用户名: 密码: 验证码:
基于潘那利番茄渐渗系发掘干旱胁迫响应基因及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Solanum lycopersicum)为世界性重要蔬菜之一,在我国蔬菜产业中具有重要地位,同时也是生物学模式生物之一。干旱直接威胁着番茄植株的生长发育,导致产量和品质下降。如何提高番茄自身的抗旱能力,培育优良耐旱新品种,已成为迫切需要解决的问题。
     对植物耐旱机理的解析,前人已从生理生化、细胞结构及分子等水平进行了大量研究,并取得重要进展。植物主要通过增厚表皮蜡质层、改变气孔开度、形成发达根系和贮水组织等结构适应干旱;渗透调节物的形成、保护酶活性的提高、膜系统稳定性的维持、内源激素的调节、次生代谢物的合成等生理生化代谢都参与植物对干旱的防御;对植物耐旱的分子机理研究,近年已克隆了一大批耐旱相关基因,在植物抵御干旱过程中起直接保护或调控作用。干旱等逆境下,植物体内受ABA调控与非依赖ABA调控基因之间互作,形成复杂网络,共同调节多条信号途径转导和转录因子活性,激发下游基因表达,对干旱做出响应。
     本研究以耐旱野生番茄S. pennellii与栽培番茄种S. lycopersicum cv M82及由二者构建的一套渐渗系为研究材料,从形态结构特征,分析耐旱番茄的结构特点;通过生理生化指标与耐旱性的相关性,建立适合耐旱番茄筛选的鉴定指标;利用microarray技术,从转录、信号转导及细胞分化等生物进程,分析番茄响应干旱的调控机理,候选耐旱相关基因,进行功能验证,为番茄的耐旱性改良和耐旱机理分析提供重要理论指导和实践依据。本研究的主要结果如下:
     1.耐旱番茄的形态特性分析。通过对耐旱野生番茄S. pennellii与普通栽培种番茄S. lycopersicum M82形态结构的比较,分析S. pennellii的耐旱结构特点。S.pennellii植株叶、茎及花萼等地上组织全部被浓密表皮毛和粘稠腺体分泌物覆盖,利于减少水分散失的同时可能又有助于吸收空气中的水分;叶上表皮气孔数目较多,可以为吸收粘附在表皮的“露水”进入体内提供通道;叶片表皮细胞排列致密,也有利于减少体内水分散失;栅栏组织与海绵组织之比变大,可以增强机械强度;茎中薄壁组织发达,可能储藏大量水分,供应干旱等逆境下生长所需;而欠发达的根系和叶脉等组织则在S. pennellii耐旱机理中发挥并不重要的作用。
     2.建立番茄耐旱评价指标体系。通过对叶片相对含水量、细胞伤害率、丙二醛含量、超氧化物岐化酶含量、脯氨酸含量等生理生化指标与耐旱性之间的相关性分析,建立适合耐旱性番茄筛选的检测指标。结果表明,轻度、中度、重度干旱胁迫下,叶片相对含水量都可用于鉴定番茄材料的耐旱性。
     3.番茄干旱响应基因分析。利用筛选的耐旱渐渗系与M82,结合microarray技术,分析番茄响应干旱的调控机理。每种参试材料都获得超过1,200个差异表达基因,其中耐旱系中有359个单独表达基因。通过生物学进程分析,表达基因在逆境响应中占主要比例。耐旱系可能通过特异表达的转录因子基因(编码Zinc-finger、NAC、bHLH、AP2/EREBP及HSF等家族蛋白)、信号转导基因(编码受体蛋白激酶、促细胞分裂活性蛋白激酶、钙调结合蛋白、磷酸酯酶及膜蛋白等)、组织生长发育相关基因和一系列单独变化的生化途径(糖异生、色氨酸降解、嘌呤核苷酸生成、过氧化物清除、淀粉降解、甲硫氨酸合成)等方式调节耐旱性。而耐旱系和M82中共同表达的基因和共同变化的生化途径,如次生代谢物、无机营养、糖和多糖、氨基酸家族、激素等的合成或分解,可能分别为番茄对干旱的基本响应基因和代谢调控方式。
     4.耐旱候选基因的分析。利用芯片结果,选取耐旱系与M82中有差异表达的干旱响应基因,为候选耐旱相关基因,克隆基因开放阅读编码框,对其编码蛋白序列及结构进行预测分析。
     5.候选基因的表达模式。通过半定量RT-PCR法,分析候选基因在番茄不同组织器官,以及在不同干旱胁迫程度和不同外界因子作用下的表达模式。结果表明,候选基因SIWRKY、SpWRKY、SINAC表达具有组织特异性,在成熟叶和茎中表达量都较高,而在果实和/或根中不表达。候选基因SITR、SpTR和SpNAC则在根、茎、叶、花、果中都表达,但在果实和根中表达量仍比茎和叶中低。大部分候选基因在中度、重度胁迫下比轻度胁迫下表达变化明显。在盐、高低温及ABA较长时间作用下,大部分候选基因都被诱导;而在SA作用下,除NAC基因外,其它基因都被诱导。
     6.候选基因的染色体定位分析。利用番茄基因组测序结果、扩增片段多态性和酶切扩增多态性序列法,对候选基因进行染色体定位。SpTR基因定位于第11染色体11-D区;SpWRKY基因定位于第8染色体,包含于克隆代号为C08SLe0011M12的BAC库中;SpNAC基因定位于第10染色体10-D区域。
     7.候选基因的转基因创建、表达分析及转基因番茄的耐逆性鉴定。构建候选基因超量表达载体,利用农杆菌介导的遗传转化方法,将候选基因转入番茄栽培种中蔬5号中。通过PCR法检测,获得超量表达SpTR阳性植株14棵,超量表达SpWRKY阳性植株13棵,超量表达SpNAC阳性植株19棵。利用半定量RT-PCR法,鉴定转基因植株叶片中目的基因的表达量明显高于野生型。检测超量表达目的基因番茄幼苗的耐逆性,结果表明,SpTR和SpWRKY超量表达后,可增强转基因番茄幼苗的耐旱性、耐盐性和耐低温性。
Tomato (Solarium lycopersicum) is one of the most important economical vegetable crops in the Solanaceae family and also has been used as a model system. Drought stress straightly affects the growth and development of tomato seedlings, and causes of decreased quality and yield reduction. It has become one of urgent requirements to breed excellently drought-tolerant tomato variety to reduce the water deficit damage.
