用户名: 密码: 验证码:
新型轴用并联压电式六维大力传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨型重载制造装备是制造产业链中的基础装备,国家极端制造能力和制造水平的体现,国民经济和国防安全的重要保障,是核电、造船、化工、国防等领域大型构件精确高效制造中必备的关键设备,其工作过程中,所受载荷通常可达100kN至100MN量级,具有多维特征。对六维力测量以及实时力反馈是实现装备协调操作控制、力顺应控制的基础,也是规划和调整锻造工艺的重要依据。现有大力传感器仅可测量一维大力载荷,六维力传感器的测量范围远不能满足大力值的测量需求。
     本文在国家重点基础研究发展计划(973项目)(2006CB705406)的资助下,主要研究大承载力条件下六维力的测量。具体工作如下:
     1.提出了基于压电效应的多点支撑式六维力测量方法,建立了支撑点数与被测六维力的映射关系,并构建了多点支撑式六维力传感器构型库及其相对应的解耦算法。根据巨型重载操作装备机械手臂对空间六维大力动态测量的要求,规划出传感器安装位置,选择压电石英为力敏元件,推导出支撑点数与空间六维力的关系。利用有限元软件ANSYS对基于四点支撑式结构的力敏元件空间布局进行加载分析,并通过试验获得了力敏元件不同空间布局对轴上六维力传感器测量性能的影响关系,试验结果与理论分析和有限元分析相吻合,基于四点支撑式结构的力敏元件正方形布局更适合用于轴上六维力的测量。
     2.研究了基于并联机构原理的六维大力值测量的方法。根据并联分流的原理,提出了利用四点支撑式结构及大力承载轴刚性并联来实现并联多维分载测量新方法,将六维大力的极小部分载荷分载到六维力传感器,并根据六维大力与分载力的映射关系,实现六维大力测量。对轴向力、横向力、弯矩和扭矩等各个方向的分载进行了分析和计算,得到了影响分载分载的各个主要参数。利用有限元软件并联分载原理进行仿真分析并进行了分载试验,验证并联分载测量原理的可行性和有效性。
     3.提出一种高刚度、高线性度、强解耦非组装整体化的四点支撑压电式六维大力传感器新的结构形式。研究了该结构传感器的预紧方案,分析了预紧力对传感器测量的影响。利用有限元软件对传感器的结构进行了静、动态分析,结果表明施加载荷与输出载荷成线性关系。以量程为主要约束,以提高灵敏度和分载效果为主要目标,采用单因素的方法对结构参数进行优化,确定了传感器的主要参数。研究传感器的动态响应特性,建立传感器结构与动态特性的映射关系。有限元分析表明,施加载荷与输出载荷之间成线性关系,可以实现大力值测量;该结构传感器固有频率高,动态响应好,可以实现六维力动态测量。
     4.研究了并联式轴用压电六维大力传感器的静态性能标定方法,设计了一种新型的六维大力传感器标定装置。建立了六维大力传感器的测量平台,研究了针对轴用并联压电式六维大力传感器的静态标定矩阵的解法和标定方法。针对传感器的测量要求和实际安装条件,提出了一种基于胀紧原理的面摩擦紧固技术,并提出了基于该技术的六维大力传感器与轴紧固装置,解决了六维大力传感器轴上固定和力传递问题。
     5.对并联式轴用压电六维大力传感器进行静、动态标定实验。通过静态标定实验得出该传感器的标定矩阵C,并由标定矩阵来耦合出传感器的6路信号,对影响传感器输出性能的因素进行了误差分析,得到该传感器的各向力输出性能。研究并设计了动态标定实验。实验数据表明,该结构六维力传感器非线性误差和重复性误差均小于1%,向间干扰误差小于5%。轴用并联压电式六维力传感器各个方向第一阶固有频率值均超过2000Hz,均超过要求的1000Hz,满足巨型操作机的动态测量要求。
     本文研究内容对压电力敏元件在六维大力测量技术上的发展具有参考价值,可广泛应用于极端环境下多维时变大载荷的实时精确测量,可为提高大型构件的制造精度、生产效率和材料利用率,规划和调整加工工艺提供重要的技术保障,对提升我国重载制造装备的高精度、高效、节能制造能力和水平具有重要的工程实用价值。
The huge heavy-load manipulators are foundational equipment in machine industry chain. They not only represent the national extreme manufacturing capability and level, but also affect national economy and national construction projects. They are key devices which are needed in precise manufacture of large structure in fields of nuclear power, shipbuliding, chemical engineering, national defense. In working process of huge heavy-load manipulators, the loads can usually reach 100kN to 100MN, and have multi-degree characteristics. Measurement of six-dimensional force/moment and real-time force feedback are foundation to realize coordinated operation control and force compliance control on huge industrial robots. And they are also important to planning and adjusting forge process. At present, heavy force sensor can only measure one dimensional force. However, the measurement range of existing multi-dimensional force sensor can not satisfy requirement of heavy force value.
