用户名: 密码: 验证码:
CHIRP子脉冲非线性频率步进信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
距离维高分辨宽带体制雷达是现代雷达发展的一个重要方向。合成宽带技术是目前雷达技术研究的热点之一,利用合成宽带技术可以降低距离维高分辨宽带体制雷达系统实现的难度和成本,使对目标一维距离成像在实际雷达系统中实现成为可能。利用合成宽带技术实现距离维高分辨可以有多种方式,本论文着重对一种由线性频率步进技术衍变提出的Chirp子脉冲非线性频率步进技术的特性和处理方法进行研究。
     对于非线性频率步进技术的研究,国内外尚处于起步阶段。Chirp子脉冲非线性频率步进技术不但兼有线性频率步进技术和线性调频技术的优点,还能更好的抑制高分辨一维距离像的距离副瓣和栅瓣,提供更高的速度分辨率,在距离维高分辨宽带体制雷达中具有重要应用价值。本论文对这种Chirp子脉冲非线性频率步进信号的特性和处理技术作了创新性和系统性研究,对其中存在的各种问题进行理论分析并加以解决。主要工作如下:
     1.对Chirp子脉冲非线性频率步进信号进行了深入理论分析,推导了其模糊函数,宽带频谱结构特性,研究了其合成高分辨一维距离像的基本处理过程。
     2.分析了子脉冲相参积累模拟加权的参数选择方法,对高分辨一维距离像的主副比、主瓣展宽系数以及输出信噪比进行了理论推导和仿真。研究了Chirp子脉冲非线性频率步进信号的栅瓣特性,提供了参数选择和子脉冲扩展自相关两种方法抑制和消除栅瓣。
     3.详尽分析了Chirp子脉冲非线性频率步进信号的多普勒效应及其对合成高分辨一维距离像的影响,推导了目标运动参数估计的Cramer-Rao限。在总结线性频率步进信号运动补偿方法的基础上,提出多普勒匹配滤波法和最小步进误差法两种可以实用的方法对目标运动参数进行估计和补偿以及算法的系统实现方案。分析了两种算法的性能和不同参数对估计精度的影响,并通过仿真与Cramer-Rao限进行比较验证。同时提出一种解速度模糊的方法。
     4.对Chirp子脉冲非线性频率步进信号合成的高分辨一维距离像存在混叠、冗余和多目标折叠的现象进行了分析,指出这些现象与Chirp子脉冲非线性频率步进信号参数选择的关系。文中总结了Chirp子脉冲非线性频率步进信号的载频步进间隔、子脉冲脉宽、子脉冲重复周期、子脉冲带宽、采样间隔等参数的选取准则,并采用参数选择和目标抽取结合的方法获得真实完备的高分辨一维距离像。
High range resolution radar is an important aspect in the development of modern radar. It is possible to achieve the one-dimensional range profile of the targets in practical radar system by applying the synthetic wideband technology, which can decrease the difficulty of realization of the practical radar system and the system cost comparing to a traditional way. It is also one of the hot topics in recent years. This dissertation focuses on the theory analysis and signal processing technology of a kind of non-linear stepped-frequency chirp pulse train modified from linear stepped-frequency chirp pulse train.
     The research on the non-linear stepped-frequency technology is still a curtail step in the world. The non-linear stepped-frequency technology not only inherits the merits of linear stepped-frequency and chirp technology, but also provides a better suppression level of range side lobes and grating lobes of the one-dimensional range profile and a better Doppler resolution, which has great value in practical engineering. The dissertation presents a novel and systematic investigation on its characteristics and signal processing technology and proposes several methods to resolve the questions occurring in signal processing.
     The main research work is as follows:
     1. The characteristics of the non-linear stepped-frequency chirp pulse train were analyzed intensively and its ambiguity function and spectrum structure were derived. The process of achieving high range resolution by non-linear stepped- frequency chirp pulse train is also studied.
     2. The parameter selection rule of the approximate weighting by sub-pulse coherent integration and its compare to traditional weighting were analyzed. The ratio of main lobe to sidelobes, coefficient of main lobe wideness and signal-to-noise ratio improvement caused by approximate weighting were derived theoretically. The characteristics of grating lobes of non-linear stepped-frequency chirp pulse train were researched and two methods, systematic parameter selection and sub-pulse extended correlation, were provided to suppress and nullify them.