     The elucidation of the mechanisms of drought tolerance has been studied on the base of morphological and anatomical, physiological and biochemical, and molecular level. The plant adaptation to water deficit are caused by changed morphological and anatomical structure, such as thick waxy cuticle, altered stomata aperture, well developed root system, and strong parenchyma. The physiological and biochemical characteristics including the accumulation of osmotic adjustment materials and protective enzymes, the stability of membrane system, the presence of endogenous hormones and secondary metabolites also contribute to enhanced drought tolerance. During the process of molecular research on plant responses to drought stress, a large number of genes were cloned, classifying into two major groups according to their putative functional modes. The first group comprises the genes encoding structural proteins, which are stress tolerance downstream effectors. The second group genes encoded regulatory proteins that are early response transcriptional activators including the transcription factors and the protein kinases. The expression of drought-inducible genes can be governed by ABA-dependent or ABA-independent regulatory systems, forming the cross-talks to regulate the activity of transcription factors and signal transduction in response to drought stress.
     S. pennellii (LA0716), one of the wild crossable relatives of cultivated species, has a distinct ability to withstand desiccation in extreme arid condition. A collection of 50 introgression lines that covers the entire genome of their donor parent, S. pennellii, in the background of the cultivated species, S. lycopersicum M82, a drought-sensitive cultivar, were generated. In this study, we firstly use the drought-tolernat lines together with the currently expanding tomato research platforms such as genome sequencing and microarray applications to study the chacteraization of drought responsive genes and investigate the drought tolerance mechanism in tomato. The main results were as following:
     1. The structure characteristics analysis of S. pennellii. A comparative observation of morphological and anatomical structure between S. pennellii and M82 were performed to study the drought-tolerant structure characteristics. The aerial tissues including leaf, stem, calyx and fruit of S. pennellii plant are covered with dense trichomes and glandular secretion, which may be benefit in reducing of water loss and absorbing moisture in the air. The increased number of stomata on the upper epidermis of S. pennellii leaf might support the channel for adsorbed dew. The thickness ratio of stockade tissue to sponge tissue in S. pennellii leaf is higher than that in M82, which could reinfoce the mechanical strength under drought stress. The parenchyma cells are widely distributed throughout stem of S. pennellii, suggesting they are benefit for water store and stronger water retention capacity, while the root and leaf vein are weak, indicating these tissues play unimportant roles in drought tolerance.
     2. An analysis on index system of tomato drought tolerance evaluation. The correlation of index/index and index/drought tolerance under different drought stresses were studied. The relative water content can be used for selecting the drought-tolerant tomato genotype under mild, moderate and serve drought stress. The malondialdehyde content is also effective index for detecting the tomato drought tolerance under moderate drought stress.
     3. The expression characteristics of drought responsive genes in tomato. Gene expression profiles between two drought-tolerant lines identified from introgression line population of S. pennellii and M82 were investigated under drought stress using tomato Oligo chips TOM2. More than 1,200 drought-responsive genes were identified in each of tested genotypes. The "response to stress" and "response to abiotic stimulus" were among the largest groups in all three genotypes. Based on biological function of drought-responsive genes, the enhanced drought tolerance of tomato may be closely related to upstream regulation of transcription factors and signal regulators specifically identified in the drought tolerant lines. However, those genes expressed in both tolerant and sensitive genotypes may act as basal drought-responsive factors in tomato under drought stress. The specifically expressed gene involved in cell differentiation, growth and anatomical structure morphogenesis in the tolerant genotypes might also be beneficial to enhanced drought tolerance. The biochemical adaptation to water deficit in the tolerant genotypes may be performed by specifically expressed genes that were involved in biochemical pathways of gluconeogenesis, purine and pyrimidine nucleotides biosynthesis, tryptophan degradation, starch degradation, methionine biosynthesis, and removal of superoxide radicals. In addition,19 pathways belonging to the metabolism of secondary metabolites, hormones, nutrients, amino acids, sugars and polysaccharides, fatty acids and lipids, and C1 compounds were significantly affected in all three genotypes, which might be the primary biochemical processes in tomato under drought stress.
     4. The cloning, sequencing and protein structure analysis of candidate genes related to drought-tolerance. The differently expressed genes between tolerant and sensitive genotypes were selected to be subject for further analysis. Based on bioinformatics and biological technologies, the open reading frames of these genes were cloned and sequenced, whose amino acids and protein structure were deduced and predicted.
     5. The expression pattern of candidate genes in different tissues of tomato and in leaf treataed with different external factors. Semi-quantitative RT-PCR analysis of different tissues of tomato showed that SIWRKY, SpWRKY and SINAC had tissue-specific expression, while SITR, SpTR and SpNAC were constitutively expressed in all the tested tissues. All aimed genes were detected abundantly in leaves and stems, and weakly in fruits and/or roots of tomato. Most of them had higher expression under moderate and serve drought stress than mild treatment. Almost these genes were induced by salt, high and low temperature, longer exogenous ABA treatment and salicylic acid.
     6. The chromosome location of candidate genes. This study was conducted by PCR and digestion polymorphism based on tomato genome sequencing results. SpTR, SpWRKY and SpNAC were located on tomato chromosome 11,8 and 10, respectively.
     7. Function characterization of candidate genes. Overexpression vectors were transformed into one tomato cultivar by Agrobacterium-mediated transformation. The PCR analysis of putative transgenic plants showed that a total of 14,13 and 19 transgenic plants of SpTR, SpWRKY and SpNAC were obtained, respectively, indicating that T-DNA had integrated into the tomato genome. Semi-quantitative RT-PCR analysis of aimed genes expression showed that the higher expression abundance in the transgenic plants than wild type. Evaluation for abiotic stress tolerance of transgenic plants was measured. These results indicated that overexpression of SpTR and SpWRKY could improve the tolerance of drought, salt and low temperature.
