用户名: 密码: 验证码:
航空发动机叶片疲劳的损伤力学研究及外物损伤影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代运输和国防需求,促进了民用和军用飞机的快速发展。随着航空工业的快速发展,对燃气涡轮发动机的性能和安全可靠性提出了越来越高的要求。然而,伴随性能的提高,发动机零部件的工作条件更加严峻、恶劣、应力水平更高,从而使结构完整性,安全可靠性成为制约发动机发展的突出问题。
     叶片是航空发动机的主要零件之一,其结构和承载状况复杂,特别是转子叶片,薄而长,不仅在高速旋转,且转速多变,并受到气流和燃气的冲击发生振动,位于发动机前部的压气机叶片还可能受到被吸入的砂、石等外物撞击作用。这种转速变化引起的低循环交变应力和高速转动中气流激振导致的高频振动应力,使叶片逐渐损伤,发生故障直至疲劳破坏,叶片的疲劳掉块与折断可能将压气机甚至整台发动机打坏,造成飞机失事,这样的例子时有发生,后果严重。
     研究叶片高低周疲劳损伤规律,改进疲劳分析方法提高疲劳损伤评估和寿命预测水平,是航空发动机结构完整性和可靠性研究的基础和重要组成部分。本文基于连续损伤力学理论和疲劳损伤试验,系统地分析和研究了转子叶片在低循环和高循环载荷作用下疲劳损伤问题,并发展了一个完整的压气机转子叶片疲劳损伤力学有限元分析系统,为叶片疲劳研究提供了一个新的途径。此外,对严重影响叶片寿命的外物损伤及其对高周疲劳的影响进行了试验研究和数值分析。本文的主要内容如下:
     (1)叶片低周疲劳损伤力学模型和分析方法研究。利用已有的观测结果,从疲劳机理方面讨论了损伤力学分析的合理性和优点,根据本文的应变疲劳试验测试,改进了常用的低周疲劳损伤模型,使模型描述的损伤演化规律与试验结果在整个疲劳损伤过程中符合较好。根据钛合金TC4材料低循环损伤演化特点,提出低周疲劳损伤演化分析和寿命预测的简化分析方法,以及通过模拟试件的反演分析研究损伤材料常数的实用方法。
     (2)叶片高周疲劳损伤力学模型和分析方法研究。根据高周疲劳损伤机理,推导高周疲劳损伤演化方程,将低周疲劳损伤分析中提出的方法,推广应用于振动应力引起的高周疲劳。
     (3)对于压气机叶片常用材料TC4标准试件,在4种不同应变幅值下进行应变疲劳损伤的试验观测,得到应变软化、损伤发展和疲劳破坏过程特点,以及滞后回线变化规律和极限损伤变量,为损伤模型和分析方法研究及数值计算提供试验数据和基本参数。
     (4)叶片高、低周疲劳损伤力学分析软件系统。为了给本文研究和实际应用提供分析手段和研究平台,利用三维20节点六面体等参单元,自编了一个叶片疲劳损伤力学有限元分析软件系统(Fortran语言,约10000句),具有准静态弹塑性分析、振动特性和响应分析、低周和高周疲劳损伤演化分析及寿命预测等功能和较好的前后处理。提出了适用于叶片疲劳分析的循环弹塑性应力、振动应力和损伤演化计算方法,对程序进行了全面考核。
     (5)典型叶片的疲劳损伤分析。利用上述模型、方法和软件,对于典型的实际压气机叶片进行了系列分析,包括给定载荷谱块下的循环弹塑性应力、动频和静频、振动应力、疲劳损伤场和演化以及疲劳寿命,对结果和变化规律进行了分析讨论。实际算例证明了本文改进的损伤模型,提出的简化分析方法和开发的专用软件是有效的。
     (6)叶片前缘的外物损伤及对高周疲劳影响研究。用自制自由落体冲击试验装置进行模拟叶片前缘落锤冲击试验,模拟硬物颗粒撞冲前缘引起的损伤,得到冲击能量与缺口深度的关系。在不同循环应力幅值下,对冲击后试件进行了应力疲劳试验,并对外物损伤模拟和疲劳寿命再分析,给出剩余寿命随应力幅值的变化规律。
With the requirements of modern transport and national defense, civil and military aircraft are rapidly developing and the performance, reliability and safety of gas turbine engine will become higher and higher. The increase of thrust weight ratio, as a key measure of engine performance, is obtained from the applications of new materials, structures, advanced manufacture method etc, and so the properties of material are improved and working stress margins are reduced, at same time, the operation condition of engine components/parts becomes much more serious or deteriorative and its stress level is higher, thus structural integrity, safety and reliability become a key restraining the fast development of engine.