     3. The Doppler Effect of the non-linear stepped-frequency chirp pulse train introduced by target motion and its effect on synthesizing the one-dimensional range profile were analyzed in detail. The theoretical Cramer-Rao bound of motion parameter estimation was also derived. Two novel and applicable methods, Doppler matched filtering algorithm and least step error algorithm, were proposed to estimate the motion parameter accurately and compensate the Doppler Effect based on the traditional methods applied to the linear stepped-frequency chirp pulse train. Their performance and effect on the estimation accuracy of different parameters and their effectiveness were analyzed and demonstrated by comparing to the theoretical Cramer-Rao bound.
     4. The reason of alias, redundancy and replication occurring in the one-dimensional range profile synthesized by the non-linear stepped-frequency chirp pulse train were analyzed. The principle of the parameter selection such as frequency step size, sub-pulse duration, pulse repetition time, sub-pulse bandwidth, sampling rate and etc. was summarized to avoid the above problems and a combination of parameter selection and target pick-up method was proposed to obtain a real and entire one-dimensional range profile.
引文
[1]贾玉贵.现代对空情报雷达.北京:国防工业出版社,2004,12-17
    [2]杨建宇.低空目标的雷达探测与跟踪技术研究.国防报告,电子科技大学,2005
    [3]刘海英.美国关注巡航导弹的防御.飞航导弹,1999,(1):25-27
    [4]杨茜,刘英姿.美国寻求探测隐身巡航导弹的系统.飞航导弹,1999,(1):33-34
    [5] L. O. Upton, L. A. Thurman. Radars for the detection and tracking of cruise missiles. Lincoln Laboratory Journal, 2000, 12(2):355-366
    [6] M. Skolnik, G. Linde, K. S. Meads. An advanced wideband air-surveillance radar. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1162-1175
    [7] Y. D. Shirman, S. P. Leshchenko, V. M. Orlenko. Wideband radar (advantages and problems), ultrawideband and ultrashort impulse signals, 2004 Second International Workshop, 2004, 71-76
    [8] A. Becker, L. F Chevalier. Wideband coherent airborne radar system: performances for moving target detection. CIE International Radar Conference, 2001, 146-149
    [9] J. A. Malas, K. M. Pasala, J. Westerkamp. Automatic target classification of slow moving ground targets in clutter. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1):914-924
    [10] I. Y. Immoreev. Ultra-wideband radars: features and ways of development. Radar Conference, European, 2005, 97-100
    [11]龚耀寰.自适应滤波-时域自适应滤波与智能天线.北京:电子工业出版社,2003,375-379
    [12] D. K. Barton. Low-angle radar tracking. Proceedings of the IEEE, 1974, 62(6): 687-704
    [13] K. Nakatsuka.Two-beam technique for tracking a target at low elevation angle. IEEE Proceedings, 1990, 137(6):397-406
    [14] D. K. Barton. Radar in the twentieth century. IEEE Transactions on Aerospace and Electronic Systems Magazine, Jubilee Issue, 2000, 27-36
    [15]孙文峰.宽带毫米波雷达精确制导信息处理方法研究:[博士学位论文].长沙:国防科技大学,1998
    [16] K.Ruttenberg, L.Chanzit. High range resolution by means of pulse to pulse frequency shifting, EASCON, 1968, Vol.47
    [17] T. H. Einstein. Generation of high resolution radar range profiles and range profile auto-correlation functions using stepped-frequency pulse trains. Project Report TT-54, Lexington, Massachusetts Institute of Technology, 1984