引文
1. 陈树思,唐为萍.白木香叶解剖结构的研究.热带亚热带植物学报,2005,13:291-295
    2.程瑞平,束怀瑞,顾曼如.水分胁迫对苹果树生长和叶片中矿质含量的影响.植物生理学通讯,1992,28:32-34
    3.黄霄,杨秀梅,刘训言,孟庆伟.转正义基因番茄类囊体膜脂不饱和度对抗旱性的影响.山东农业科学,2008,3:37-42
    4.黄振英,吴鸿,胡正海.新疆10种沙生植物旱生结构的解剖学研究.西北植物学报,1995,1:56-61
    5.李百凤,冯浩,吴普特,范兴科.土壤水分下限对番茄光合速率、品质及产量的影响.中国农学通报,2007,5:471-476
    6.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,260-261
    7.李正理.旱生植物的形态与结构.生物学通报,1981,4:9-11
    8.刘长利,王文,崔俊茹,李帅英.干旱胁迫对甘草光合特性与生物量分配的影响.中国沙漠,2006,26:142-145
    9.刘静,魏开发,高志晖,李冰冰,任慧波,胡建芳,贾文锁.干旱胁迫下氮素营养与根信号在气孔运动调控中的协同作用.植物学通报,2008,25:34-40
    10.刘贤德,李晓辉,李文华,李明顺,李新海.玉米自交系苗期耐旱性差异分析.玉米科学,2004,12:63-65
    11.欧阳波.几种病程相关蛋白基因转化番茄的研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    12.彭致功,杨培岭,段爱旺,吴海卿.不同水分处理对番茄产量性状及其生理机制的效应.中国农学通报,2005,8:191-195
    13.王永锐.水稻生理育种.北京:科学技术出版社,1995,460-507
    14.王云霄,张颖,江璐玎,牛蓓,陈放.麻疯树水通道蛋白新基因JcPIP干旱胁迫下的功能分析.热带亚热带植物学报,2008,4:289-295
    15.王灶安.植物显微技术.北京:农业出版社,1992,8-26
    16.肖景华.番茄GA 20-氧化酶和GA 2-氧化酶基因的克隆与功能分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    17.杨淑慎,高俊凤.活性氧、自由基与植物的衰老.西北植物学报,2001,21:215-220
    18.姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,2005,25:80-85
    19.余延年,吴定华,陈竹君.番茄遗传学.湖南科学技术出版社,1997,14-15
    20.张灿军.小麦抗旱性的鉴定方法与指标.中国小麦育种与产业化进展,北京:中国农业出版社,2002,119-136
    21.张俊红.番茄Aux/IAA基因的克隆与功能分析.[博士学位论文].武汉:华中 农业大学图书馆,2006
    22.赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,2005,25:413-418
    23.中华人民共和国国家统计局编.中国统计年鉴,北京:中国统计出版社,2005
    24. Aarts M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CERI gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Mol Biol,1995,64:265-278
    25. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,2003,15:63-78
    26. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Shinozaki K. Role of MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell, 1997,9:1859-1868
    27. Abraham F. Structural and functional properties of trichomes of xeromorphic leaves. 1986, Ann Bot,57:631-637
    28. Achkor H, Diaz M, Fernandez M R, Biosca J A, Pares X, Martinez M C. Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol,2003,132:2248-2255
    29. Achkova G R Z. Diagnostic characters and genetic relationship among the species of the genus Lycopersicon and the wild species Solanum pennellii Correll. Ⅰ. Hairs. Genet Sel 1970,3:77-90
    30. Akashi K, Miyakel C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett,2001,508:438-442
    31. Al-Khayri J M, Al-Bahrany A M. Genotype-dependent in vitro reponse of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Sci Hortic,2004,99:153-162
    32. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,2002,415:977-983
    33. Assmann S M. Signal transduction in guard cells. Annu Rev Cell Biol,1993,9: 345-375
    34. Atkin O K, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot,2009,103:581-597
    35. Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol,1996,14:89-97
    36. Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta,2004,218:683-692
    37. Botella M A, Xu Y, Prabha T N, Zhao Y, Narasimhan M L, Wilson K A, Nielsen S S, Bressan R A, Hasegawa P A. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methy1 jasmonate. Plant Physiol,1996,112:1201-1210
    38. Boudsocq M, Lauriere C. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol,2005,138:1185-1194
    39. Boyer J S. Plant productivity and environment. Science,1982,218:443-448
    40. Bray E A. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot,2004,55:2331-2341
    41. Bryant J, Green T R, Gurusaddaiah T, Ryan C A. Proteinase inhibitor II from potatoes:isolation and characterization of its protomer components. Biochemistry, 1976,15:3418-3424
    42. Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Montagu M V, Inze D, Van Montagu M. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci,1998,138:27-34
    43. Callis J. Regulation of protein degradation. Plant Cell,1995,7:845-857
    44. Cao S Q, Jiang S T, Zhang R X. The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul,2006,48:261-270
    45. Cao S Q, Xu Q T, Cao Y J, Qian K, An K, Zhu Y, Hu B Z, Zhao H F, Kuai B. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plantarum,2005,123:57-66
    46. Cao S Q, Ye M, Jiang S T. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep,2005,24:683-690
    47. Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA,2004, 101:9909-9914
    48. Carrari F, Coll-Garcia D, Schauer N, Lytovchenko A, Palacios-Rojas N, Balbo I, Rosso M, Fernie A R. Deficiency of a plasmidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiol,2005,137:70-82
    49. Castro-Diez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of wide range of woody plant species and types. Oecologia,2000,124:476-486
    50. Chartzoulakis K, Patskas A, Kofidis G, Bosabalidis A M, Nastou A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivers.Sci Hortic,2002,95:39-50
    51. Chaudhary S, Crossland L. Identification of the tissue-specific, dehydration-responsive elements in the Trg-31 promoter. Plant Mol Biol,1996,30:1247-1257
    52. Chen C H, Chen Z X. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol,2002,129:706-716
    53. Chen K Y, Tanksley S D. High resolution mapping and functional analysis of se2.1: A major stigma exertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics,2004,1563-1573
    54. Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 2007,52:223-239
    55. Chikahiro M, Yuki S, Minori N, Sayaka H, Ken-Ichi T. Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts:Galdieria partita APX maintains the electron flux through the water-water cycle in transplastomic tobacco plants. Plant Cell Physiol,2006,47:200-210
    56. Cho S K, Kim J E, Park J A, Eom T J, Kim W T. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett,2006,580:3136-3144
    57. Cho W, Stahelin R V. Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Bioph Biom,2005,34:119-151
    58. Choi H, Hong J H, Ha J, Kang J Y, Kim Y S. ABFs, a family of ABA-responsive element binding factors. JBiol Chem,2000,275:1723-1730
    59. Choudhary N L, Sairam R K, Tyagi A. Expression of deltal-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J Biochem Biophys. 2005,42:366-370
    60. Ciereszko I, Kleczkowski L A. Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms. Plant Physiol Bioch,2002,40:907-911
    61. Clouse S D, Sasse J M. Brassinosteroids:essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol,1998,49:427-451
    62. Cohen I, Knopf J A, Irihimovitch V, Shapira M. A proposed mechanism for the inhibitory effects of oxidative stress on rubisco assembly and its subunit expression. Plant Physiol,2005,137:376-387
    63. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol,2005,15:1196-2000
    64. Cushman J C, Bohnert H J. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol,2000,3:117-124
    65. Czikkel B E, Maxwell D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol,2007,164:1220-1230
    66. Dalal M, Tayal D, Chinnusamy V, Bansal K C. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol,2009,139:137-145
    67. de Pater S, Greco V, Pham K, Memelink J, Kijne J. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res,1996,24: 4625-4632
    68. Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. Plant J,1993,4:215-223