     This work is supported by a grant from the Major State Basic Research Development Program of China (973 Program) (No.2006CB705406). The main reaserch of this paper is to measure six-dimensional force in condition of huge heavy load. The concrete work is shown as following
     Firstly, based on piezoelectric effect, the measuring method of multi-point supporting six-dimensinal heavy force is present. The mapping relationships between number of supporting points and six-dimensional heavy force to be measured are established. Configuration database of multi-point supporting six-dimensional heavy force sensor and responding decoupling algorithem are constructed. According to dynamic measurement requirement of six-dimensional force on huge heavy-load manipulator's gripper, the installation position of six-dimensional heavy force sensor is determined. Piezoelectric quartz is chosen as force sensing element to realize real-time measurement. The relationship between supporting points and spatial six-dimensional force is deduced. In order to investigate the validity of the proposed method, the FEM analysis and the experiments of piezoelectric six-dimensional force sensor is put forward with two kind's different spatial arrangement, and characteristic tests of the piezoelectric six-dimensional force sensor are performed. The results of experiment are consistent with theoretical and FEM analysis. The square arrangement based on four-point supporting structure is vertified to be better for measurement of six-dimensional force on axis.
     Secondly, the method for measurement of six-dimensional heavy force based on parallel structure principle is researched. According to parallel concente shunt principle, the parallel load distribution principle of piezoelectric six-dimensional force sensor based on four-point supporting structure is presented. The six-dimensional force sensor is rigidity connected with parallel bearing axis, so small part load of six-dimensional force/torque is translated to six-dimensional force/torque sensor. The measurement of six-dimensional heavy force/torque can be received by the mapping relationship between six-dimensional force/torque and load distribution force. The load distribution ratios are analyzed and calculated in vertical, horizontal, torque, moment directions. The main parameters which influence load distribution are obtained and analyzed. The feasibility and effectiveness of six-dimensional heavy force are verified by parallel load distribution principle and method.
     Thirdly, a novel non-assembly four-point supporting piezoelectric six-dimensional force sensor is designed with advantages of high-rigidity and high linearity. The preload project of this kind sensor is researched, and the influence of preload force on sensor is analyzed. The model of parallel piezoelectric six-dimensional heavy force sensor is set up, and the static and dynamic characteristics are analyzed by ANSYS software. By using scale as constraint conditions and improving the sensitivity as the main objective, structural parameters of four-point supporting six-dimensional heavy force sensor are optimized by single-factor method. The dynamic response characteristic of the sensor is studied. The mapping relationship between structure and dynamic characteristic is built.
     Fourth, method of static calibration on parallel piezoelectric six-dimensional force sensor is deeply researched. Novel calibration equipment for parallel force sensor is designed. Measurement platform for the sensor is built. According to measurement requirement and actural installation condition, tightening technology of surface friction based on distensible principle is presented. Tightening equipment for the sensor to fix on axis is put forward to solve fixation of six-dimensional force sensor and force transfer problem.