    [18] D. E. Maron. Frequency-jumped burst waveforms with stretch processing. IEEE 1990 international radar conference, 1990:274-279
    [19] A. Paulose. High radar range resolution with the step frequency waveform:[硕士学位论文]. Monterey:Naval Postgraduate School, 1994
    [20] D. R. Wehner. High resolution radar (second edition). Norwood: Artech House Inc, 1995, 157-182
    [21] G. S. Gill, J. C. Huang. Analysis of step frequency radar using ambiguity function. SPIE, Conference on Radar Processing, Technology, and Applications, 1996, Vol.2845:333-342
    [22] G. S. Gill, J. C. Huang. The ambiguity function of the step frequency radar signal processor. CIE International Radar Conference, 1996:375-380
    [23] G. S. Gill. Waveform generation and signal processing in ultra-wideband radar. SPIE Conference on Signal and Data Processing of Small Targets, 1994, Vol.2235:118-128
    [24] S. Chakrabarti, P. Kannagaratnam, P. Gogineni. Model-based technique for super resolution and enhanced target characterization using a step-frequency radar simulation study. Geoscience and Remote Sensing Symposium, 1996, Vol.3:1867-1869
    [25] P. Wheeler, D. J. Daniels. Ultra-wideband impulse radar. IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, 1996, Vol.1:171-175
    [26] A. J. Wilkinson, R. T. Lord, M. R. Inggs. Stepped-frequency processing by reconstruction of target reflectivity spectrum. Proceedings of the 1998 South African Symposium on Communications and Signal Processing, 1998:101-104
    [27] M. E. Clark. High range resolution radar techniques and the wavelet transform. IEE Seminar on Time-scale and Time-Frequency Analysis and Applications (Ref. No. 2000/019), 2000, Vol.10:1-7
    [28] B. C. Flores, A. Martinez, J. Hammer. Optimization of high-resolution-radar motion compensation via entropy-like functions. Antennas and Propagation Society International Symposium, 1993, Vol.3:1906-1909
    [29] Yubin Ma. Velocity compensation in stepped frequency radar:[硕士学位论文]. Monterey:Naval Postgraduate School, 1995
    [30] G. S. Gill. Step frequency waveform design and processing for detection of moving targets in clutter. IEEE International Radar Conference, 1995:573-578
    [31] G. S. Gill. Simultaneous pulse compression and Doppler processing with step frequency waveform. Electronics Letters, 1996, 32(23):2178-2179
    [32] S. K. Wong. Distorting effects on the high-range-resolution profile of a target due to small random rotational motion of the target. SPIE Conference on Radar Processing. Technology and Applications III, 1998, Vol.3462:308-319
    [33] S. Uratsuka, K. Okamoto, F. Nishio, etal. Step frequency radar experiments on the Antarctic sea ice. Geoscience and Remote Sensing Symposium, 1988, Vol.3:1703-1706
    [34] Y. Hua, E. Baqai, Y. Zhu. Imaging of point scatterers from step-frequency ISAR data. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1):195-205
    [35] B. R. Mahafza, D. L. Knight, N.F. Audeh. Angular stepped frequency target detection technique. IEEE Proceedings of Aerospace Applications Conference, 1996, Vol.2:367-371
    [36] R. T. Lord, M. R. Inggs. High resolution SAR processing using stepped-frequencies. Geoscience and Remote Sensing Symposium, 1997, Vol.1:490-492
