用户名: 密码: 验证码:
导引头伺服机构工作特性与先进测控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导引头是精确制导武器的核心部件,用来完成对目标的自动搜索、识别和跟踪。导引头伺服机构是实现视轴稳定和目标跟踪的执行装置,其性能直接影响导引头的制导精度。作为复杂的光、机电一体化装置,导引头伺服机构的研制涉及光学工程、惯性技术、机械工程及控制工程等多个学科领域,其控制性能受到陀螺随机误差、模型不确定性、干扰力矩、跟踪器滞后及多采样率等多方面误差因素的影响。现有的伺服机构研制大都将其作为一个独立的机电装置,很少从整个制导系统的角度去进行研究,所采用的测控方法多为经典的信号处理与控制方法。随着精确制导武器装备的发展,对导引头伺服机构的性能要求越来越高,稳定跟踪精度指标由毫弧度级提高到微弧度级,采用传统的设计方法尤其是经典测控方法已很难实现这一目标,应用现代先进测控理论与技术来提高机构的控制性能显得尤为迫切。针对这一现状,论文从伺服机构的工作过程建模和仿真研究入手,从整个制导系统的角度分析了机构的控制性能要求以及提高机构控制精度需要解决的关键测控问题。在此基础上,对伺服机构的主要误差因素进行了深入的理论分析和建模。针对不同误差因素的影响机理及机构控制回路的特性,论文分别从微机械陀螺的随机误差补偿、稳定回路的鲁棒优化设计、跟踪器的优化匹配控制及系统的扰动抑制这几个方面开展了深入的研究。
     论文的研究工作主要包括以下几个部分:
     1.为了从整个制导系统的角度来反映伺服机构的主要性能指标及误差因素对导引头及导弹制导精度的影响,对伺服机构的工作过程进行了建模和仿真研究。分析了伺服机构的工作机理,推导了两轴稳定机构的空间运动学方程和牛顿力学方程,建立了机构各组成部分的数学模型。通过对伺服机构的工作过程建模和仿真分析为其性能指标确定及后续测控方法的研究提供了参考和依据。
     2.针对导引头伺服机构的精密化发展需要,研究了微机械陀螺在机构中的应用。分析了陀螺随机误差在伺服机构控制回路中的传递特性,从理论上说明了伺服机构控制回路中的陀螺应用与惯导系统以及其它应用场合的主要差异。利用Allan方差分析法对机构中现有的动调陀螺和性能相近的微机械陀螺的随机误差进行了建模和辨识,给出了两种陀螺的主要性能差异。结合之前的理论分析,说明了微机械陀螺在伺服机构中应用的可行性。研究了几种先进滤波方法在陀螺随机误差补偿中的应用,对滤波算法的性能进行了实验验证和对比分析,为提高微机械陀螺在伺服机构控制回路中的应用精度提供了有效手段。
     3.针对惯量耦合、电气波动造成的模型不确定性以及弹体耦合力矩等外部干扰力矩对导引头伺服机构控制精度的影响,对稳定回路提出一种具有较强扰动抑制能力和较高指令跟踪精度的二维鲁棒内模控制结构。将控制器的参数设计转换为标准的H∞鲁棒优化问题,使得所设计的内模控制器对模型失配具有较强的鲁棒性。应用Jump变换和Lifting操作等多采样率控制系统的理论和方法来设计鲁棒H∞内模控制器,综合考虑了稳定回路的多采样率特性,并有效兼顾了系统采样点间的动态响应。相比于经典的控制方法,所提出的多速率鲁棒H∞内模控制器能够减小模型不确定性、干扰力矩及多采样率等误差因素对伺服机构稳定回路控制性能的影响,有效提高了伺服机构的稳定精度及控制回路的鲁棒性。
     4.针对图像跟踪器的噪声、滞后和低采样率帧频特性对伺服机构跟踪性能的影响,研究了跟踪器与控制系统的优化匹配问题,对跟踪回路提出一种基于灰色模型的输入多采样率满意PID控制器。研究了基于灰色系统云模型SCGM(1,1)的跟踪器建模方法,通过灰色模型的滤波预测能够减小噪声和滞后对机构跟踪性能的影响。针对跟踪器低采样率帧频特性的影响,对跟踪回路采用了一种输入多采样率PID控制结构,应用输入多采样率控制原理,能够增加控制系统单位时间内有效控制输入的个数,提高了控制系统的稳定裕度。将输入多采样率PID控制器的参数求解转换为满足极点约束和方差约束的多目标满意优化问题的求解,从而使伺服机构的跟踪性能满足指定的快速性和精度指标要求。所提出的基于灰色模型的输入多采样率满意PID控制器能够减小跟踪器的误差因素对机构控制性能的影响,有效提高机构跟踪目标的稳定性、动态性和跟踪精度。
     5.扰动是影响导引头伺服机构控制精度的主要因素,为了进一步提高机构的精度,研究了基于输出多采样率反馈控制原理的扰动抑制方法。基于时滞估计理论,提出一种输出多采样率扰动观测器,所提出的扰动观测器对外部干扰和模型扰动具有较高的补偿精度,能够有效提高控制系统的扰动抑制性能。在此基础上,根据输出多采样率反馈与状态反馈的等效性,提出一种基于扰动观测器的输出多采样率变结构控制律。相比于经典的变结构控制律,所提出的控制律不需要状态测量传感器,也不需要建立状态观测器,且由于扰动观测器的引入,能够有效减小控制律的切换振颤,具有实现简单、抗干扰能力强等优点,在导引头伺服机构这类对体积和质量有严格限制的高精度伺服装置中具有较好的应用前景。
     6.对本文研究的控制方法进行了实验研究。在实验系统中模拟了图像跟踪器的指令特性以及弹体耦合力矩等外部干扰力矩,构造了一个导引头伺服机构的虚拟工作环境。利用dSPACE半实物仿真系统对所研究的控制方法进行了快速设计和实现,并对控制方法的性能进行了实验验证。
Seekers are core parts of accurate guide weapons, used to search, recognise and track targets automatically. A seeker servo equipment is executive mechanism to provide stabilization of LOS and track targets, thus its performance has a direct effect on the seeker. As complicated optics-mechanism-electronics incorporate production, the design of the equipment relates to several subjects such as optics, inertia technique, mechanism and control engineering, and its capability is affected by many error factors. The current study on the mechanism lacks in view of the whole homing system, because it regards the equipment as independent mechanism, and the design method is mostly the traditional control technique which is difficult to obtain good performance.With the development of accurate guide weapons, it is demanded to apply modern advanced control algorithms to improve the performance of the equipment. Concerning that, this paper starts with the method of system modeling and simulation to study on working process of the equipment. According to the influence of the main error factors, the paper has a deep research on four aspects including the restraint of gyro's random error, robust optimization of stabilization loop, matching control of the tracker and the restrain of disturbance respectively.