     Fifth, the static and dynamic calibrations on the optimal designed four-point supporting six-dimensional heavy force sensor are made. And then its calibrated matrix is obtained after static calibration experiment. Six signals can be decoupled by calibration matrix. Measurement performances in each direction can be obtained. The factors which affect on measurement performance of parallel piezoelectric six-dimensional are analyzed. The method of dynamic calibration is researched, and dynamic calibration experiment is dsigned. The result of experiment shows this kind six-dimensional force sensor has good force mesuring performance, and can realize measurement of spatial external force. The value of linearity error and repeatability error are all less than 1%, and the interference errors are less than 5%. The first natural frequency in three directions are all more than 2 kHz, and can satisfy required measuring requirement of huge heavy-load manipulator(1 kHz).
     The force sensor has reference value for the development of six-dimensional heavy force measuring technology by using piezoelectric as force sensing element. It can be widely used in extreme environments for real-time accurate measurement of multi-dimensional time-varying large loads. It can also provide important technical support to improve manufacturing precision and production efficiency of large and complex components. Meanwhile it has important practical value for upgrading Chinese huge heavy load manufacturing equipments with capabilities of high-precision, high efficiency, energy-saving manufacturing capacity and level of engineering.
引文
[1]王国泰,易秀芳.六维力传感器发展过程中的几个问题[J].机器人,1997,19(6):474-478.
    [2]芮延年.机器人技术及其应用[M].北京:化学工业出版社,2008.
    [3]尹瑞多,王宣银,程佳等.广义六维力传感器的特点及研究和应用状况[J].液压与气动,2005(10):48-50.
    [4]姚智慧,张付祥.新型力解耦机器人六维力传感器研究[J].传感技术学报,2002(4):387-391.
    [5]Dither Durand, Campsas, France. Measurement sensor for a linking wrench between two mechanical parts, as well as its manufacturing process. US5821431 [P/OL].
    [6]Giovanni Giovinazzo, Piergiorgio Varrone. Transducer with six degrees of freedom.US4320392[P/OL].
    [7]Hirose, S. Yoneda, K. Development of Optical 6-Axial Force Sensor and It's Signal Calibration Considering Nonlinear Interference [J], Robotics and Automation. 1990.
    [8]P. C. Watson, S. H. Drake. Pedestal and Wrist Force Sensors for Automatic Assembly [C]. Proc. the 5th Int. Symp. On Industrial Robots.1975:501-511.
    [9]J. Schott. Tactile Sensor with Decentralized Signal condition [C]. The 9th IMEKO World Congress, Beilin.1982:138-143.
    [10]H. V Bruss. Force Sensing for Advanced Robot Control [C]. Proc. of the 5th Int. Conf. On Robot Vision and Sensory Controls.1980:279-288.
    [11]E. Kroll. Decoupling Load Components and Improving Robot Interfacing with an Easy-to-use 6-axis Wrist Force Sensor [C]. Theory of Machines and Mechanisms, Proc. of the 7th World Congress.1986:327-331.
    [12]T. Yoshikawa. A Six-Axis Force Sensor with Three-Dimensional Cross-Shape Structure [C]. Proc. of IEEE Conf. On Robotics and Automation, Arixona.1989:249-255.
    [13]M. Uchiyama, E. Bayon. et al. A Systematic Design Procedure to Minimize A Performance Index for Robot Force Sensors [J]. Trans. ASME, Journal of dynamic Systems, Measurement, and Control.1991:139:388-394.
    [14]E. Bayo, J.R.Stubbe. Six-Axis Force Sensor Evaluation and a New Type of Optimal Frame Truss Design for Robotic Applications[J]. Journal of Robotic Systems.1989, 6(2):191-208.