    [37] D. A. Noon, I. D. Longstaff, G. F. Sickley. Wideband quadrature error correction (using SVD) for stepped-frequency radar receivers. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4):1444-1449
    [38] P. Berens. SAR with ultra-high range resolution using synthetic bandwidth. Geoscience and Remote Sensing Symposium, 1999, Vol.3:1752–1754
    [39] H. Yamaguchi, A. Kajiwara, S. Hayashi, etal. Target detection in ground clutter with stepped frequency CFAR detector at millimeter-wave. CIE International Radar Conference, 2001:363-367
    [40] G. S. Wallinga, E. J. Rothwell, K. M. Chen, etal. Enhanced detection of a target in a sea clutter environment using a stepped, ultra-wideband signal and E-pulse cancellation. IEEE Transactions on Antennas and Propagation, 2001, 49(8):1166-1173
    [41] J. Park, C. Nguyen. A new millimeter-wave step-frequency radar sensor for distance measurement. IEEE Microwave and Wireless Components Letters, 2002, 12(6):221-222
    [42] W. Nel, J. Tait, R. Lord, etal. The use of a frequency domain stepped frequency technique to obtain high range resolution on the CSIR X-band SAR system. IEEE Africon Conference, 2002, Vol.1:327-332
    [43] H. Yamaguchi. Target detection in ground clutter with W-band stepped frequency polarimetric radar system. IEE Conference Radar 2002, 2002:258-262
    [44] Qun Zhang, T. S. Yeo, G. Du. ISAR imaging in strong ground clutter using a new stepped-frequency signal format. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5):948-952
    [45] S. D. Fisher, M. A. Richards, G. A. Showman. An inverse polar format algorithm for turntable spotlight ISAR imaging systems using stepped frequency waveforms. IEEE International Radar Conference, 2004:212-217
    [46]王华力,李兴国.高距离分辨率脉间频率步进系统的探讨.现代雷达,1995,17(1):91-99
    [47]郑学合.频率步进雷达信号的模糊函数.火控雷达技术,1997,26(4):7-12
    [48]王一丁,李兴国,宁军.频率步进雷达信号的模糊函数.现代雷达,1997,19(6):6-11
    [49] Daiyin Zhu, Zhaoda Zhu, Mingzhen Dai. Autofocusing of synthetic HRR radar using stepped-frequency waveforms. Transactions of Nanjing University of Aeronautics and Astronautics, 1999, 16(1):12-18
    [50]黄德双.高分辨雷达智能信号处理.北京:机械工业出版社,2001,33-42
    [51] Qiongzhi Wu, Teng Long, Dan Li, etal. Conical scan step-frequency radar signal processing. CIE International Radar Conference, 2001:576-580
    [52]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报,2001,22(增):16-25
    [53]徐光进,牟善祥.脉间步进频率雷达波形设计分析.现代雷达,2001,23(2):12-13
    [54]王一丁,纪慧波,洪峻,等.带限条件下雷达信号的超分辨处理方法.系统工程与电子技术,2002,24(7):113-115
    [55]刘静,李兴国,顾玉辉.频率步进雷达关键技术的研究.制导与引信,2003,24(4):24-28
    [56]吴琼之,龙腾,王飞.步进频率圆锥扫描雷达信号处理.兵工学报,2003,24(2):188-192
    [57]姜海明.频率步进雷达导引头信号处理系统研究:[硕士学位论文].南京:南京理工大学,2006
    [58]文树梁,袁起,秦忠宇.一种宽带相控阵雷达合成高分辨率波形方法.信号处理,2007, 23(1):1-5
    [59]龙腾.高分辨率雷达数字信号处理:[博士学位论文].北京:北京理工大学,1995
    [60]龙腾.频率步进雷达信号的多普勒性能分析.现代雷达,1996,18(2):31-37
    [61]陈广飞,张润宁.线性频率步进脉冲串信号的多普勒相位补偿.中国空间科学技术,1997,(1):1-8
    [62]李刚,朱敏慧,朱锡兴.基于小波变换的合成孔径雷达运动目标多普勒参数提取算法.电子科学学刊,1998,20(2):151-156
    [63]郑学合.跳频序列宽带雷达信号的研究.火控雷达技术,1998,27(3):16-20
    [64]蒋楠稚,王毛路,李少洪,等.频率步进脉冲距离高分辨一维成像速度补偿分析.电子科学学刊,1999,21(5):665-670
    [65]刘峥,刘宏伟,张守宏.正负步进频率编码信号及其处理.信号处理,1999,15(增):21-25
    [66]刘峥,刘宏伟,张守宏.步进频率信号分析.西安电子科技大学学报,1999,26(1):71-74
    [67]刘峥,张守宏.频率编码脉冲信号的模糊函数与编码优化.系统工程与电子技术,1999,21(11):38-40