     The writer's research is mainly focused on the following 6 sections:
     1. For the sake of reflecting the effect of error factors and performance of the servo equipment on the seeker's and the missile's guide accuracy, the working process of the equipment is modeled and simulated, which provides references for the choosing of its main indexes and the subsequent measurement and control problems. Besides, the dynamics equations of the equipment are deduced with space kinematics and Newtonian mechanics, and the mathematical models of the equipment are also established.
     2. Owing to the equipment's trend of miniaturization, the paper has carried out an investigation into the application of MEMS gyro in the mechanism. The effect of gyro's random error on stabilization accuracy is analyzed, which proves the feasibility of applying the MEMS gyro in the equipment. In order to restrain the effect of gyro's random error, several advanced filtering algorithms are applied to process the gyro's signal, the performance of which are verified and compared through experiments.
     3. Considering the uncertainty of the system model, the paper puts forward a kind of two-degree-freedom internal model controller for stabilization loop that has good performance in attenuating disturbance as well as tracking command. In order to endow the designed internal model controller with stronger robustness when dealing with model mismatch, the controller's design is transformed into typical optimization of H∞robust. The H∞Controller of stabilization loop is designed by means of the techniques of multi-rate sampled control theory, such as Jump alternation and Lifting operation, by which the control system can obtain good dynamic response between two points of consecutive sampling time. Compared with traditional controllers, the presented controller can reduce the effect of disturbance, model mismatch and multirate sample, therefore, it can distinctly improve the precision and robustness of the equipment's stabilization loop.
     4. Concerning the influence of the tracker's error factors on the equipment's tracking performance, research is carried out to match the tracking loop with the tracker. Based on the model of grey cloud system, the model of tracker is established. By means of filtering and prediction with grey model, the influence of noise and lag on the control system can be reduced distinctly. Regarding to the effect of low sampling output of tracker, a kind of s multi-rate input atisfactory PID controller is presented, which can increase the control input within fixed time and enhance the stabilization margin. The choosing of parameters of multi-rate PID controller is transformed into the optimization constrained by poles and variance, so the tracking control loop reaches the promised dynamic and precision indexes. The presented control method can reduce the influence of tracker's error factors on tracking loop, and improve the performance of the equipment's precision, dynamic and robustness to track targets.
     5. As disturbance is the main factor to reduce the equipment's control precision, the method based on multi-rate output feedback is studied to attenuate disturbance. With time delay estimation algorithm, a kind of multi-rate output disturbance observer is brought forward, which improves the capability of control system to attenuate disturbance without reducing the system's stabilization. According to the equivalence between the feedback of the multi-rate output and the states, a multi-rate output variable structure sliding mode controller with disturbance observer is put forward, which needs neither sensors to measure the states of the system, nor any other state observer. Besides, the control algorithm has less switching ripple, compared with VSS control algorithm.With its advantages of simplicity and strong anti-disturbance, the presented method is promising in high precision servo systems such as seeker servo mechanism which is restrained strictly on volume and mass.
     6. The control algorithms presented in this paper have been verified through experiments. The command characteristics of tracker and the disturb torque are simulated, and a virtual working condition of seeker servo equipment is thereby constructed. Finally, the presented control algorithms are realized by dSPACE, and the experiments are made to validate the superiority of the method studied in this paper.
引文
[1]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程,1989,3:1~42.
    [2]范大鹏.《光电稳定伺服机构控制技术》专题文章导读[J].光学精密工程,2006,14(4):673.
    [3]张智永.光电稳定伺服机构的关键测控问题研究[D],国防科技大学,2006,12.
    [4]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].长沙:国防科技大学,2008,3.
    [5]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].东南大学,2007,3.
    [6]周瑞青.弹载捷联式天线平台的稳定技术研究及其角跟踪系统设计[D].北京航空航天大学,2004.8.
    [7]王明远.从近十年几场高技术局部战争看新军事变革的趋势[J].中国航天,2003,8:39~41.
    [8]贾平,张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程,2003,11(1):82~88.
    [9]穆虹.防空导弹雷达导引头设计[M].北京:宇航出版社,1996.
    [10]赵善友.防空导弹武器寻的制导控制系统设计[M].北京:宇航出版社,1992.