    [15]B. Shimano. On Force Sensing Information and Its Use in Controlling Manipulators [C]. Proc. of the 8th Int. Symp on Industrial Robots.1979:227-229.
    [16]M. Kaneko. Twin-Head Six-axis Force Sensors [C]. IEEE Transactions on Robotics and Automation,1996,12(1):146-154.
    [17]A. Gaillet, C. Reboulet. Isostatic Six Component Force and Torque Sensor [C]. Proceedings of the 13th Internationals Symposium on Industrial Robotics, 1983:102-118.
    [18]M. Sorli, N. Zhmud. Investigation of Force and Moment Measurement System for a Robotic Assembly Hand [J]. Sensors and Actuators A,1993:651-657.
    [19]金振林,高峰,刘辛军.新型力解耦和各向同性机器人六维力传感器[J].传感器技术,2000(4):26-28.
    [20]D. R. Kerr. Analysis Properties and Design of a Stewart-Platform Transducer [J]. J. Mech. Transm. Autom. Design.1989,111:25-28.
    [21]C.C.Nguyen, S.S.Antrazi. Analysis and Experimentation of a Stewart-Based Force/Torque Sensor [J]. International Journal of Robotics and Automation.1987, 7(3):133-140.
    [22]C. Ferraresi. Static and Dynamic Behavior of A High Stiffness Stewart Platform-Based Force/Torque Sensor [J]. Journal of Robotics Systems.1995,12(12): 883-893.
    [23]S.Hirose, K. Yoneda. Development of Optical Six-axis Force Sensor and Its Signal Calibration Considering Nonlinear Interference [C].Proc.of IEEE Int. Conf. on Robotics and Automation,1990 (1):46-53.
    [24]中国智能研究所.SAFMS-1型六维力传感器技术鉴定材料.1987:13-17.
    [25]李允明,C. S. George Lee.机器人腕部力传感器的标定[J].中国纺织大学学报,1986,2:97-99.
    [26]袁哲俊,王娜君.机器人用六维力、力矩传感器.中国专利,专利号:CN-2066134U日期:1990,11,21.
    [27]张为公.一种六维力传感器的新型布片和解耦方法[J].南京航空航天大学学报,1999(2):219-222.
    [28]胡建元,黄心汉.机器人力传感器研究概况[J].传感器技术.1993(4):36-137.
    [29]黄心汉.一种非径向三量结构六维腕力传感器自弹性体及其优化设计[J].机器人.1992,14(5):28-30.
    [30]黄心汉.机器人腕力传感器自动标定方法[J].自动化仪表.1992,14(5):79-83.
    [31]M. Uchiyama, K. Hakomori. A Few Considerations on Structural Design of Force Sensors [C]. Proc. of the 3rd Annual Conf. On Japanese Robotics Society.1985:17-18.
    [32]D. Diddens, et al. Design of a Ring-shape Three-axis Micro Force/Torque Sensor [J]. Sensors and Actuators,1995,46(2):225-232.
    [33]Bicchi. A Criterion for Optimal Design of Multi-axis micro Force/torque Sensor [J]. Roboties and AutonomousSystems,1992,10(4):269-286.
    [34]Gab-soon Kim. Design of a six-axis wrist force/moment sensor using FEM and its fabrication for an intelligent robot [J]. Sensors and Actuators A, 2007(133):27-34.
    [35]徐克军,孙绍霞, 马文.新型力敏传感器CAD[J].自动化仪表.1993,14(7):20-24.
    [36]孙怡宁,易秀芳.六维力传感器结构及应力分析.全国第二届机器人学术会议论文集(八六三项目专辑)[C].1989:327-333.
    [37]薛正洪.腕力传感器结构优化设计.第二届全国传感器学术年会论文集[C].武汉:1988:562-567.
    [38]陈雄彪.机器人腕力传感器设计及其动态性能仿真的研究[D].哈尔滨工业大学博士学位论文,1996.