    [68] Yiying Shen, Yongtan Liu. A step pulse train design for high resolution range imaging with Doppler resolution processing. Chinese Journal of Electronics, 1999, 8(2):196-199
    [69]安建平,张润宁,白克壮.应用于SAR的一种波形及多普勒效应补偿技术.系统工程与电子技术,2000,22(1):59-62
    [70]刘峥,张守宏.步进频率雷达目标的运动参数估计.电子学报,2000,28(3):43-45
    [71]张群,张涛,马长征,等.步进频率逆合成孔径雷达成像的一种运动补偿方法.西安电子科技大学学报(自然科学版),2000,27(3):270-272
    [72] Wen Lei, Teng Long, Yueqiu Han. Moving targets imaging for stepped frequency radar. The 5th International Conference on Signal Processing Proceedings, 2000, Vol.3:1851-1855
    [73]牟善祥,孔德春,纪小利,等.频率步进雷达信号的脉组分析与处理.现代雷达,2001,23(2):43-44
    [74]姜义成,刘永坦.毫米波雷达阶跳频信号分析及运动补偿方法的实现.高技术通讯,2001, 41-43
    [75] Qiongzhi Qu, Fei Wang, Teng Long. Velocity compensation methods for the conical scan step-frequency waveform. IEE Conference Radar 2002, 2002:488-491
    [76] Haiying Li, Ruliang Yang. Analysis of radial velocity effect on synthetic range profile of stepped-frequency waveform. Geoscience and Remote Sensing Symposium, 2002, Vol.6:3689-3691
    [77]石志广,付强.一种运动目标距离像的速度补偿方法.制导与引信,2002,23(3):14-17
    [78]张旭东,付强,庄钊文.高分辨距离像的运动参数估计.电子学报,2002,30(3):386-389
    [79]凌茵.步进频率信号处理.图像仿真信息技术——第二届联合学术会议论文集, 2002,362-365
    [80]李海英,杨汝良.径向速度对频率步进雷达目标距离像的影响分析.电子与信息学报,2003,25(5):592-597
    [81]沈吉,向锦武,祁载康.目标运动对步进频率毫米波雷达图像匹配识别的影响研究.电子学报,2003,31(3):345-348
    [82]黄晓宇,沈福民.一种新的跳频脉冲信号的运动补偿方法.现代雷达,2003,25(8):20-22
    [83]刘静,李兴国.毫米波高分辨率雷达运动补偿研究.现代雷达,2004,26(7):21-23
    [84] Hongyan Su, Teng Long, Peikun He. Moving target imaging for the modulated frequency stepped pulse radar signal. The 5th International Conference on Signal Processing Proceedings, 2004, Vol.3:2171-2174
    [85]王瑜,秦忠宇,文树梁.高分辨雷达去斜处理一维距离像速度补偿技术.系统工程与电子技术,2004,26(12):1757-1759
    [86]黄小红,陈曾平,庄钊文,等.空间目标高分辨距离像运动参数估计.宇航学报,2004, 25(3):269-272
    [87]金添,黄晓涛,常文革.目标高速运动对一维像的影响及其校正方法.系统工程与电子技术,2004,26(8):1019-1022
    [88]沈吉,向锦武,祁载康,等.目标运动对步进频率毫米波雷达锥扫测角的影响研究.电子学报,2004,32(6):987-989
    [89]洪香茹,杜自成,张云展.频率步进信号“目标分裂”现象的补偿方法.火控雷达技术,2004,33(2):16-19
    [90]牛涛,陈卫东.脉冲步进频率雷达的一种运动补偿新方法.中国科学技术大学学报,2005,35(2):161-166
    [91]徐泳,马林.目标径向运动对步进频率雷达影响的分析与仿真.现代雷达,2005, 27(12):49-52
    [92]刘波,金林,潘健.步进频率雷达目标径向速度的估计.北京邮电大学学报,2005, 28(增):87-89
    [93]沈广才,沈福民.基于最小波形熵的运动补偿逆梯度参数搜索法.火控雷达技术,2005,34(3):28-31
    [94]王卫江,沈亭芝.步进频信号处理的多普勒补偿新方法.北京理工大学学报,2006, 26(4):353-355
    [95] Hangyong Chen, Yongxiang Liu, Weidong Jiang, etal. A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms. IEEE Geoscience and Remote Sensing letters, 2006, 3(3):406-409
    [96] Lixiang Ren, Erke Mao. Study on HPRF pulsed Doppler stepped frequency radar system. CIE International Radar Conference, 2006:1-4
    [97] Yunxia Bao, Peikun He, Erke Mao. Study on velocity measurement of stepped-frequency pulse train radar signals. Sixth international Symposium on Instrumentation and Control Technology Signal Analysis, Measurement Theory, Photo-Electronic Technology and Artificial Intelligence, 2006, Vol.6357:635711-1-635711-5
    [98]陈行勇,刘永祥,黎湘,等.步进频率信号相位对消合成运动目标距离像.电子与信息学报,2007,29(4):815-818
    [99]杨陈,李立萍,杨晓波.低信噪比下频率步进雷达运动目标参数估计.信息与电子工程,2007,5(4):263-266
    [100]陈付彬,石志广,翟庆林,等.高速运动雷达目标一维成像新方法.现代雷达,2007, 29(11):40-43
    [101]任丽香,龙腾,远海鹏.HPRF脉冲多普勒频率步进雷达信号处理与参数设计.电子学报,2007,35(9):1630-1636
    [102]王桂丽,李兴国.频率步进和脉冲多普勒复合测速研究.红外与毫米波学报,2008,27(3):190-192