    [11]夏福梯.防空导弹制导雷达伺服系统[M].北京:宇航出版社,1996.
    [12]张莉松,胡祐德,徐立新.伺服系统原理与设计(第三版)[M].北京:北京理工大学出版社,2006.
    [13]金钰,胡祐德,李向春.伺服系统设计与指导[M].北京:北京理工大学出版社,2000.
    [14]郭富强,于波,汪叔华.陀螺稳定装置以及应用[M].西安:西北工业大学出版社,1995.
    [15]Masten, Michael K. and Sebesta, Henry R. Line-of-Sight Stabilization/Tracking System:An Overview[A]. Proceedings of the American Control Conference. 1987:1477~1482.
    [16]Richard L. PIO. Euler Angle Transformation. IEEE Transactions on Automatic,Vol. AC-11, No.4, October,1966:707~715.
    [17]C.J.Cooper, Hamilton. Sensor Line-of-Sight Stabilization[A]. SPIE Vol. 1498,1991:39~51.
    [18]成刚.光电稳定跟踪的机械结构分析与研究[D].西安电子科技大学,2000.
    [19]毕永利.多框架光电平台控制技术研究[D].中国科学院长春光机所,2003.
    [20]Ho Dong Seok, Joon Lyou.Digital Image Stabilization Using Simple Estimation of the Rotational and Translational Motion[A]. SPIE Vol.5810,2005:170~181.
    [21]Ping Zhong. Research on Methods of Motion Estimation and Compensation in Electronic Image Stabilization Technique[A]. SPIE Vol.5637,2005:182~188.
    [22]Jenkins, Steven T. Hilkert, J.M. Line of Sight Stabilization Using Image Motion Compensation[A]. SPIE Vol.1111,1989:98~115.
    [23]Vella, F.; Castorina, A.; Mancuso, M.; Messina, G. Digital Image Stabilization by Adaptive Block Motion Vectors Filtering[J]. IEEE Transactions on Consumer Electronics,2002:796~801.
    [24]Kevin Murphy, Scott Goldblatt, Jeffery Warren, Rickey Chapman, James Hemler, Craig Mitchell and George Moe. Pointing and Stabilization System for Use in a High-Altitude Hovering Helicopter [A]. SPIE Vol.3692,1999:23~32.
    [25]Karl Wandner and Hans J. Karcher, The Pointing Control System of SOFIA[A]. Proceedings of SPIE Vol.4014,2000:360~369.
    [26]Donald Ruffatto, Donald Brown, Richard Pohle, Michael Reiley and Delmar Haddock. Stabilized High-Accuracy Optical Tracking System[A]. SPIE Vol. 4365,2001:10~18.
    [27]Delin.Xie, Jiahu.Yuan, Hu.Yang. Stabilization of Line-of-Sight for O-E Tracking and Imaging System[A]. SPIE. Vol.3365,1998:191~201.
    [28]Germann, Lawrence M. Microradian-Level Inertial Line of Sight Stabilization Systems with Wide Angle-Search Capability [A]. SPIE Vol.1696,1992:16~26.
    [29]Anderson, Daves, Schulthess, Marcus; Sebesta, Henry; Blackburn, John; Aaugh, Steve. Design of the High Altitude Balloon Experiment Line-of-Sight Stabilization and Pointing System [A]. Proceedings of the Annual Meeting Institute of Navigation,1993:735~746.
    [30]Iecovich, Meir. Line of Sight Stabilization Requirement for Target Tracking Systems [A]. SPIE Vol.1304,1990:100~111.
    [31]http://www.ratheon.com.
    [32]穆学桢,周树平,赵桂瑾.AIM-9X空空导弹位标器新技术分析和评价[J].红外与激光工程,2006,35(4):392~394.
    [33]Kennedy, Peter J. Kennedy, Rhonda L. Direct Versus Indirect Line of Sight(LOS) Stabilization[J]. IEEE Transactions on Control Systems Technology, Vol. 11,n1,2003:3~15.
    [34]Inertial Sensor Technology Trends. IEEE Sensors Journal[J]. Vol.1, NO.4, 2001.12.
    [35]N.Barbour. Inertial Components-Past, Present, and Future[J]. AIAA Guidance, Navigation, and Control Conference, Montreal, Canada,2001.8.
    [36]http://www.flir.com.
    [37]http://www.missilesandfirecontrol.com.
    [38]http://www.controp.com.
    [39]http://www.iai.co.il.
    [40]http://www.rafael.co.il.
    [41]http;//www. wescam.com.
    [42]http://www.polytech.se.
    [43]王连明.机载光电平台的稳定与跟踪伺服控制[D].中国科学院长春光机所,2002.
    [44]纪明.武装直升机瞄准线粗/精组合二极稳定技术[J].航空学报,1997.18(3):289~293.
    [45]纪明.光电二级稳定系统控制通道融合技术[J].兵工学报,2000,4:318~321.
    [46]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D].长沙:国防科技大学,2005.
    [47]张羽飞.成像器稳定装置控制系统设计与实现[D].哈尔滨工业大学,2003.
    [48]王永富.高精度陀螺稳定随动系统研究[D].哈尔滨工业大学,1999.
    [49]姬伟,李奇,杨海峰.四轴稳定跟踪转台伺服控制系统的研究与实现[J].中国惯性技术学报,2005,13(3):70~75.
    [50]梁克强.一种瞄准线稳定跟踪系统的探讨[J].火力与指挥控制,1990,15(2):14~18.
    [51]冯永利,杨文淑.陀螺稳定控制系统设计与仿真[J].光电工程,2003,30(1):32~34.