    [39]Hongrui Wang, Feng Gao. Design of 6-Axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy [J]. Chinese Journal of Mechanical Engineering (English Edition).1997:138-143.
    [40]刘正士,陆益民,陈晓东等.一种机器人多轴力传感器弹性体有限元分析[J].机械设计.1998,12(12):12-14.
    [41]陆永华,赵东标,吕霞.Stewart人维力传感器弹性体结构的设计[J].机械科学与技术,2005(7):796-799.
    [42]李克勤,姜翠香,朱超甫.大力值测试技术的现状与展望[J].湖北工业大学学报,2006,21(3):66-67.
    [43]沈久珩.大力测量技术的新进展:附着式超轻型大力传感器[J].中国工程科学,2001,3(10):22-27.
    [44]沈久珩.附着式大力传感技术的研制[J].冶金设备,2002,6(3):48-51.
    [45]张隆安,胡先举.大吨位预应力圆筒式测力传感计的研制和应用[J].长江科学院院报,1991,8(3):43-51.
    [46]孙松良.机器人多维力传感器结构设计[D].合肥:合肥工业大学硕士学位论文,2005.
    [47]张付祥.仿人行走机器人脚部六维力传感器研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2002.
    [48]Joong-Jo Park, Gab-Soon Kim. Development of the 6-axis force/moment sensor for an intelligent robot's gripper [J]. Sensors and Actuators A 118 (2005) 127-134.
    [49]G. S. Kim, H. D. Lee, Development of a six-axis force/moment sensor and its control system for an intelligent robot's gripper [J], Meas. Sci. Technol.14 (2003) 1265-1274.
    [50]G. S. Kim, Development of a small 6-axis force/moment sensor for robot's fingers [J], Meas. Sci. Technol.15 (2004) 2233-2238.
    [51]刘鸿文.材料力学[M].北京:高等教育出版社,2005.
    [52]秦世伦.材料力学[M].成都:四川大学出版社,2008.
    [53]杜建根.材料力学[M].武汉:武汉理工大学出版社,2008.
    [54]徐芝纶.弹性力学(第二版)[M].上海:人民教育出版社,1982.
    [55]单辉祖.材料力学教程(第2版)[M].北京:高等教育出版社,1997.
    [56]张福学.压电传感器发展史的研究和开发建议[J].传感器技术,1984,S1:63-67.
    [57]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].北京:中国计量出版社,1985.
    [58]秦自楷.压电石英晶体[M].北京:国防工业出版社,1980.
    [59]吴永强,王茜.压电生物传感器的研究进展[J].四川理工学院学报(自然科学版),2006,19(3):42-46.
    [60]孙宝元,钱敏,张军.压电式传感器与测力仪研发回顾与展望[J].大连理工大学学报,2001,41(2):127-133.
    [61]陈昕,周康源,顾宇等.压电生物传感器研究进展[J].传感技术学报,2003,3:291-298.
    [62]陈小林,王祝盈,谢中等.石英晶体温度传感器的应用[J].传感器技术,2002,21(5):55-57.
    [63]谢胜秋,宋国庆.谐振式水晶温度传感器的现状和发展预测[J].传感器技术,2002,21(2):1-4.
    [64]钱君贤,祝大吕.压电晶体吸附检测器及其在环境分析中的应用[J].化学通报,1988,12:38-42,49.
    [65]韩丽丽.三向压电钻削测力仪的设计及扭矩加载器的研制[D].大连:大连理工大学博士学位论文.
    [66]吴涧彤.压电晶体扭转效应的研究[D].大连:大连理工大学博士学位论文.
    [67]王红艳.火箭发动机推力矢量测试系统测力平台的研制[D].大连:大连理工大学硕士学位论文.
    [68]殷之文.电介质物理学(第二版)[M].北京:科学出版社,2003.
    [69]陈纲,廖理儿编著.晶体物理学基础[M].北京:科学出版社,1992.