    [103]包云霞,毛二可,何佩琨.基于一维高分辨距离像的相关测速补偿算法.北京理工大学学报,2008,28(2):160-163
    [104]王振荣,文宏武.脉间变频格式高距离向分辨力成像方法中系统误差的研究.电子学报,1995,23(12):82-85
    [105]郑学合.振动对步进频率合成距离像的影响分析.制导与引信,1997,3:1-5
    [106]李跃华,李兴国,汪敏.频率步进雷达距离像的成像方法及误差分析.弹道学报,1998,10(2):42-45
    [107]杨军,姚军奎,郭英辉,等.毫米波频率步进雷达脉冲波形对目标辨别的影响.兵工学报,1998,19(4):322-326
    [108] Yuehua Li, Xingguo Li, Min Wang. An analysis of signal of MMW step frequency high resolution radar with MUSIC algorithms. International Conference on Microwave and Millimeter Wave Technology Proceedings, 1998:443-447
    [109]蒋楠稚,王毛路,李少洪,等.雷达目标窄带合成距离高分辨成像的聚焦技术与用于目标识别的研究.航空学报,1998,19(7):29-33
    [110]李跃华,李兴国.基于子波变换谱估计的频率步进毫米波雷达目标成像.南京理工大学学报,1999,23(2):133-136
    [111]刘峥,张守宏.毫米波单脉冲雷达目标二维结构成像方法.Journal of Xidian University, 1999, 26(3):281-285
    [112]王一丁,高上凯.基于连续小波变换的雷达信号处理.信号处理,1999,15(3):271-274
    [113]李跃华,李兴国.小波谱估计用于雷达目标成像和识别.红外与毫米波学报,1999,18(4):283-288
    [114]李跃华,李兴国.Music法用于频率步进毫米波雷达目标回波信号分析.电子测量与仪器学报,1999,13(2):1-5
    [115]刘峥,张守宏.跳频脉冲雷达目标的距离-多普勒成像.电子科学学刊,2000, 22(5):741-746
    [116]李眈,龙腾.步进频率雷达目标去冗余算法.电子学报,2000,28(6):60-63
    [117]沈吉,向锦武,祁载康.IFFT步长对步进频率毫米波导引头动目标辨识的影响研究.弹箭与制导学报,2001,21(4):21-26
    [118]龙腾,李眈.频率步进雷达参数设计与目标抽取算法.系统工程与电子技术,2001, 23(6):26-31
    [119]王毛路,李少洪.步进频率单脉冲二维像成像仿真及用于识别的研究.航空学报,2001,22(增):112-114
    [120]罗斌凤,张群,张涛,等.强地杂波背景下的步进频率信号雷达成像方法.电子与信息学报,2003,25(6):784-789
    [121]孙长贵,李兴国.SFT雷达一维距离像与数字距离跟踪.现代雷达,2003,25(2):19-20
    [122]赵彬,王健,张宁.步进频率MMW雷达小波变换目标成像方法.现代雷达,2003, 25(3):27-30
    [123]穆雪华,刘峥.步进频率雷达目标距离像拼接技术研究.制导与引信,2003,24(2):6-12
    [124]周剑雄,赵宏种,付强.频率步进雷达距离像解模糊算法.系统工程与电子技术,2003,25(9):1061-1064
    [125]张东坡,刘兴钊.基于NDFT的步进频率雷达信号处理.雷达科学与技术, 2004,2(5):289-292
    [126]王一丁,涂国防.基于目标宽度特征的脉间跳频雷达距离精确成像.中国科学院研究生学报,2005,22(1):46-50
    [127] Feixing Wang, Yongfeng Zhu, Hongzhong Zhao, etal. Method of Resolving the range ambiguity for high PRF stepped-frequency radar. CIE International Radar Conference, 2006:1-4
    [128]王飞,龙腾.一种新的步进频率雷达信号目标抽取算法.弹箭与制导学报,2006, 26(2):135-137
    [129]李跃华,李兴国,宁军.基于矩阵奇异值分解的频率步进高分辨率毫米波雷达IQ通道误差校正.红外与毫米波学报,1998,17(4):247-254
    [130]朱哲勇,沈福民,陈伯孝,等.基于DSP的步进频率雷达仿真信号源的研制.西安电子科技大学学报,1999,26(6):705-708
    [131] J. Wang, S. H. Zhang, H. W. Liu. Integral detecting of low observable target by stepped frequency signals. The 5th International Conference on Signal Processing Proceedings, 2000, Vol.3:1834-1837
    [132]张润宁,何宇.星载合成孔径雷达的一种新波形及其处理技术.中国空间科学技术, 2000,2:9-13
    [133]王俊,张守宏,刘宏伟.步进频率信号长相差积累实现方法.西安电子科技大学学报(自然科学版),2001,28(3):373-377
    [134]刘静,李兴国,吴文.神经网络在毫米波频率步进雷达信号处理中的应用.红外与毫米波学报,2002,21(4):266-268
    [135]李海英,杨汝良.频率步进信号的合成孔径雷达处理.电子学报,2003,31(3):349-352
    [136]张东坡,刘兴钊.步进频率脉冲雷达回波最佳采样点的研究.雷达与对抗, 2003,(2):21-23
    [137]罗斌凤,张群,张涛,等.强地杂波背景下的步进频率信号雷达成像方法.电子与信息学报,2003,25(6):784-789
    [138]李国玮,柯亨玉,张翼.基于脉间频率步进信号的高频地波雷达回波信号处理.武汉大学学报(理学版),2003,49(3):396-400
    [139]苏宏艳,何佩琨.步进频雷达的距离误差提取方法.电视技术,2005,6:84-87
    [140]庄德站.步进频率体制下的脉压算法及实现:[硕士学位论文].西安:西安电子科技大学,2005
    [141]李保国,赵宏钟,付强.基于高分辨距离间隔像的频率步进单脉冲雷达测角技术研究.航空学报,2005,26(4):490-495
    [142]李星爽,何佩琨.频率步进雷达中波形分析法精确测距的研究.现代雷达, 2005,27(8):7-9
    [143]王德纯.频率步进雷达及其在小目标检测中的应用.现代雷达,2006,28(2):1-4
    [144] F. M. Groary, K. Lindell. A stepped chirp technique for range resolution enhancement. National Telesystems Conference, 1991, Vol.1:121-126