    [52]黄永梅,张桐,马佳光等.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19.
    [53]纪明.高精度光电二级稳定系统的运动隔离和补偿分析[J].兵工学报,1996,17(4):320~324.
    [54]毕永利,刘洵,葛文奇等.机载多框架陀螺稳定平台速度稳定环设计[J].光电工程,2004,31(2):16~18.
    [55]张聘义,祁载康,崔莹莹等.一种匹配滤波方法在导引头捷联稳定平台中的应用研究[J].红外技术,2005,27(1):6-11.
    [56]周瑞青,吕善伟,刘新华.弹载捷联式天线平台两种稳定实现方法的比较[J].系统工程与电子技术,2005,27(5):1397~1400.
    [57]周瑞青,吕善伟,刘新华.捷联式天线平台数字稳定技术及仿真研究[J].系统仿真学报,2004,16(10):2234~2236.
    [58]张智永,范大鹏,范世殉.光电稳定跟踪装置的控制系统设计[J].光学精密工程,2006,14(4):681~688.
    [59]范大鹏,张智永,范世珣,李岩.光电稳定跟踪装置的稳定机理分析研究[J].光学精密工程,2006,14(4):673~680.
    [60]黄显林,尹航.高精度陀螺稳定跟踪系统神经网络预测控制[J].系统工程与电子技术,2000,22(12):63~65.
    [61]王连明,葛文奇.陀螺稳定平台速度环的一种神经网络自适应控制方法[J].光电工程,2001,28(4):9-12.
    [62]王合龙,朱培申.陀螺稳定平台框架伺服系统变结构控制器的设计和仿真[J].电光与控制,1998,2:24~29.
    [63]张荆,苏泽清,黄青.机载光电系统的精度分析[J].红外与激光工程,1999,28(5):55~59.
    [64]郭富强.惯导平台的隔离度研究[J].西北工业大学学报,1993,11(2):218-222.
    [65]李新刚,袁建平,微机电陀螺的发展现状[J].力学进展,2003,8(3):289~301.
    [66]Jiang Hong, Yang Weiqin, Yang Yantang. State Space Modeling of Random Drift Rate in High-Precision Gyro[J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(3):1138~1143.
    [67]Algrain, Marcelo C. Kalman Filtering Approach for Reducing Gyroscope Noise Effects in Stabilized Platforms [A]. Proceedings of SPIE-The International Society for Optical Engineering, V1697,1992:399~413.
    [68]Algrain, Marcelo C. Ehlers, Douglas E. Suppression of Gyroscope Noise Effects in Pointing and Tracking Systems[A]. Proceedings of SPIE-The International Society for Optical Engineering, V2221,1994:402~413.
    [69]Algrain, Marcelo C. Ehlers, Douglas E. Novel Kalman Filtering Method for the Suppression of Gyroscope Noise Effects in Pionting and Tracking Systems [J]. Optical Engineering,V34, n10,10,1995:3016~3030.
    [70]Philip Wayne Loveday. Analysis and Compensation of Imperfection Effects in Piezoelectric Vibratory Gyroscopes[D]. Virginia Polytechnic Institute and State University. PhD Thesis.1999:1-9,69~71.
    [71]Leroy O.Thielman, Sid Bennett, Cleon H.Barker. Proposed IEEE Coriolis Vibratory Gyro Standard and Other Inertial Sensor Standards[A]. Position Location and Navigation Symposium. Minneapolis, MN.2002 351~358.
    [72]IEEE STD 528-2001, IEEE Standard for Inertial Sensor Terminology[S]. IEEE Aerospace and Electronic Systems Society,2001:1-20.
    [73]Qi Lin; Stern, RE. Analysis of A Correlation Filter For Thermal Noise Reduction in a MEMS Gyroscope[A]. Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory,2002:197-203.
    [74]Ashokaraj, I.; Silson, P.; Tsourdos, A. Application of An Extended Kalman Filter to Multiple Low Cost Navigation Sensors in Wheeled Mobile Robots[A]. Proceedings of IEEE on Sensors,2002,Vol.2:1660-1664.
    [75]Guo JiChang; Teng Jianfu; Li Qiang; Zhang Yaqi. The De-Noising of Gyro Signals by Bi-Orthogonal Wavelet Transform[A]. IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering,2003,Vol.3:1985~1988.
    [76]樊春玲,田蔚风,金志华.一种新型的基于灰色模型的动调陀螺随机漂移建模方法[J].上海交通大学学报.2004,38(10):1741-1743,1747.
    [77]赵忠华,江红.小波理论及其在光纤陀螺信号分析中的应用[J].上海交通大学学报,2000,34(11):1598~1600.
    [78]朱荣,张炎华.RBF神经网络用于辨识光纤陀螺温度漂移[J].上海交通大学学报.2000,34(2):222~225.
    [79]高玉凯,邓正隆.基于小波方差的光学陀螺随机误差特性研究[J].中国惯性技术学报.2004,1 2(5):66~70.
    [80]苏岩,王寿荣,周百令.AR模型在动力调谐陀螺仪漂移补偿中的应用[J].中国惯性技术学报,1997,3:24~28.
    [81]傅建国,王孝通,李博,金良安,马野.MEMS陀螺随机误差模型研究[J].传感器技术,2005,24(3):75~77.
    [82]万彦辉,秦永元.小波分析在陀螺信号滤波中的研究[J].压电与声光.2005,27(4):455~457.
    [83]高玉凯,邓正隆.小波变换与卡尔曼滤波结合的RLG降噪方法[J].光电工程.2005,32(5):31~34.