    69. Deng X, Phillips J, Meijer A H, Salamini F, Bartels D. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plan Mol Biol,2002,49:601-610
    70. Dhanda S S, Sethi G S. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica.1998,104,39-47
    71. Diatchenko L, Lau Y C, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Supperssion subtractive hybridization:A method for generating differentially regulated tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996,93: 6025-6030
    72. Diwan N, Fluhr R, Rshed Y, Zamir D, Tanksley S D. Mapping of Ve in tomato:a gene conferring resistance to the broad spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet,1999,98:315-319
    73. Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell,1995, 7:1085-1097
    74. Dombrowski J E. Salt stress activation of wound-related genes in tomato plants. Plant Physiol,2003,132:2098-2107
    75. Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol,2003,51:21-37
    76. Dunlap J R, Binzel M L. NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol,1996,112: 379-384
    77. Edreva A, Velikova V, Tsonev T, Dagnon S, Giirel A, Aktas L, Gesheva E. Stress-protective role of secondary metabolites:diversity of functions and mechanism. Gen Appl Plant Physiol,2008,34:67-77
    78. Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum:A tool for fine mapping of genes. Euphytica,1994,79:175-179
    79. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield assciated QTL, Genetics,1995,141:1147-1162
    80. Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci,2000,5:199-206
    81. Evans P T, Malmberg R L. Do polyamines have roles in plant development? Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol,1989,40:235-269
    82. Fahn A. Structural and functional properties of trichomes of xeromorphic leaves. Ann Bot,1986,57:631-637
    83. Fedorova E, Redondo F J, Koshiba T, de Felipe M R, Pueyo J J, Lucas M M. Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula:identification of AO in meristematic and infection zones. Mol Plant Microbe In,2005,8:405-413
    84. Fei Z, Tang X, Alba R, Giovannoni J. Tomato Expression Database (TED):a suite of data presentation and analysis tools. Nucleic Acids Res,2006,34:766-770
    85. Ferrari-Iliou R, D'Arcy-Lameta A, Anh T P T, Zuily-Fodil Y, Mazliak P. Effect of drought on photodynamic peroxidation of leaf total lipophilic extracts. Phytochemistry,1994,37:1237-1243
    86. Flexas J, Diaz-Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ,2007,30:1284-1298
    87. Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitations revisited. Ann Bot,2002,89:183-189
    88. Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell,2008,20:3122-3135
    89. Foolad M R, Lin G Y. Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience,1997,32:296-300
    90. Foolad M R, Zhang L P, Subbiah P. Genetics of drought tolerance during seed germination in tomato:inheritance and QTL mapping. Genome,2003,46:536-545
    91. Foyer C H, Valadier M H, Migge A, Becker T W. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol,1998,117:283-292
    92. Francois C, Menachem M, Mark J D. Regulation of olant aquaporin activity. Biol Cell,2005,97:749-764
    93. Fray R G, Wallace A, Grierson D, Lycett G W. Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol,1994,24:539-543
    94. Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol,2003,54:137-164
    95. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J,2004,39: 863-876
    96. Ge T D, Sui F G, Bai L P, Lu YY, Zhou G S. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agron Sci Chin,2006,5:291-298
    97. Geigenberger P, Stitt M, Fernie A R. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ,2004, 27:655-673
    98. Geisler M, Kolukisaoglu H U, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee J J, Murphy A S, Martinoia E, Schulz B. TWISTED DWARF1, a unique plasma membraneanchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell,2003,14:4238-4249
    99. Gigon A, Matosy A R, Laffray D, Zuily-Fodil Y, Pham-Thi A T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot,2004,94:345-351
    100.Swire-Clark G A, Marcotte W R Jr. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol,1999,39: 117-128
    101.Gonzalez E M, Gordon A J, James C L, Arrese-Igor C. The role of sucrose synthase in the response of soybean nodules to drought. JExp Bot,1995,46:1515-1523
    102.Good A G, Zaplachinski S T. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol Plantarum,1994,90: 9-14
    103.Goodwin T W, Britton G. Distribution and analysis of carotenoids. New York: Academic Press,1988.61-132
    104.Gosti F, Bertauche N, Vartanian N, Giraudat J. Abscisic acid-dependent and-independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Genet Genomics,1995,246:10-18
    105.Graca J, Santos S. Suberin:A biopolyester of plants'skin. Macromol Biosci,2007,7: 128-135
    106.Grace S C, Logan B A. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos T R Soc B,2000,355:1499-1510
    107.Grant G R, Liu J, Stoeckert C J Jr. A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics, 2005,11:2684-2690
    108.Guan Y F, Huang X Y, Zhu J, Gao J F, Zhang H X, Yang Z N. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol, 2008,147:852-863
    109.Guinn G, Eidenbock M P. Catechin and condensed tannin contents of leaves and bolls of cotton in relation to irrigation and boll load. Crop Sci,1982,22:614-616
    110.Guo D P, Shah G A, Zeng G W, Zheng S J. The interaction of plant growth regulators and vernalization on the growth and flowering of cauliflower (Brassica oleracea var. botrytis). Plant Growth Regul,2004,43:163-171
    111.Guo P G, Baum M, Grando S, Ceccarelli S, Bai G, Li R H, von Korf M, Varshney R K, Graner A, Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. JExp Bot,2009,60:3531-3544
    112.Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Tanscription factor CBF4 is a regulation of drought adaptation in Arabidopsis. Plant Physiol,2002,130:639-648
    113.Hagen G, Guilfoyle T. Auxin-responsive gene expression:genes, promoters and regulatory factors. Plant Mol Biol,2002,49:373-385
    114.Harthill J E, Meek S E, Morrice N, Peggie M W, Borch J, Wong B H, Mackintosh C. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J,2006,47:211-223
    115.Hartweck L M. Rice gibberellin insensitive DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell,2006,18:278-282
    116.Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integr Genomics,2005,5:104-116
    117.Hellmann H, Funck D, Rentsch D, Frommer W B. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol,2000, 123:779-789
    118.Hendriks T. Vreugdenhil D. Stiekema W J. Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development. Plant Mol Biol,1991,17:385-394
    119.Hernandez J A, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with in-duction of antioxidant defences. Plant Cell Environ,2000,23:853-862
    120.Hong S W, Jon J H, Kwak J M, Hong G N. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol,1997,113:1203-1212
    121.Hoogenboom G, Huck M G, Root C M. Root growth rate of soybean as affected by drought stress. Agron J,1987,79:607-614