    [70]尚晓江,邱峰,赵海峰等编著.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2008.
    [71]李红云, 赵社戌,孙雁编著.ANSYS 10.0基础及工程应用[M].北京:机械工业出版社,2008.
    [72]张朝晖, 李树全编著.ANSYS 11.0有限元分析理论与工程应用[M].北京:电子工业出版社2008.
    [73]高耀东, 郭喜平主编.ANSYS机械工程应用25例[M].北京:电子工业出版社,2007.
    [74]沈久珩.附着式测力传感器.CN86105879[P].
    [75]秦秀林.三向压电式动态铲齿车削测力仪的研制与切削力的频域识别[D].大连:大连理工大学硕士学位论文,1989.
    [76][日]森林正直,山岐弘郎著,孙宝元译.传感器工程学[M].大连:大连工学院出版社,1988.
    [77]Robert G. Seippel. Transducers, Sensors and Detectors [M]. Reston Publisher,1983.
    [78]张军,孙宝元.切削力测试系统研究[J].机械工程学报.2002,1(s1).
    [79]孙宝元,张贻恭,杨华敏.压电式动态切削测力仪(上、下)[M].机床,1975.
    [80]张贻恭,孙宝元.YDS-Ⅲ79B, YDS-Ⅲ79K型石英晶体三维力传感器的设计与研制[J].大连工学院学报.1981,20(1):1-9.
    [81]机械工业部仪器仪表工业局统编.传感器装校工艺学[M].北京:机械工业出版社,1989.
    [82]张福学.实用传感器手册[M].北京:电子工业出版社,1988.
    [83]许靖中,谢峰,王从周等.三向压电晶体力传感器的研究[J].安徽工学院学报.1989,8(4):21-28.
    [84]丁轲轲.自动测量技术[M].北京:中国电力出版社,2005.
    [85]方同.多自由度线性阻尼系统的模态分析法[J].固体力学学报.1981,8(3).312-316
    [86]田东升,胡明,邹平等.基于ANSYS的六自由度工业机器人模态分析[J].机械与电子.2009(2),59-62.
    [87]吕钢.基于有限元法的水平轴风力机塔架动态响应与优化问题研究[D].兰州:兰州理工大学硕士学位论文.2009,6.
    [88]柏立国.履带式起重机臂架结构静动态分析研究[D].吉林:吉林大学硕士学位论文.2008,11.
    [89]尹辉俊,黄昶春,韦志林等.重型车车架的动态特性分析[J].农业机械学报.2007,12(38):20-23.
    [90]Chao Lu-Pinget al. Shape optimal design and force sensitivity evaluation of six-axis force sensors [J]. Sensors and Actu-ators,1997,63:105-112.
    [91]魏国峰,陈佳莹,王巍等.基于ANSYS电火花机床悬架结构的模态分析[J].机械工程师.2008,11:104-106.
    [92]王一江,张晓艳,庞学慧.基于ANSYS的龙门铣床龙门结构模态分析[J].计算机应用技术.2010,4,(37):48-50.
    [93]刘志红,尹志宏.机械结构的理论及试验模态分析方法[J].现代机械.2005,5:22-23.
    [94]米勒(Muller,P.C),(德)席伦(Schiehlen,W.O.)线性振动—多自由度振动系统的理论分析方法[M].天津:天津大学出版社,1989.
    [95]刘正士,陆益民.一种机器人多轴力传感器弹性体有限元分析 [J].机械设计,1998,12(12):12-14.
    [96]赵汝嘉.机械结构有限元分析[M].西安:西安交通大学出版社,1990:8-85.
    [97]夏富杰.空间并联机构运动分析的有限元法[M].机械科学与技术,1998,17(1):60-62.
    [98]F. J. Xia, C. L. Zhang. Finite Element Dynamic Analysis of Spatial Parallel Mechanisms [J]. Chinese Journal of Mechanical Engineering,1999,12(3)224-229.
