海QC2孔的ESR年代学.海洋地质与第四纪地质,1996,16:97-102
    Antoine P, Lautridou J P, Laurent M. Long-term fluvial archives in NW France:response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. Geomorphology, 2000,33:183-207
    Antoine P, Lozouet N L, Chausse C, et al. Pleistocene fluvial terraces from northern France (Seine, Yonne, Somme):synthesis, and new results from interglacial deposits. Quaternary Science Reviews,2007, 26:2701-2723
    Bridgland D R. River terrace systems in north-west Europe:an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews,2000,19:1293-1303
    Bridgland D, Westaway R. Climatically controlled river terrace staircases:A worldwide Quaternary phenomenon. Geomorphology,2008a,98:285-315
    Bridgland DR, Westaway R. Preservation patterns of Late Cenozoic fluvial deposits and their implications:Results from IGCP 449. Quaternary International,2008b,189:5-38
    Bull W B. Threshold of critical power in streams. Geological Society of America Bulletin,1979,90: 453-464
    Bull W B. Steam-terrace genesis:implications for soil development. Geomorphology,1990,3:351-367
    Cordier S, Harmand D, Frechen M, et al. Fluvial system response to middle and upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris basin and Rhenish Massif). Quaternary Science Reviews,2006,25:1460-1474
    Formento-Trigilio M L, Burbank D W, Nicol A, et al. River response to an active fold-and-thrust belt in a convergent margin setting, North Island, New Zealand. Geomorphology,2003,49:125-152
    Hancock G S, Anderson R S. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geological Society of America Bulletin,2002,114:1131-1142
    Hetzel R, Niedermann S, Tao M X, et al. Climatic versus tectonic control on river incision at the margin of NE Tibet:Be(10) exposure dating of river terraces at the mountain front of the Qilian Shan. Journal of geophysical Research,2006,111:F03012
    Lave J and Avouac J P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research,2001,106:26561-26591
    Maddy D, Demir T, Bridgland D R, et al. An obliquity-controlled Early Pleistocene river terrace record from Western Turkey? Quaternary Research,2005,63:339-346
    Molnar P, Brown E T, Burchfiel B C, et al. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. Journal of geology,1994,102: 583-602
    Pan B T, Burbank D, Wang Y X, et al. A 900 ky record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology,2003,31:957-960
    Pan B T, Geng H P, Hu X F, et al. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, NW China. Earth and Planetary Science Letters,2010,292:148-157
    Pan B T, Su H, Hu Z B, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:evidence from a 1.24 Ma terrace record near Lanzhou, China. Quaternary Science Reviews,2009,28:3281-3290
    Schumm S A. River response to baselevel change:implications for sequence stratigraphy. Journal of Geology,1993,101:279-294
    Vandenberghe J. The fluvial cycle at cold-warm-cold transitions in lowland regions:A refinement of theory. Geomorphology,2008,98:275-284
    Wegmann K W, Pazzaglia F J. Holocene strath terraces, climate change, and active tectonics:The Clearwater River basin, Olympic Peninsula, Washington State. Geological Society of America Bulletin,2002,114:731-744
    Yang X P, Zhu Z D, Jaekel D, et al. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang, China:the relationship between high mountain glaciation and landscape evolution in foreland desert regions. Quaternary International,2002,97-8:155-166
    高红山,潘保田,邬光剑,等.祁连山东段河流阶地的形成时代与机制探讨.地理科学,2005,25:197-202
    邬光剑.祁连山东段0.8 Ma以来的构造隆升与气候变化.博士毕业论文,2001,p.60-68
    Duvall A, Kirby E, Burbank D. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. J Geophys Res-Earth,2004,109:F03002
    Flint J J. Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 1974,10:969-973