    [84]IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Optic Gyros[S]. IEEE Std:952~1997,1998.
    [85]毕永利,王连明,葛文奇.光电稳定平台控制系统中数字滤波技术研究[J].仪表技术与传感器.2005,4:54~57.
    [86]孟中,张涛.降低动力调谐陀螺输出噪声的方法[J].光学精密工程.2002,10(4):420~424.
    [87]李洁,孟中,葛文奇.数字滤波技术在陀螺噪声滤除中的应用[J].电光系统.2003,4:20~22.
    [88]孟中,张涛,戴明.陀螺滤波在改善伺服系统低速特性中的应用[J].压电与声光.2006,2(1):109~112.
    [89]万彦辉,戴世荣.数字滤波器在微机电陀螺系统中的应用.传感器技术[J].2003,22(9):56~57.
    [90]张奕群,陈鼎榕.用于火箭炮弹姿态测量的微机电陀螺初始热漂移建模[J].中国惯性技术学报,2000,8(1):59~62.
    [91]张奕群.两步非线性最小方差法在微机电陀螺测量火箭弹自旋角中的应用[J].兵工学报,2001,22(1):141~143.
    [92]徐达.光纤陀螺稳定随动系统研究[D].哈尔滨:哈尔滨工业大学,2002.
    [93]尹建龙.高精度陀螺稳定随动系统研究[D].哈尔滨:哈尔滨工业大学,2000.
    [94]魏宗康,徐强,夏刚,杨雨.平台稳定回路有饱和特性时的控制方案设计[J].惯导与仪表,2002,(1):27~31,38.
    [95]姬伟,李奇.陀螺稳定平台伺服系统非线性特性补偿控制[J].电气传动,2005,25(7):31-34.
    [96]Slobodan N. Vukosavic. Suppression of Torsional Oscillations in A High Performance Speed Servo Drive[J]. IEEE Transation on Industry Electronics,1998,45(1):108~117.
    [97]Haessig, David Jr. DeCotiis, James. Modern Control Methods Applied to A Line-of-Sight Stabilization and Tracking System [A]. Proceedings of the American Control Conference,1987:1491~1498.
    [98]Bo Li. Nonlinear Induced Disturbance Rejection in Inertial Stabilization Systems[A]. SPIE Vol.2739,Acquisition, Tracking, and Pointing,1996:242~250.
    [99]Bo Li, David A. Hullender, Self-Tuning Controller for Nonlinear Inertial Stabilization System[A]. SPIE Vol.2739,Acquisition, Tracking, and Pointing Ⅹ,1996:229~241.
    [100]Chun-Liang Lin; Yi-Hsing Hsiao. Adaptive Feedforward Control for Disturbance Torque Rejection in Seeker Stabilizing Loop[J]. IEEE Transactions on Control Systems Technology,Jan.2001:108~121.
    [101]阎洁,唐建中,史维详.Fuzzy控制在舰载雷达稳定平台伺服系统中的应用[J].兵工学报,1999,20(2):182-185.
    [102]J.A.R Krishna Moony, Rajeev Marathe,V R Sule.Hinf Control Law for Line-of-sight Stabilization far Mobile Land Vehicles[J].Optical Engineering, 2002,41(11):2935-2944.
    [103]J.M.Hilkert, David A. Hullender. Adaptive Control System Techniques Applied to Inertial Stabilizati on Systems[C].SPIE Conference on Acquisition, Tracking and Pointing Ⅳ,1990,1304:190~206.
    [104]周宏仁,敬忠良,王培德机动目标跟踪[M]北京:国防工业大学出版社,1991.
    [105]Michel Verhaegen, Paul, Van Dooren. Numerical Aspects of Diferent Kalman Filter[J].IEEE Transaction on Automatic Control.1986,31(10):907~917.
    [106]Steven L.Chodos. Track Loop Bandwidth, Sensor Sample Frequency, and Track Loop Delays[C]. SPIE Conference on Acquisition,Tracking and Pointing XII,1998,3365:69~76.
    [107]Bryson S. Efects of Lag and Frame Rate on Various Tracking Tasks[C]. SPIE, 1993,1915:155~166.
    [108]王连明,葛文奇,李杰.跟踪系统中跟踪器延迟的自适应预测补偿方法[J].光电工程,2002,29(4):13~16.
    [109]Zhang Hongye,Wei Wuzhong, Cai Yingzhen. Predictive Control of Optoelectronic Tracking System[J]. Journal of Beijing Institute of Technology, 1999,8(3):270~275.
    [110]赵金宇,李文军,连远锋.电视跟踪系统脱靶量动态滞后误差的修正[J].电光与控制,2004,11(3):20~22.
    [111]Tai Quach, M.Farooq. A Fuzzy Logic-based Target Tracking Algorithm[C]. SPIE,1998,3390:476~487.
    [112]吴玲,卢发兴.UKF算法及其在目标被动跟踪中的应用[J].系统工程与电子技术,2005,27(1):49~51.
    [113]凌建国,刘尔琦,杨杰.基于H。滤波器的红外小目标运动预测和跟踪方法[J].红外与毫米波学报,2005,24(5):366~369.
    [114]Shreenath Shetty. A Multi-sensor Tracking System With an Image-Based Maneuver Detector[J]. IEEE Transaction on Aerospace and Electronic Systems, 1996,32(1):167~181.
    [115]冯兴强,杨文淑.提高采样控制系统带宽的方法研究[J].光电工程,2003,30(4):20~23.