    122.Hsiao T C. Plant response to water stress. Annu Rev Plant Physiol,1973,24:519-570
    123.Hsieh T H, Lee J T, Charng Y Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002,130:618-626
    124.Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcrip tion factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA,2006,103: 12987-12992
    125.Huang D Q, Wu W R, Abrams S R, Cutler A J. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot,2008,59:2991-3007
    126.Huang Y M, Xiao B Z, Xiong L Z. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta, 2007,226:73-85
    127.Hunt L, Mills L N, Pical C, Leckie C P, Aitken F L, Kopka J, Mueller-Roeber B, McAinsh M R, Hetherington A M, Gray J E. Phospholipase C is required for the control of stomatal aperture by ABA. Plant J,2003,34:47-55
    128.Ito H, Hamada S, Isono N, Yoshizaki T, Ueno H, Yoshimoto Y, Takeda Y, Matsui H. Functional characteristics of C-terminal regions of starch-branching enzymes from developing seeds of kidney bean (Phaseolus vulgaris L.). Plant Sci,2004,166: 1149-1158
    129.Jain K K. Biochips for Gene Spotting. Science,2001,294:621-623
    130.Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat develement gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell,2002,14:1359-1375
    131.Jonak C, Kiegerl S, Ligterink W, Barker P J, Huskisson N S, Hirt H. Stress signaling in plants:A mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA,1996,93:11274-11279
    132.Joung J G, Corbett A M, Fellman S M, Tieman D M, Klee H J, Giovannoni J J, Fei Z. Plant MetGenMAP:an integrative analysis system for plant systems biology. Plant Physiol,2009,151:1758-1768
    133.Kahn T L, Fender S E, Bray E A, O'Connell M A. Characterization of expression of drought-and abscisic acid-regulated tomato genes in the drought-resistant species Lycopersicon pennellii. Plant Physiol,1993,103:597-605
    134.Kalamaki M S, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-Lopez A, Rubio-Cabetas M J, Kanellis A K. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SINAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot,2009,60:1859-1871
    135.Kang S G, Choi J H, Suh S G. A leaf-specific 27 kda protein of potato kunitz-type proteinase inhibitor is induced in response to abscisic acid, ethylene, methyl jasmonate, and water deficit. Mol Cells,2002,13:144-147
    136.Karkkainen K, Agren J. Genetic basis of trichome production in Arabidopsis lyrata. Hereditas,2002,136:219-226
    137.Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet J G, Yazaki K, Sato F. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol,2007, 48:8-18
    138.Katsuhara M, Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol,1996,37:169-173
    139.Kaup M T, Froese C D, Thompson J E. A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol,2002,29:1616-1626.
    140.Kaur N, Gupta A K. Signal transduction pathways under abiotic stresses in plants. Curr Sci,2005,88:1771-1780
    141.Kaya C, Tuna A L, Alves A A C. Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant,2006,28:331-337
    142.Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set:protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J,2007,50:347-363
    143.Kim S J, Lee M Y, An G H, Kim S R. Differential expression of the potato proteinase inhibitor Ⅱ promoter in transgenic tobacco. J Plant Biol,2000,43:48-55
    144.Kim S R, Costa M A, An G. Sugar response element enhances wound response of potato proteinase inhibitor Ⅱ promoter in transgenic tobacco. Plant Mol Biol,1991, 17:973-983
    145.Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua N H. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell,1998,10:1677-1690
    146.Koiwa H, Bressan R A Hasegawa P M. Regulation of promotease inhibitors and plant defense. Trends Plant Sci,1997,2:379-384
    147.Konishi H, Kitano H, Komatsu S. Identification of rice root proteins regulated by gibberellin using proteome analysis. Plant Cell Environ,2005,28:328-339
    148.Koshiba T, Saito E, Ono N, Yamamoto N, Sato M. Purification and properties of flavin-and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol,1996,110:781-789
    149.Kwon S I, An C S. Cloning and expression of mitochondrial MnSOD from the small radish (Raphanus sativus L.). Mol Cell,2003,16:194-200
    150.Lagace M, Matton D P. Character ization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta,2004,219:185-189
    151.Larkindale J, Hall J D, Knight M R, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol,2005,138:882-897
    152.Lautner S, Grams T E E, Matyssek R, Fromm J. Ccharacteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol,2005,138:2200-2209
    153.Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ,2002,25: 275-294
    154.Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie S A. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot,1995,46:853-865
    155.Li H, Sun J, Xu Y, Jiang H, Wu X, Li C. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol,2007,65:655-665
    156.Li Q L, Gao X R, Yu X H, Wang X Z, An L J. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett,2003,25: 1431-1436
    157.Lincoln D E, Walla M D. Flavonoids from Diplacus aurantiacus leaf resin. Biochem Syst Ecol,1986,14:195-198
    158.Liu H P, Dong B H, Zhang Y Y, Liu Z P, Liu Y L. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci,2004,166:1261-1267
    159.Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. FEBS J,1999,262:247-257
    160.Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998,10:1391-1406
    161.Liu X N, Baird W V. Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Sci,2003,43:678-687
    162.Liu X N, Baird W V. Identification of a novel gene, HaABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. Am J Bot,2004,91:184-191
    163.Liu Y S, Zamir D. Second generation L. pennellii introgression lines and the concept of bin mapping. Tomato Genet Coop Rep,1999,49:26-30
    164.Lopez F, Vansuyt G, Derancourt J, Fourcroy P, Casse-Delbart F. Identification by 2D-page analysis of salt-stress induced proteins in radish (Raphanus sativus). Cell Mol Biol,1994,40:85-90
    165.Lopez-Martin M C, Becana M, Romero L C, Gotor C. Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiol,2008, 147:562-572
    166.Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress responsive genes in Arabidopsis. Plant Mol Biol,2007,63: 289-305
    167.Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci,2008, 14:37-42
    168.Ludwig A A, Romeis T, Jones J. CDPK-mediated signalling pathways:specificity and cross-talk. JExp Bot,2004,55:181-188
    169.Luna C M, Pastori G M, Driscoll S, Groten K, Bernard S, Foyer C H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot,2005,56:417-423
    170.Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J, Xia K, Fu X D, Luo D, Chun C C. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol,2006,47:181-191
    171.Lao M, Wang Z Y, Li H P, Xia K F, Cai Y P, Xu Z F. Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int J Mol Sci,2009,10:1896-1910
    172.Mahdieh M, Mostajeran A, Horie T, Katsuhara M. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol,2008,49:801-813