    Finnegan N J, Roe G, Montgomery D R, et al. Controls on the channel width of rivers:Implications for modeling fluvial incision of bedrock. Geology,2005,33:229-232
    Hack J T. Studies of longitudinal stream profiles in Virginia and Maryland. US Geol Surv Prof Pap,1957, 294:45-97
    Hetzel R, Niedermann S, Tao M X, et al. Low slip rates and long-term preservation of geomorphic features in Central Asia. Science,2002,417:428-432
    Hetzel R, Tao M X, Stokes S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics, 2004,23:TC6006
    Hetzel R, Niedermann S, Tao M X, et al. Climatic versus tectonic control on river incision at the margin of NE Tibet:Be(10) exposure dating of river terraces at the mountain front of the Qilian Shan. J Geophys Res,2006,111:F03012
    Howard A D, Dietrich W E,Seidl M A. Modeling fluvial erosion on regional to continental scales. J Geophys Res-Earth,1994,99:13971-13986
    Howard A D, Kerby G. Channel Changes in Badlands. Geol Soc Am Bull,1983,94:739-752
    Kirby E, Whipple K X. Quantifying differential rock-uplift rates via stream profile analysis. Geology, 2001,29:415-418
    Kirby E, Whipple K X, Tang W Q, et al. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau:Inferences from bedrock channel longitudinal profiles. J Geophys Res-Sol Ea, 2003,108:B42217
    Moglen G E, Bras R L. The Effect of Spatial Heterogeneities on Geomorphic Expression in a Model of Basin Evolution. Water Resour Res,1995,31:2613-2623
    Molnar P, Anderson R S, and Anderson S P. Tectonics, fracturing of rock, and erosion. J Geophys Res-Earth,2007,112:F03014
    Montgomery D R. Observations on the role of lithology in strath terrace formation and bedrock channel width. Am J Sci,2004,304:454-476
    Montgomery D R, Gran K B. Downstream variations in the width of bedrock channels. Water Resour Res, 2001,37:1841-1846
    Pan B T, Gao H S, Wu G J, et al. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China. Earth Surf Proc Land,2007,32:143-154
    Snyder N P, Whipple K X, Tucker G E, et al. Landscape response to tectonic forcing:Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol Soc Am Bull,2000,112:1250-1263
    Snyder N P, Whipple K X, Tucker G E, et al. Channel response to tectonic forcing:field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology,2003,53:97-127
    Sklar L S, Dietrich W E, River Longitudinal Profiles and Bedrock Incision Models:Stream Power and the Influence of Sediment Supply, in Rivers Over Rock:Fluvial Processes in Bedrock Channels, K J Tinkler,E E Wohl, Editors.1998, Geoph Monog:Washington, D C. p.237-260.
    Sklar L S, Dietrich W E. Sediment and rock strength controls on river incision into bedrock. Geology, 2001,29:1087-1090
    Sklar L S, Dietrich W E. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour Res,2004,40:W06301
    Sklar L S, Dietrich W E. The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation-abrasion incision model. Geomorphology,2006,82:58-83
    Stock J D, Montgomery D R. Geologic constraints on bedrock river incision using the stream power law. J Geophys Res-Sol Ea,1999,104:4983-4993
    Tapponnier P, Meyer B, Avouac J P, et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet Sci Lett,1990,97:382-403
    Whipple K X. Fluvial landscape response time:How plausible is steady-state denudation? Am J Sci, 2001,301:313-325
    Whipple K X, Hancock G S, Anderson R S. River incision into bedrock:Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol Soc Am Bull,2000,112:490-503
    Whipple K X, Tucker G E. Dynamics of the stream-power river incision model:Implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res-Sol Ea,1999,104:17661-17674
    Wobus C, Whipple K X, Kirby E, et al. Tectonics from topography:Procedure, promise, and pitfalls. Geol S Am S,2006,398:55-74
    Zaprowski B J. Pazzaglia F J.Evenson E B. Climatic influences on profile concavity and river incision. J Geophys Res-Earth,2005,110:F03004