    [116]John Murray Fitts. Aided Tracking as Applied to High Accuracy Pointing Systems[J]. IEEE Transacton on Aerospace and Electronic Systems,1973,9(3).
    [117]John S. Alenl, Joe Stufflebeam, Dan Feller. Development of a Feed-forward Controller for a Tracking Telescope[C].SPIE Conferenceon Acquisition, Tracking and Pointing ⅩⅧ,2004,5430:1~12.
    [118]Wenshu Yang, Jisguang Ms. A New Tracking and Measuring Control System for Optical and Electronic Theodolite[C]. SPIE Conference on Acquisition, Tracking and Pointing XVI,2002,4714:118~123.
    [119]冯培业,黄宁,张宇河.天地景投影伺服系统控制算法的改进[J].北京理工大学学报,2002,22(3):351~354.
    [120]Kichul Hong, Kwaughee Nam. A Load Torque Compensation Scheme Under the Speed Measurement Delay[J]. IEEE Transaction on Industrial Electronics, 1998,45(2):283~290.
    [121]James Downs, Steve Smith, Jim S, etc. High Performance Gimbal Control for Self-protection Weapon Systems[C].SPIE Conference on Acquisition, Tracking and Pointing Ⅻ,1998,3365:77~86.
    [122]Michael Sweeney, Emery Erdelyi, Mehrdad Ketabchi, etc. Design Consideration for Optical Pointing and Scanning Mechanism[A].SPIE, Vol.5176:135~146.
    [123]Ho Dong Seok, Joon Lyou. Digital Image Stabilization Using Simple Estimation of the Rotational and Translational Motion[A]. SPIE, Vol.5810:170~181.
    [124]Keith Atkin. Jane's Electro-Optic Systems[M]. Tamam Plug-in Optronic Payload (POP):2002-2003.
    [125]Jerome W. Fisk, Arthur K.Rue. Confidence Limits for the Pointing Error of Gimbaled Sensors[J]. IEEE Transaction on Aerospace and Electronic Systems, 1966, AES-21(6):648~654.
    [126]Lee,T.H., Tan,K.K., Lee. M.W. Variable Structure-Augmented Adaptive Controller for a Gyro-Mirror Line-of-Sight Stabilization Platform[J]. Mechatronics,1998,8(1):47~64.
    [127]Ge, S.S. Lee, T.H. Zhao, Q. Real-Time Neural Network Control of a Free Gyro Stabilized Mirror System[A]. Proceedings of the American Control Conference, 1997,2:1076~1080.
    [128]Lee, T.H. Nie, J.H. Lee, M.W. Fuzzy Controller with Decoupling for Multivariable Nonlinear Servo-Mechanisms with Application to Real-Time Control of a Passive Line-of-Sight Stabilization System[J]. Mechatronics, 1997,7(1):83~104.
    [129]Marathe, Rajeev. Krishna Moorty, J.A.R. Sule', V.R. H∞ Control Law for Line-of-Sight Stabilization for Mobile Land Vehicles[J]. Optical Engineering, 2002,41(11):2935~2944.
    [130]Krishna Moorty, J.A.R. Marathe, Rajeev; Babu, Hari. Fuzzy Controller for Line-of-Sight Stabilization Systems[J]. Optical Engineering,2004,43(6): 1394~1400.
    [131]William J,Bigley, Steven P,Tsao, Optimal Motion Stabilization Control of an Electro-Optical Sight System[A]. SPIE, Vol.1482:116~120.
    [132]Lee, Ho-Pyeong; Hwang, Hong-Yeon. Two-Degree-of-Freedom Robust Control of a Seeker Scan Loop System[R]. AIAA. A96-35789.
    [133]Schmitendorf, W. E.; Kao, Y. K.; Hwang, H. Y. Robust H-infinity Tracking Controllers for a Seeker Scan Loop System[R]. AIAA.A96-35582.
    [134]Poncela, Alfonso; Schmitendorf, William E. H-infinity Output Feedback Controller for a Seeker Scan Loop System[R]. AIAA. A9837142.
    [135]St. Pierre, Jay A.:Lawrence, Dale A.;Mohl, James B. Lorentz Force Isolation for Spacecraft Line-of-Sight Stabilization[R]. AIAA. A9737161.
    [136]Brian J. Perona; Christopher Yarbrough; Steven Prill. Optomechanical Design of Primary Mirror Assembly for Free Gyro Stabilized Seeker[J]. SPIE. Vol.4093: 115~126.
    [137]Elmer F. Williams; Robert H. Evans; Karl Brant; Larry A. Stockum. Optimization of a gimbal-scanned infrared seeker[J]. SPIE. Vol.1482:104~111.
    [138]肖建.多采样率数字控制系统[M].北京:科学出版社,2003.
    [139]肖建.徐志根.多采样率数字控制系统综述[J].信息与控制,2003,32(5),436~441.
    [140]张友刚.多采样率鲁棒控制系统研究[D].西南交通大学,1999,12.
    [141]Chammas A B, Leondes C T. Pole Assignment by Piecewise Constant Output Feedback [J].Int. J.Control,1979,29 (1):31~38.
    [142]Araki M, Hagiwara T.Pole Assignment by Multi-rate Sampled-data Output Feedback[J]. Int. J. Control,1986,44(6):1661~1673.
    [143]Patton RJ, Liu GP, Patel P. Sensitivity Properties of Multirate Feedback Control System Based on Eigen-Structure Assignment [J]. IEEE Trans. Automat. Contr., 1995,40(2):337~342.
    [144]Berger C S, Peduto D. Robust Digital Control Using Multirate Sampling[J]. Int. J. Control,1997,67 (5):813~824.