    [145] R. T. Lord, M. R. Inggs. High range resolution radar using narrowband linear chirps offset in frequency. Proceedings of the 1997 South African Symposium on Communications and Signal Processing, 1997:9-12
    [146] H. Schimpf, A. Wahlen, H. Essen. High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps. Electronics Letters, 2003, 39(18):1346-1348
    [147] T. Bucciarelli, G. Fedele. Stepped chirp phase errors in spaceborne altimeters. Electronics Letters, 1991, 27(1):46-47
    [148] T. J. Abatzoglou, G. O. Gheen. Range, radial, velocity and acceleration MLE using radar LFM pulse train. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4):1070-1084
    [149] B. C. Flores, J. S. Son, S. Tariq. Efficient method for the translational motion compensation of inverse synthetic aperture radar imagery. Optical Engineering, 2001, 40(3):433-442
    [150] N. Levanon, E. Mozeson. Nullifying ACF Grating lobes in stepped-frequency train of LFM pulses. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2):694-703
    [151] I. Gladkova, D. Chebanov. Suppression of grating lobes in stepped-frequency train. IEEE International Radar Conference, 2005:371-376
    [152] Q. Zhang, Y. Q. Jin. Aspects of radar imaging using frequency-stepped chirp signals. Eurasip Journal on Advanced Signal Processing, 2006:1-8
    [153] K. Gerlach. Thinned spectrum ultrawideband waveforms using stepped-frequency polyphase codes. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4):1356-1361
    [154] K. L. Sitler, M. A. Temple, R. C. Novack, etal. High range resolution profiling using phase-coded, stepped-frequency waveforms. Electronics Letters, 2002, 38(1):46-47
    [155] M. A. Temple, K. L. Sitler, R. A. Raines, etal. High range resolution (HRR) improvement using synthetic HRR processing and stepped-frequency polyphase coding. IEE Proceedings on Radar Sonar and Navigation, 2004, 151(1):41-47
    [156] N. Levanon, E. Mozeson. Radar Signals. Hoboken: Johe Wiley & Sons Inc, 2004, 327-372
    [157] I. Gladkova, D. Chebanov. Grating lobes suppression in stepped-frequency pulse train. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4):1265-1275
    [158]郑学合.几种宽带雷达导引头信号的分析.现代防御技术,1998,26(1):44-50
    [159]郑学合,阮文杰,袁起.Chirp子脉冲步进频率雷达信号的探讨.现代防御技术, 1998,26(2):42-47
    [160]龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理.电子学报,1998,26(12):84-88
    [161]范玉芳,梁甸农.子脉冲线性调频步进雷达信号分析.信号处理,2001,17(4):318-321
    [162]贺志毅.合成宽带毫米波雷达引导头的理论及实现:[博士学位论文].北京:航天第二研究院,2002
    [163]洪香茹,杜自成,张云展.调频步进信号处理及参数设计.火控雷达技术,2004,33(1):47-50
    [164]于飞,马红星,席泽敏.线性调频子脉冲频率步进雷达信号分析.雷达科学与技术,2004,2(2):78-81
    [165]宋玉霞.Chirp子脉冲频率步进雷达信号及其处理技术研究:[硕士学位论文].成都:电子科技大学,2004
    [166]李强,张焕颖,张守宏.高分辨雷达信号分析与比较.火控雷达技术,2005,34(2):67-71
    [167]于迎春.Chirp子脉冲步进频率信号处理与分析.火控雷达技术,2005,34(1):72-75
    [168] Yunhua Zhang, Jie Wu, Haibin Li. Two simple and efficient approaches for compressing stepped chirp signals. Asia-Pacific Microwave Conference Proceedings, 2005, Vol.1:1-4
    [169]靳凯,王卫东,王东进.一种脉内相位编码脉间步进频雷达信号的研究.中国科学技术大学学报,2006,36(2):137-142
    [170]张云华,李海滨,伍捷.步进频率线性调频脉冲信号的子孔径处理方法.系统工程与电子技术,2006,28(1):1-6
    [171]雷文,龙腾,韩月秋.调频步进雷达运动目标信号处理的新方法.电子学报,2000, 28(12):34-37
    [172]张群,张涛,张守宏.运动目标环境下的调频步进信号分析.西安电子科技大学学报(自然科学版),2001,28(2):220-224
    [173]姜斌,黎湘,陈行勇,等.调频步进雷达扩展目标运动补偿研究.信号处理,2006, 22(6):873-878