    [99]J. B. Jonker.A Finite Element Dynamic Analysis of Spatial Mechanisms with Flexible Links [J].Computer Methods in Applied Mechanics and Engineering,1989(76):17-40.
    [100]姜力,刘宏,蔡鹤皋等.基于神经网络的多维力传感器静态解耦的研究[J].中国机械工程,2002:13(24):2100-2103.
    [101]姜力,刘宏,蔡鹤皋等.多维力/力矩传感器静态解耦的研究[J].仪器仪表学报,2004;25(3):284-287.
    [102]宋国民,翟羽健,周晓晶.基于模糊推理的多维传感器解耦算法研究[J].工业仪表与自动化装置,2001;(1):3-5.
    [103]Alessandra Flammini, Daniele Marioli,Andrea Taroni. Application of an optimal look-up table to sensor data processing [J]. IEEE Transactions on Instrument and Measurement,1999; 48(4):813-816.
    [104]徐科军,李成.多维腕力传感器静态解耦的研究[J].合肥工业大学学报(自然科学版),1999;22(2):1-6.
    [105]王国泰,易秀芳,王理丽.六维力传感器发展中的几个关键问题[J].机器人.1997:19(6):474-478.
    [106]陈淑铭,乔田田.一个求解非线性最小二乘问题的新方法[J].烟台大学学报.2004,17(1):14-22.
    [107]秦岗.新型机器人腕力传感器的研究[D].东南大学硕士学位论文.2004:30-31.
    [108]安巧联.并联结构六维力与力矩传感器的标定原理与关键技术研究[D].秦皇岛:燕山大学硕士学位论文.2006:13-16.
    [109]李海滨,隋春平,王洪光等.基于Stewart平台六维力传感器的分区静态标定方法[J].传感技术学报.2006,19(1):132-136.
    [110]金振林,岳义.Stewart型六维力传感器的静态解耦实验[J].仪器仪表学报.2006,17(12):1715-1717.
    [111]张晓辉.机器人六维力传感器静态标定研究[J].自动化与仪表.2004(3):86-88.
    [112]尹瑞多,王宣银,刘荣等.基于并联六自由度的广义力标定装置[J].机床与液压.2006,8:1-4.
    [113]郑红梅,刘正士,王勇.机器人六维腕力传感器标定方法和标定装置的研究[J].计量学报.2005,26(1):43-45.
    [114]Lu-Ping Chao, Ching-Yan Yin. The six-component force sensor for measuring the loading of the feet in locomotion [J]. Materials and Design 20(1999): 237-244.
    [115]徐宏本.机床夹具设计手册[M].辽宁科学技术出版社.2004.3.
    [116]成大先.机械设计手册(连接与紧固)[M].化学工业出版社.2004.1.
    [117]彭文生,黄华梁等.机械设计[M].武汉:华中理工大学出版社,2000.
    [118]赵现朝.Stewart结构六维力传感器设计理论与应用研究[D].秦皇岛:燕山大学工学博士学位论文.2002,8.
    [119]阎志伟.Stewart平台式六维力传感器静态标定的理论与实验研究[D].秦皇岛:燕山大学工学硕士学位论文.2004,4.
    [120]郑红梅.机器人多维腕力传感器静、动态性能标定系统的研究[D].合肥:合肥工业大学博士学位论文.2007,12.
    [121]苑会领.基于Stewart平台的预紧式六维力传感器的研制与开发[D].秦皇岛:燕山大学工学硕士学位论文.2003,1.
    [122]徐科军编.传感器动态特性的实用研究方法[M].合肥:中国科学技术大学出版社,1999.
    [123]王维贵编.动态压力测量原理及方法[M].北京:中国计量出版社,1976.
    [124]蔡礼君.切削测力仪的动态误差[M].机械工程学报.2000,20(4):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700