    [145]Hagiwara T, Araki M. Design of a Stable State Feedback Controller Based on the Multirate Sampling of Plant Output [J]. IEEE Trans. Automat. Contr.,1988,33 (9):812~819.
    [146]Hagiwara T, Fujimura T, Araki M. Generalized Multirate Output Controllers [J]. Int. J. Control,1990,52 (3):579~612.
    [147]Er M J, Anderson B D O. Practical Issue in Multirate Output Controllers [J]. Int. J.Control,1990,53 (5):1005~1020.
    [148]Er M J, Anderson B D O. Performance Study of Multi-rate Output Controllers under Noise Disturbance [J]. Int. J. Control,1992,56(3):531~545.
    [149]Mital J,Chida Y, Kaku Y, et al. Two-delay Robust Digital Control and Its Applications Avoiding the Problem on Unstable Limiting Zeros[J]. IEEE Trans. Automat. Contr.,1990,35(8):961~970.
    [150]A.M.Azad, T.Hesketh. H∞ Optimal Control of Multirate Sampled-Data Systems[C]. Proceedings of the American Control Conference.2002:459-464.
    [151]T.Chen, L.Qiu H∞ Design of General Multirate Sampled-Data Control Systems [J]. Automatica.1994,30(7):99~114.
    [152]Chen.T, Francis. B. A. H-infinity Optimal Sampled-Data Control:Computation and Design[J]. Automatica,1996(32):223-228.
    [153]Chen.T, Qiu. L. H-infinity Design of General Multirate Sampled-Data Control Systems[J]. Automatica,1994(30),1139~1152.
    [154]P.G.Voulgaris, B.Bamieh. Optimal H∞ and H2 Control of Hybrid Multi-rate System[J]. Systems and Control Letters,1993,20:249-261.
    [155]Bamieh, B, Pearson, J.B, Francis, B. A, et. al. A Lifting Technique for Linear Periodic Systems with Applications to Sampled-Data Control[J]. Systems and Control Letters,1991(17):79~88.
    [156]Bamieh, B.A, Pearson, J.B. A General Framework for Linear Periodic Systems with Applications to H-infinity Sampled Data Control[J]. IEEE Transactions on Automatic Control,1992(37):418-435.
    [157]Dullerud. G, Lall. S. Asynchronous Hybrid Systems with Jumps Analysis and Synthesis Methods[J]. Systems and Control Letters,1999(37):61~69.
    [158]Dullerud. G, Lall, S. A New Approach for analysis and Synthesis of Time-Varying Systems[J]. IEEE Transactions on Automatic Control,1999(44): 1486~1497.
    [159]M.F.Sagfors,H.T Toivonen, B.Lennartson. State-Space Solution to the Periodic Multirate H∞ Control Problem:A Lifting Approach[J].IEEE Trans. On Automatic Control,2000,45(12):2345~2350.
    [160]Sanjay Lall, Geir Dullerud. An LMI Solution to the Robust Synthesis Problem for Multi-rate Sampled-Data Systems[J]. Automatica 2001(37):1909~1922.
    [161]赵霞,多速率采样控制系统设计方法研究[D].哈尔滨工业大学,2003,3.
    [162]马杰,采样控制系统分析设计方法及应用研究[D].哈尔滨工业大学,2001,1.
    [163]王广雄,王勇莉,何朕.采样系统的分析:提升技术[J].电机与控制学报,2003,7(4):310~313.
    [164]潘峥嵘,项林英,郭戈.多采样率数字控制系统的进展与走向[J].兰州理工大学学报,2005,31(5):78~82.
    [165]高金源,计算机控制系统:理论、设计与实现[M].北京:北京航空航天大学出版社,2001.
    [166]Hiroshi Ito. Improvement of Deadbeat Servomechanism Using Multi-rate Input Control[C]. Proceedings of American Control Conference, Chicago,2000,7: 169~174.
    [167]Er, M.J, Lee. S.C, Tan. L.L. Digital-Signal-Processor-Based Multirate PID Control of a Two-Link Flexible-Joint Robot[C]. Proceedings of Digital Signal Processing Applications.1996,10:900-905.
    [168]Low. K. S, Chiun. K.Y, Ling. K.V. A DSP-Based Servo System Using Generalized Predictive Control [C]. Power Conversion Conference, Nagaoka 1997:507-512.
    [169]Chung Choo Chung; Seung-Hi Lee; Dong Seul Jeong;et al. Multirate Output Feedback Control and Its Application to Galvanometer Servo Systems[C]. American Control Conference,2003,7:4663~4668.
    [170]Herbert Werner. Robust Control of a Laboratory Flight Simulator by Nondynamic Multirate Output Feedback[C]. Proceedings of the 35th Conference on Decision and Control. Kobe Japan,1996,10:1575~1580.
    [171]Hiroshi Fujimoto, Keisuke Fukushima, Shinsuke Nakagawa. Vibration Suppression Short-Span Seeking of HDD with Multirate Feedforward Control [C]. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA,2006,7:582~587.
    [172]Ryozo Nagamune, Xinghui Huang, and Roberto Horowitz. Multirate Track-Following Control with Robust Stability for a Dual-Stage Multi-Sensing Servo System in HDDs[C]. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain,2005,10:2886~2891.
    [173]Hiroshi Fujimoto,Fumihiro Kawakami,Seji Kondo. Multirate Repetitive Control and Application:Verification of Switching Scheme by HDD and Visual Servoing[J].Proceedings of the American Control Conference,Denever,Colorado, June,2003:2875-2880.