     Blade is major parts of aircraft engine. The blades, especially rotor blades, are complicated in structure and loading. thin and long in size, work in high and variable rotation speed, and are subject to impact of air and gas flow that can result in vibration. Compressor blades located in front of engine may also be damaged by the impact of sand, stone and other foreign objects ingested into engine. Low cycle stress caused by the variable rotating speed and the high cycle stress from high frequency vibration excited by unsteady flow make blade damaged increasingly, until fatigue failure occurs. The blade fracture may break compressor or whole engine, furthermore lead to aircraft accident.
     It is the one of the major objectives and important part of air engine structural integrity and reliability to study the law of high and low cycle fatigue, to refine fatigue analysis method and to improve the level of the fatigue damage assessment and life prediction. In this paper, based on continuum damage mechanics (CDM) and fatigue damage test, fatigue damage of rotor blades under low and high cycle loading was systematically analyzed and studied, a FE program system for whole CDM-analysis for fatigue damage of compressor rotor blades was developed, which provides a new approach to blade fatigue analysis. Furthermore, foreign object damage (FOD) that seriously reduces blade life were investigated through test and numerical modeling. The main researches are as follows:
     (1) Investigation of damage mechanics model and analytical method for blade low cycle fatigue.
     Using the existing tests results, the rationality and advantages of damage mechanics approach to fatigue analysis were discussed from the short crack mechanism of fatigue. Based on the present strain-controlled fatigue test data, the traditional low cycle fatigue damage model was refined which is good agreement with the test result in all fatigue damage process. A simplified method for damage evolution analysis and life prediction of low cycle fatigue has been developed according to low fatigue damage evolution of titanium alloy Ti-6Al-4V, as well as a convenient inverse analysis to determine the damage parameters of materials.
     (2) Investigation of damage mechanics model and analytical method for blade high cycle fatigue.
     Based on high cycle fatigue damage mechanism, the damage evolution equation was derived. The proposed method was extended and applied to high cycle fatigue caused by vibration stress.
     (3) The strain-controlled fatigue damage test in four strain amplitudes was completed for the standard specimens of the material TC4 used for compressor blade. Characteristics of strain softening, damage growth and fatigue damage process, variation of loop and limit of damage variable were obtained, and the test data and essential parameter is provided for the study of damage model and analysis method, as well as numerical calculation.
     (4) FE software system (by Fortran, with 10000 sentences) has been developed for low and high cycle fatigue analysis by damage mechanics.
     In order to provide research tools and platform for the study of this paper and application, FE analysis software has been developed for blade fatigue damage mechanics with 3D 20 nodes hexahedron isoperimetric element. The system have the function of elasto-plastic analysis, vibration analysis, low cycle and high cycle fatigue damage evolution analysis, life prediction and better pre-processing and past-processing. The programs has been fully validated.
     (5) Fatigue damage analysis for typical blade.
     With the above model, method, and programs, A series of analysis was carried out for typical compressor blade, including cycle elasto-plastic stress, dynamic frequency and static frequency, vibration stress, fatigue damage field and fatigue life in given load cycle, and result were discussed. The result show that the refined damage model, the proposed simplified methods and the software are available.
     (6) Investigation of foreign object damage(FOD) on blade leading edge and its influence on high cycle fatigue
     The connection of the indent depth and impact energy were obtained by impacting on specimens simulating blade leading edge using self-made lift hammer in the free falling body. A combined the stress-controlled fatigue test and numerical analysis was done with the damaged specimens which give the residual life vs stress amplitudes.