    陈杰,卢演俦,丁国瑜.祁连山西段酒西盆地区阶地构造变形的研究.西北地震学报,1998,20:28-36
    国家地震局地质研究所,国家地震局兰州地质研究所.河西走廊-祁连山活动断裂系.北京:地震出版社,1993.74-94
    赵井东,周尚哲,崔健新,等.摆浪河流域的ESR年代学与祁连山第四纪冰期新认识.山地学报,2001,19:481-488
    中国地质科学院成都地质矿产研究所.青藏高原及邻区地质图(1:1500000).北京:地质出版社,2007.3-41
    Champagnac J D, Yuan D Y, Ge W P, et al. Slip rate at the north-eastern front of the Qilian Shan, China. Terra Nova,2010,22:180-187
    Clark M K, Farley K A, Zheng D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth and Planetary Science Letters,2010,296:78-88
    England P C, Houseman G A, Osmaston M F, et al. The mechanics of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,326:301-320
    Fang X M, Zhao Z J, Li J J, et al. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. Science in China (Series D),2005,48:1040-1051
    Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the Tianzhu gap', on the western Haiyuan Fault, Gansu (China). Geophysical Journal International,1995,120:599-645
    Geoge A D, Marshallsea S J, Wyrwoll K H, Chen J, et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology,2001,29:939-942
    Hetzel R, Niedermann S, Tao M X, et al. Climatic versus tectonic control on river incision at the margin of NE Tibet:Be(10) exposure dating of river terraces at the mountain front of the Qilian Shan. Journal of geophysical Research,2006,111:F03012
    Hetzel R, Tao M X, Stokes S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics,2004,23:TC6006
    Hu X F, Pan B T, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chinese Science Bulletin,2010,55:3205-3214
    Lasserre C, Gaudemer Y, Tapponnier P, et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. Journal of Geophysical Research,2002, 107:B112276
    Meriaux A S, Ryerson F J, Tapponnier P, et al. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research,2004,109:B06401
    Molnar P, England P C, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics,1993,31:357-396
    Pan B T, Wu G J, Wang Y X, et al. Age and genesis of the Shagou River terraces in eastern Qilian Mountains. Chinese Science Bulletin,2001,46:509-513
    Shen Z K, Wang M, Li Y, et al. Crustal deformation along the Altyn Tagh Fault system, western China, form GPS. Journal of Geophysical Research,2001,105:30607-30621
    Song C H, Fang X M, Li J J, et al. Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan Plateau since 13 Ma BP. Science in China (Series D),2001,44: 192-202
    Tapponnier P, Meyer B, Avouac J P, et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth and Planetary Science Letters,1990,97:382-403
    Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001,294:1671-1677
    Van der Woerd J, Xu X, Li H, et al. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China). Journal of geophysical Research,2001,106: 30475-30504
    Yin A, Dang Y, Wang L, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. GSA Bulletin,2008,120:813-846
    Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin,2002, 114:1257-1295
    Zhang P Z, Molnar P, and Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics,2007,26:TC5010
    Zhang P Z, Shen Z K, Min W, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,2004,32:809-812
    Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere,2010,6:1-5
    陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析(博士学位论文).北京:中国地震局地质研究所,2003,p.32-55
    国家地震局地质研究所,国家地震局兰州地震研究所.祁连山-河西走廊活动断裂系.北京:地震出版社.1993,76-95
    李传友.青藏高原东北部几条主要断裂带的定量研究(博士学位论文).北京:中国地震局地质研究所.2005,p.193-203
    潘保田,高红山,李炳元等.青藏高原层状地貌与高原隆升.第四纪研究,2004,24:50-57
    许志琴,杨经绥,姜枚等.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6:139-151
    赵井东,周尚哲,崔健新等.摆浪河流域的ESR年代学与祁连山第四纪冰期新认识.山地学报,2001,19:481-488
    郑文俊,张培震,袁道阳,等.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报,2009,52:2491-2508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700