    [174]Josep Tornero, Ricardo Piza, Pedro Albertos, Julian Salt. Multirate LQG Controller Applied to Self-Location and Path-Tracking in Mobile Robots. Proceedings fo the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.2001:625~630.
    [175]聂旭涛.导引头伺服机构若干强度与动力学问题研究[D].国防科学技术大学博士学位论文,2008,4.
    [176]王小虎.先进寻的导弹制导、半实物仿真及相关理论研究[D].北京航空航天大学博士学位论文,2000,6.
    [177]S.Bennani, D.M.C. Willemsen, C.W. Scherer. Robust LPV Control with Bounded Parameter Rates[R]. AIAA-97-3641, August 1997.
    [178]Matlab/Simulink Help Document for Aero_Guidance.mdl. Designing and Simulating a Missile Guidance System Using MATLAB and Simulink.
    [179]李新刚.微机电陀螺误差建模及其在飞行器组合导航中的应用[D].西北工业大学博士学位论文,2003.
    [180]胡敏.基于阵列技术的MEMS虚拟陀螺技术研究[D].西北工业大学,2006.
    [181]王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008.
    [182]易康,李延志,吴文启.FLP滤波算法在光纤陀螺信号预处理中的应用[J].中国惯性技术学报,2005,13(5):58~62.
    [183]马从兵.硅微陀螺信号前向线性预测滤波方法研究[J].传感器技术学报,2008,21(2):350~352.
    [184]彭玉华,小波变换与工程应用[M].北京:科学出版社,1999.
    [185]赵霞,姚郁.提升多速率系统无纹波问题研究[J].控制与决策,2005,20(1):55~58.
    [186]陈娟.伺服系统低速特性与抖动补偿研究[D].中科院长春光机所,2001.
    [187]秦永元.惯性导航[M].北京:科学出版社,2006.
    [188]王英.面向芯片封装的直线伺服系统的高速高精运动控制[D].上海交通大学,2006,3.
    [189]周克敏,J.C.Doyle, K.Glover.鲁棒与最优控[M].北京:国防工业出版社,2002.
    [190]俞立.鲁棒控制:线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [191]Van Rheeden D R, Jones R A. Noise Effects on Centroid Tracker Aim Point Estimation[J]. IEEE Trans on AES,1988(3):177~185.
    [192]张根耀,赵宗涛.光电子噪声下的目标跟踪误差分析[J].云南大学学报(自然科学版),2003,25(5):405~407.
    [193]熊和金,徐华中.灰色控制[M].北京:国防工业出版社,2005.
    [194]Guo Zhi. A Survey of Satisfying Control and Estimation[C]. Proceeding of 14th IFAC Congress, Beijing, P R China,1999:443~447.
    [195]盛安东,吕太全,殷开宝,郭治.激光导向伺服系统中满意PID调节器的LMI设计[J].兵工学报,2002,23(4):485~488.
    [196]钱龙军,盛安东,郭治.随机离散线性系统的满意鲁棒控制[J].南京理工大学学报,2002,26(3):274~278.
    [197]马建伟,李银牙.满意PID控制设计理论与方法[M].北京:科学出版社,2007.
    [198]SangJoo Kwon, Wan Kyun Chung. A Discrete-Time Design and Analysis of Perturbation Observer for Motion Control Applications [J]. IEEE Transactions on Control Systems Technology. Vol,11(3),2003:399~407.
    [199]S. Komada, K. Ohnishi, and T. Hori. Hybrid position/force Control of Robot Manipulators Based on Acceleration Controller. In Proc.1991 IEEE Int. Conf. Robotics Automation,1991:48~55.
    [200]T. Umeno and Y. Hori.Robust Speed control of DC Servomotors Using Modern Two Degree-of-Freedom Controller Design [J], IEEE Trans. Ind. Elec., vol.38: 363~368, Oct.1991.
    [201]K.Ohnishi, M. Shibata, and T. Murakami.Motion Control for Advanced Mechatronics[J]. IEEE/ASME Trans. Mechatron., vol.1:56~67, Mar.1996.
    [202]H. S. Lee, Robust Digital Tracking Controllers for High-Speed/High-Accuracy Positioning Systems. Ph.D. dissertation, Univ. California, Berkeley,1994.
    [203]C. J. Kempf and S. Kobayashi, Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table [J],IEEE Trans.Contr. Syst. Technol., Vol.7:513~526, Sept.1999.
    [204]S. Komada, N. Machii, and T. Hori.Control of Redundant Manipulators Considering Order of Disturbance Observer[J]. IEEE Trans. Ind. Electron., vol. 47:413~420, Apr.2000.
    [205]R. G. Morgan and U. Ozguner. A Decentralized Variable Structure Control Algorithm for Robotic Manipulator [J]. IEEE J. Robot. Automat., vol. RA-1, 57~65, Mar.1985.
    [206]T. C. Hsia and L. S. Gao. Robot Manipulator Control Using Decentralize Linear Time-Invariant Time-Delayed Controllers [A]. IEEE Int. Conf. Robotics Automation,1990:2070~2075.
    [207]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.10.
    [208]刘善伍,武俊峰,刘春涛.一类区域极点约束下不确定采样系统的LMI鲁棒控制.哈尔滨理工大学学报[J],2006,11(1):74~77.
    [209]Janardhanan,B. Bandy opadhyay. Discrete Sliding Mode Control of Systems With Unmatched Uncertainty Using Multirate Output Feedback. IEEE Trans. Automat. Contr [J],2006,51(6):1030~1035.
    [210]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [211]刘金琨.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700