    [174]陈行勇,魏玺章,黎湘,等.调频步进雷达扩展目标高分辨距离像分析.电子学报,2005, 33(9):1599-1602
    [175]宋玉霞.Chirp子脉冲频率步进雷达多目标折叠问题的解决办法.电讯技术,2006, 3:119-122
    [176]李海滨,张云华.降低调频步进信号副瓣的方法研究.现代雷达,2006,28(4):45-48
    [177]苏宏艳,龙腾,何佩琨,等.运动目标环境下的调频步进信号目标抽取算法.电子与信息学报,2006,28(5):915-918
    [178]张焕颖,张守宏,李强.调频步进雷达目标抽取算法及系统参数设计.电子学报,2007, 35(6):1153-1158
    [179] X. Z. Dai, J. Xu, Y. N. Peng. Suppressing HRRP grating lobes in stepped-frequency train of LFM pulses using extended correlation. Electronics Letters, 2007, 43(25):1462-1466
    [180]龙腾,李方慧,李眈.基于TMS320C6x的调频步进雷达数字信号处理机.北京理工大学学报,2000,20(3):360-363
    [181] Teng Long, Fanghui Li, Dan Li. A high-speed real-time digital signal processor for the modulated frequency stepped pulse radar signal. The 5th International Conference on Signal Processing Proceedings, 2000, Vol.3:1847-1850
    [182]梁冬青.基于Chirp子脉冲频率步进信号的低空动目标检测技术:[硕士学位论文].成都:电子科技大学,2006
    [183] Hongxing Dang. Stepped frequency chirp signal SAR imaging. The 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007:14-18
    [184]精确制导技术文集—毫米波制导技术.总装备部精确制导技术专业组,2003,67-85
    [185]精确制导技术文集—引导头信息处理技术.总装备部精确制导技术专业组,2003, 197-206
    [186] B. M. Keel, J. A. Saffold, M. R. Walbridge, etal. Non-linear stepped chirp waveforms with sub-pulse processing for range sidelobe suppression. SPIE Conference on Radar Sensor Technology III, 1998, Vol.3395:87-98
    [187] M. R. Walbridge, J. Chadwick, D. Malvern. Reduction of range ambiguities by using irregularly spaced frequencies in a synthetic wideband waveform. IEE Colloquium High Resolution Radar and Sonar, 1999, Vol.2:1-6
    [188] D. J. Rabideau. Nonlinear synthetic wideband waveforms. IEEE International Radar Conference, 2002:212-219
    [189] D. Chebanov. Low sidelobe nonlinear stepped-frequency waveforms. SPIE Conference on Radar Sensor Technology XII, 2008, Vol.6947:69470H-1-69470H-9
    [190] Xiaojian Xu. FOPEN SAR imaging using UWB step-frequency and random noise waveforms. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1287-1300
    [191] K. Morrison. The use of random frequency-hopped waveforms for the recovery of motion-degraded SAR imagery. IEEE International Radar Conference, 2003:460-465
    [192] J. E. Luminati, T. B. Hale, M. A. Temple, etal. Doppler aliasing artifact filtering in SAR imagery using randomised stepped-frequency waveforms. Electronics Letters, 2004, 40(22):1447-1448
    [193] Sune R. J. Axelsson. Analysis of random step frequency radar and comparison with experiments. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4):890-904
    [194] Y. Liu, H. Meng, G. Li, etal. Range-velocity estimation of multiple targets in randomised stepped-frequency radar. Electronics Letters, 2008, 44(17):1032-1034
    [195] B. G. Lim, Y. S. Kim. Simultaneous reduction of sidelobes and grating lobes by realising nonlinear synthetic wideband waveforms in SAR processing. Electronics Letters, 2008, 44(24):1427-1428
    [196] N. Levanon. Stepped-frequency pulse-train radar signal. IEE Proceedings Radar Sonar and Navigation, 2002, 149(6):297-309
    [197] M. I. Skolnik. Radar handbook. (second edition). New York: The McGraw-Hill Companies , 1990, 400-410
    [198]林茂庸,柯有安.雷达信号理论.北京:科学出版社,1984,63-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700