    173.Mahiul M H, David J M, Keith T I. Inheritance of leaf epicuticular wax content in rice. Crop Sci,1992,32:865-868
    174.Maimann S, Wagner C, Kreft O, Zeh M, Willmitzer L, Hofgen R, Hesse H. Transgenic potato plants reveal the indispensable role of cystathionine β-lyase in plant growth and development. Plant J,2000,23:747-758
    175.Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. The transeriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,2000,26:403-410
    176.Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca M A, Cattivelli L Hv-WRKY38:a new trans-cription factor involved in cold and drought response in barley. Plant Mol Biol,2004,55:399-416
    177.Martin-Tanguy J. Metabolism and function of polyamines in plants:recent development (new approaches). Plant Growth Regul,2001,34:135-148
    178.Masakazu H, Shogo T, Toru U. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol,2001,158:1333-1339
    179.Masia A. Physiological effects of oxidative stress in relation to ethylene in postharvest produce. New York:Food Products Press,2003.165-197
    180.Maximova N, Osterberg M, Koljonen K, Stenius P. Lignin adsorption on cellulose fibre surfaces:Effect on surface chemistry, surface morphology and paper strength. Cellulose,2001,8:113-125
    181.Meloni D A, Gulotta M R, Martinez C A, Oliva M A. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Plant Physiol,2004,16:39-46
    182.Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol,2004,55: 853-867
    183.Milborrow B V. The pathway of biosynthesis of abscisic acid in vascular plant:A review of the present state of knowledge of ABA biosynthesis. J Exp Bot,2001,52: 1145-1164
    184.Mishra G, Zhang W, Deng F, Zhao J, Wang X M. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science,2006, 312:264-266
    185.Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol,2009,50:1232-1248
    186.Mitsuda N, Seki M, Shinozaki K, Ohme-Takag M. The NAC transcrip tion factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell,2005,17:2993-3006
    187.Mittler R Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002, 7:405-410
    188.Moffatt B A Weretilnyk E A. Sustaining S-adenosyl-l-methionine-dependent methyltransferase activity in plant cells. Physiol Plantarum,2001,113:435-442
    189.Mohamed E A, Iwaki T, Munir I, Tamoi M, Shigeoka S, Wadano A. Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance. Plant Cell Environ,2003,26:2037-2046
    190.Mohammadkhani N, Heidari R. Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl Sci J,2008,3:448-453
    191.Mohammadkhani N, Heidari R. Effects of drought stress on protective enzyme activities and lipid peroxidation in two maize cultivars. Pakistan J Biol Sci,2007,10: 3835-3840
    192.Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L-esculentum genetic background:A tool for gene mapping and gene discovery. Genome,2000,43:803-813
    193.Monteiro D P F, Pham T A T, Vieira D S J, Justin A M, Demandre C, Mazliak P. Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci,1990,66:185-193
    194.Munne-Bosch S, Alegre L. Die and let live:leaf senescence contributes to plant survival under drought stress. Funct Plant Biol,2004,31:203-216
    195.Nair A S, Abraham T K, Jaya D S. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. J Environ Biol,2008,29:689-691
    196.Nakajima N, Hiradate S, Fujii Y. Plant growth inhibitory activity of L-canavanine and its mode of action. J Chem Ecol,2001,27:19-31
    197.Nakamura H, Satoh W, Hidaka S, Kagaya Y, Ejiri S, Tsutsumi K. Genomic structure of the rice aldolase isozyme C-1 gene and its regulation through a Ca2+-mediated protein kinase-phosphatase pathway. Plant Mol Biol,1996,30:381-385
    198.Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J,1998,17:5563-5 576
    199.Nogueira F T S, Schlogl P S, Camargo S R, Fernandez J H, De-Rosa V E, Pompermayer P, Arruda P. SsNAC23, a member of the NAC domain protein family is associated with cold, herbivory and water stress in sugarcane. Plant Sci,2005,169: 93-106
    200.Nour A E M, Weibel D E, Todd G W. Effect of repeated drought periods on the survival of sorghum seedlings. Agron J,1978,70:509-510
    201.Oh S K, Lee S, Yu S H, Choi D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta,2005,222:876-887
    202.Ono A, Izawa T, Chua N H, Shimamoto K. The rab16B promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol,1996,112:483-491
    203.Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res,2003,6:239-247
    204.Opik H, Simon E W. Water content and respiration rate of bean cotyledons. J Exp Bot, 1963,14:299-310
    205.Ouyang B, Yang T, Li H X, Zhang L, Zhang Y Y, Zhang J H, Fei Z J, Ye Z B. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. JExp Bot,2007,58:507-520
    206.Pan Y, Wu L J, Yu Z L. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul,2006,49:157-165
    207.Panikulangara T J, Eggers-Schumaeher G, Wunderhch M, Stransky H, Schofll F. Galuctinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arbidopsis. Plant Physiol,2004,136:3148-3158
    208.Park S H, Li J S, Pittman J K, Berkowitz G A, Yang H B, Undurraga S, Morris J, Hirschi K D, Gaxiola R A. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA,2005,102: 18830-18835
    209.Pastor A, Lopez-Carbonell M, Alegre L. Abscisic acid inmunolocalization and ultrastructure changes in water-stresses lavender (Lavandula stoechas L.) plants. Plant Physiol,1999,105:272-279
    210.Pearce G, Strydom D, Johnson S, Ryan C A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science,1991,253:895-898
    211.Peng L, Arthur B P. Differential display of eukaryotic messenger RNA by means of. the polymerase chain reaction. Science,1992,257:967-971
    212.Peng L X, Gu L K, Zheng C C, Li D Q, Shu H R. Expression of MaMAPK Gene in seedlings of Malus L. under water stress. Acta Bioch Bioph Sin,2006,38:281-286
    213.Perfus-Barbeoch L, Jones A M, Assmann S M. Plant heterotrimeric G protein function:insights from Arabidopsi and rice mutants. Curr Opin Plant Biol,2004,7: 719-731
    214.Pernas M, Sanchez-Mong R, Salcedo G. Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett,2000,467:206-210
    215.Pilar A. Development of SCARs by direct sequencing of RAPD product:a practical tool for the introgression and marker-assisted selection of wheat. CLIN Mol Breeding, 1999,5:245-253
    216.Pilon-smits E, Ebskamp M, Paul M J, Jeukenm J W, Weisbeek P J, Smeekens S C M. Improved performance of transgenic fructan accumulating tobacco under drought stress. Plant Physiol,1995,107:125-130
    217.Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J,2002,31:319-330
    218.Pradet A, Raymond P. Denine-nucleotide ratios and adenylate energy-charge in energy-metabolism. Annu Rev Plant Physiol,1983,34:199-224
    219.Premchandra G S, Saneoka H, Fujita K, Ogata S. Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficit in sorghum. J Exp Bot,1992,43:1569-1576
    220.Pustovoitova T N, Zhdanova N E, Zholkevich V N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russian J Plant Physiol, 2004,51:569-574
    221.Qin J, Zhao J Y, Zuo K J, Cao Y F, Ling H, Sun X F, Tang K X. Isolation and characterization of an ERF-like gene from Gossypium barbadense. Plant Sci,2004, 167:1383-1389
    222.Quiapim A C, Brito M S, Bernardes L A S, daSilva I, Malavazi I, DePaoli H C, Molfetta-Machado J B, Giuliatti S, Goldman G H, Goldman M H S. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol,2009,149:1211-1230
    223.Qiu Y P, Yu D Q. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot,2009,65: 35-47
    224.Rahman S M L, Mackay W A, Nawata E, Sakuratani T. Superoxide dismutase and stress tolerance of four tomato cultivars. HortScience,2004,39:983-986
    225.Rakwal R, Kumar-Agrawal G, Jwa N S. Characterization of a rice(Oryza sativa L.) bowman-birk proteinase inhibitor:tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene,2001,263: 189-198
    226.Ramamoorthy R, Jiang SY, Kumar N, Venkatesh P N, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments, Plant Cell Physiol,2008,49:865-879
    227.Rathinasabapathi B, Burnet M, Russell B L, Gage D A, Liao P C, Nye G J, Scott P, Golbeck J H, Hanson A D. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA,1997,94:3454-3458
    228.Ray J D, Yu L, McCouch S R, Champoux M C, Wang G, Nguyen H T. Mapping quantitative trait loci associated with root penetration. Theor Appl Genet,1996,92: 627-636
    229.Rhodes D, Handa S, Bressan R A. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol,1986,82:890-903
    230.Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol,2002,153:185-194
    231.Rick C M. Potential genetic resources in tomato species:Clues from observation in native habitats. Basic Life Sci,1973,3:255-269
    232.Riechmann J L, Ratcliffe 0 J. A genomic perspective on plant transcription factors. Curr Opin Plant Biol,2000,3:423-434
    233.Rizhsky L, Liang H J, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol,2002,130:1143-1151
    234.Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide, the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol,2004,134:1683-1696
    235.Robatzek S, Somssich, I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Gene Dev,2002,16:1139-1149
    236.Roberts J K M, Aubert S, Cout E, Bligny R, Douce R. Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance. Plant Physiol,1997,113:191-199
    237.Rodriguez H L, Ramirez N T, Flores M D, Cruz M, Saavedra D H. Glycine reduce the oxidative stress in metabolic syndrome patients. FASEB J,2007,21, 1b185
    238.Ross C A, Liu Y Shen Q J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol,2007,49:827-842
    239.Rouhier N, Couturier J, Jacquot J P. Genome-wide analysis of plant glutaredoxin systems. J Exp Bot,2006,57:1685-1696
    240.Ryan C A. Protease inhibitors in plants:Genes for improving defenses against insects and pathogens. Annu Rev Phytopatho,1990,28:425-449
    241.Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Bioph Res Co,2002,290:998-1009
    242.Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell,2006,18: 1292-1309
    243.Sanchez-Serrano J, Schmidt R, Scell J, Willmitzer L. Nucleotide sequence of proteinase inhibitor Ⅱ encoding cDNA of potato (Solanum tuberosum) and its mode of expression. Mol Gen Genet,1986,203:15-20
    244.Saradhi P P, Suzuki I, Katoh A, Sakamoto A, Sharmila P, Shi D J, Murata N. Protection against the photo-induced inactivation of the photosystem Ⅱ complex by abscisic acid. Plant Cell Environ,2000,23:711-718
    245.Sari-Gorla M, Krajewski P, Difonzo N, Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers. Ⅱ. Plant height and flowering. Theor Appl Genet,1999,99:289-295
    246.Satoh H, Uchida A, Nakayama K, Okada M. Water-soluble chlorophyll protein in brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant Cell Physiol, 2001,42:906-911
    247.Scaramagli S, Biondi S, Leone A, Grillo S, Torrigiani P. Acclimation to low water potential in potato cell suspension cultures leads to changes in putrescine metabolism. Plant Physiol Bioch,2000,182:6247-6249
    248.Schindler U, Beckmann H, Cashmore A R. TGA1 and G-box binding factors:two distinct classes of Arabidopsis leucine zipper proteins compete for G-box-like element TGACGTGG. Plant Cell,1992,4:1309-1319
    249.Scippa G S, Griffiths A, Chiatante D, Bray E A. The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta,2000,211:173-181
    250.Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa, T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genom,2002,2:282-291
    251.Shani Z. Dekel M. Tsabary G. Shoseyov O. Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol,1997,34:837-842
    252.Shibasaki Y, Kizuki N, Wada T, Yazaki Y, TAsano, Oka Y. Type I Phosphatidylinositol-4-phosphate 5-Kinases. J Biol Chem,1998,273:8741-8748
    253.Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. JExp Bot,2007,58:221-227
    254.Shou H X, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. JExp Bot,2004,155:1013-1019
    255.Sin S F, Chey M L. Expression of proteinase inhibitor Ⅱ proteins during floral development in Solanum americanum. Planta,2004,19:1010-1022
    256.Sin S F, Yeung E C, Chye M L. Down-regulation of Solanum americanum genes encoding proteinase inhibitor Ⅱ causes defective seed development. Plant J,2006, 45:58-70
    257.Singh S C, Sinha R P, Hader D P. Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool,2002,41:297-308
    258.Souer E, van Houwelingen A, Kloos D. The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell,1996,85:159-170
    259.Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water:a QTL analysis of drought tolerance. Crop Sci.2001,41:493-509
    260.Srinivasan T, Kumar K R R, Kirti P B. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol, 2009,50:541-553
    261.Storozhenko S, Pauw P D, Montagu M V, Inze D, Kushnir S. The heat-shock element is a functional component of the Arabidopsis APXl gene promoter. Plant Physiol, 1998,118:1005-1014
    262.Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell,2003,15:2076-2092
    263.Tabor C W, Tabor H. Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Adv Enzymol Relat Area Mol Biol,1984,56:251-282
    264.Tang W, Ronald J. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Newton Plant Growth Regul,2005,46:31-43
    265.Taylor B H, Young R J, Scheuring C F. Induction of a proteinase inhibitor Ⅱ-class gene by auxin in tomato roots. Plant Mol Biol,1993,23:1005-1014
    266.Tedeschi G, Ronchi S, Simonic T, Treu C, Mattevi A, Negri A. Probing the active site of L-aspartate oxidase by site-directed mutagenesis:role of basic residues in fumarate reduction. Biochemistry,2001,40:4738-4744
    267.Thomas H, James A R, Bot A. Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought. Ann Bot,1993,72: 249-254
    268.Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Abscisic acid biosynthesis in tomato:regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol,2000,42:833-845
    269.Tian M Y, Win J, Song J, Hoorn R V D, Knaap E V D, Kamoun S. A phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol,2007,143:364-377
    270.Todaka D, Matsushima H, Morohashi Y. Water stress enhances β-amylase activity in cucumber cotyledons. J Exp Bot,2000,51:739-745
    271.Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell,2004,16:2481-2498
    272.Treutter D. Significance of flavonoids in plant resistance:A review. ENVIRON Chem Lett,2006,4:147-157
    273.Trevino M B, O'Connell M A. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol,1998,116:1461-1468
    274.Trewavas A J, Malho R J. Signal perception and transduction:The origin of the phenotype. Plant Cell,1997,9:1181-1195
    275.Trujillo L E, Sotolongo M, Menendez C, Ochogaviia M E, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma B P H J, Vera P, HerncLndez L. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol,2008,49:512-525
    276.Turano F J, Fang T K. Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol,1998,117:1411-1421
    277.Tuteja N, Singh M B, Misra M K, Bhalla P L, Tuteja R. Molecular mechanisms of DNA damage and repair:progress in plants. Crit Rev Biochem Mol,2001,36: 337-397
    278.Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science,2006, 314:1298-1301
    279.Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction. Trends Plant Sci,2000,5:67-74
    280.Valentovic P, Luxova M, Kolarovic L, Gasparikova O. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ,2006,52:186-191
    281.Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino G L, Rossoni M, Spinardi A, Bracale M. Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci,2007,173:231-239
    282.Veatch-Blohm M E, Ray D T, McCloskey W B. Water-stress-induced changes in resin and rubber concentration and distribution in greenhouse-grown guayule. Agron J,2006,98:766-773
    283.Walia H, Wilson C, ondamine P C, Liu X, Ismail A M, Zeng L H, Wanamaker S I, Mandal J, Xu J, Cui X P, Close T J. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol,2005,139:822-835
    284.Walker J C. Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol,1994,26:1599-1609
    285. Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abotic stress response. Trends Plant Sci,2004,9: 244-252
    286.Wang Y H, Garvin D F, Kochian L V. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol, 2001,127:345-59
    287.Wang Y, Tang X M, Cheng Z K, Mueller L, Giovannoni J, Tanksley S D. Euchromatin and pericentromeric heterochromatin:comparative composition in the tomato genome. Genetics,2006,172:2529-2540
    288.Wei K, Jin X, Chen X, Wu F, Zhou W, Qiu B, Qiu L, Wang X, Li C, Zhang G. The effect of H2O2 and abscisic acid (ABA) interaction on beta-amylase activity under osmotic stress during grain development in barley. Plant Physiol Bioch,2009,47: 778-784
    289.Wei W, Zhang Y X, Han L, Guan Z Q, Chai T Y. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep,2008,27:795-803
    290.Welin B V, Olson A, Nylander M, Palva E T. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol,1994,1:131-144
    291.Wilkinson S, Corlett J E, Oger L, Davies W J. Effects of xylem pH on transpiration from wild-type and flacca tomato leaves:a vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol,1998,117: 703-709
    292.Wrobel A, Rokita E, Maenhaut W. Transport of traffic-raleted aerosols in urban areas. Sci Total Environ,2000,257:199-211
    293. Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their rigins. DNA Res,2005,12:9-26
    294.Wu L J, Zhang Z J, Zhang H W, Wang X W, Huang R F. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol,2008,148: 1953-1963
    295.Xiao J H, Li H X, Zhang J H, Chen R G, Zhang Y Y, Ouyang B, Wang T T, Ye Z B. Dissection of GA 20-oxidase members affecting tomato morphology by RNAi-mediated silencing. Plant Growth Regul,2006,50:179-189
    296.Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Gene Dev,2000,14: 3024-3036
    297.Xie Q, Sanz-Burgos AP, Guo H, Garcia JA, Gutierrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol,1999,39:647-656
    298.Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell,2002,14:165-183
    299.Xiong L M, Wang R G, Mao G H, Koczan J M. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol,2006,142:1065-1074
    300.Xiong L M, Zhu J K. Abiotic stress signal transduction in plants:Molecular and genetic perspectives. Physiol Plantarum,2001,112:152-166
    301.Xiong L M, Zhu J K. Regulation of abcisic acid biosynthesis. Plant Physiol.2003, 133,29-36
    302.Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress. J Exp Bot.2005,56:1975-1981
    303.Yamada S, Katsuhara M, Kelly W B, Michalowski C B, Bohnert, H J. A family of transcripts encoding water channel proteion:tissue-specic expression in common ice plant. Plant Cell,1995,7:1129-1142
    304.Yamade S, Katsuhara M. A family of transcripts encoding water channel protein in tissue-specific expression in the common ice plant. Plant Cell,1995,7:1129-1142
    305.Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Involvement of polyamines in the drought resistance of rice. J Exp Bot,2007,58:1545-1555
    306.Yang Y H, Dudoit S, Luu P, Lin D M, Peng V, Ngai J, Speed T P. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res,2002,30:e15
    307.Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol,2008,49:226-241
    308.Young R J, Scheuring C F, Harris-Haller L, Taylor B H. An auxin-inducible proteinase inhibitor gene from tomato. Plant Physiol,1994,104:811-812
    309.Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol,2001,42: 1012-1016
    310.Zarka D G, Vogel J T, Cook D, Thomashow M F. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol, 2003,133:910-918
    311.Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot,2009,60:3781-3796
    312.Zhang H W, Huang Z J, Xie B Y, Chen Q, Tian X, Zhang X L, Zhang H B, Lu X Y, Huang D F, Huang R F. The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 2004,220:262-270
    313.Zhang J H, Davis W J. Changes in the concentration of ABA in the xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ,1990,13:277-285
    314.Zhang J X, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol,1994,35: 785-791
    315.Zhang J, Jia W, Yang J, Ismail A M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res,2006,97:111-119
    316.Zhang L P, Lin G Y, Foolad M R. QTL comparison of salt tolerance during seed germination and vegetative growth in a Lycopersicon esculentum × L. pimpinellifolium RIL population. Acta Hort,2003,618:59-67
    317.Zhang M S, Xie B, Tan F. Relationship between changes of endogenous hormone in sweet potato under water stress and variety drought-resistance. Agr Sci Chin,2002,1: 626-630
    318.Zhang S, Klessig D F. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci USA,1998,95:7225-7230
    319.Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G. Isolation and analysis of water stress induce genes in maize seedling by subtractive PCR and cDNA microarray. Plant Mol Biol,2004,55:807-823
    320.Zheng X N, Chen B, Lu G J, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Bioph Res Co,2009,379:985-989
    321.Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biot J,2008,6:486-503
    322.Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002,53:247-273
    323.Zou X L, Shen Q X J, Neuman D. An ABA inducible WRKY gene integrates responses of creosote bush (Larrea tridentata) to elevated CO2 and abiotic stresses. Plant Sci,2007,172:997-1004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700