引文
1. 张宝诚,刘孝安.航空发动机可靠性和经济性[M],北京:国防工业出版社,1998
    2. 饶寿期(主编),徐鹤山(副主编).航空涡喷、涡扇发动机结构设计准则(研究报告),第三册[M],中国航空工业总公司发动机系统工程局,1997
    3. 宋兆泓(主编),陈光等(副主编).航空发动机典型故障分析[M],北京:北京航空航天大学出版社,1993
    4. Stefanie A Johnson. F101 Powered B-1 Bs, Jetservice, Spring 1992
    5. 陈光.高压压气机钛着火的危害与防止措施[J],国际航空,1995,1
    6. 毕尔盖,伊.阿等.燃起涡轮发动机和零件的结构强度[M],北京:航空工业出版社,1990
    7. 宋兆泓,李其汉.航空发动机强度、振动测试技术[M],北京:国防工业出版社,1997
    8. 毕尔盖,伊.阿等.机械零件强度设计手册,姚兆生译,北京:机械工业出版社,1997
    9. 杨士杰,吴秋芳.一级压气机转子叶片强度试验分析,沈阳发动机设计研究所
    10. XiaobinLe, Peterson M L. A method for fatigue based reliability when the loading of a component is unknown [J], International Journal of Fatigue,1999,21:603-610
    11. Herman Shen M H. Reliability assessment of high cycle fatigue design of gas turbine blades using the probabilistic Goodman Diagram[J], International Journal of Fatigue,1999,21:699-708
    12. Alisha L Hutson, Ted Nicholas, Rick Goodman. Fretting fatigue of Ti-6A1-4V under flat-on-flat contact[J], International Journal of Fatigue,1999,21:663-669
    13. Myounggu Park, Young-Ha Hwang, Yun-Seung Choi, Tae Gu Kim. Analysis of a J69-T-25 engine turbine blade fracture[J], Engineering Failure Analysis,2002,9: 593-601
    14. Ciavarella M, Demelio G. A review of analytical aspects of fretting fatigue, with extension to damage parameters, and application to dovetail joints[J], International Journal of Solids and Structures,2001,38:1791-1811
    15. Vyas N S, Sidharth, Rao J S. Dynamic stress analysis and fracture mechanics approach to life prediction[J], Mech Mach Theory,1997,32 (4):511-527
    16. Troshchenko V T, Prokopenko A V. Fatigue strength of gas turbine compressor blades [J], Engineering Failure Analysis,2000,7:209-220
    17. Navas Gladys, Viloria Laura. Analysis of rotor-blade failure due to high-temperature corrosion/erosion[J], Surface and Coatings Technology,1999,120-121:145-150
    18. Ali Abdul Aziz. Assessment of crack growth in a space shuttle main engine first-stage high-pressure fuel turbopump blade[J], Finite Elements in Analysis and Design,2002, 39:1-15
    19. Gallardo J M, Rodryguez J A, Herrera E J. Failure of gas turbine blades[J], Wear, 2002,252:264-268
    20. Yue Z F, Lu Z Z, Zheng C Q, Yin Z Y. Life study of nickel-base single crystal turbine blades:viscoplastic crystallographic constitutive behaviour[J], Theoretical and Applied Fracture Mechanics,1996,24:139-145
    21. Bulloch J H, Callagy A G. An in situ wear-corrosion study on a series of protective coatings in large induced draft fans[J], Wear,1999,233-235:284-292
    22. Youri N Lenets, Richard S Bellows. Crack propagation life prediction for Ti-6A1-4V based on striation spacing measurements[J], International Journal of Fatigue,2000, 22:521-529
    23. Bellows R S, Bain K R, Sheldon J W. Effect of step testing and notches on the endurance limit of Ti-6A1-4V In:Mechanical behavior of advanced materials[J], New York:American Society of Mechanical Engineers,1998:27-32.
    24. Choi S T, Chou Y T. Vibration analysis of elastically supported turbomachinery blades by the modified differential quadrature method[J], Journal of Sound and Vibration,2001,240 (5):937-953
    25. Leissa A W. Comparison of beam and shell theories for the vibrations of thin turbomachinery blades[J], Journal of Engineering for Power,1983,105:383-392.
    26. Maurizi M J, Rossi R E, Belles P M. Free vibrations of uniform Timoshenko beams with ends elastically restrained against rotation and translation[J], Journal of Sound and Vibration,1990141:359-363
    27. Rossi R E, Laura P A A, Gutierrez R H. A note on transverse vibrations of a Timoshenko beam of non-uniform thickness clamped at one end and carrying a concentrated mass at the other[J], Journal of Sound and Vibration,1990,143:491-502
    28. Lim C W, Liew K M. Vibration of pretwisted cantilever trapezoidal symmetric laminates[J], Acta Mechanica,1995,111:193-208
    29. Bert C W, Wang X, Striz A G. Static and free vibrational beams and plates by differential quadrature method[J] Acta Mechanics,1994,102:11-24
    30. Choi S T, WU J D, Chou Y T. Dynamic analysis of a spinning Timoshenko beam by the differential quadrature method[J], American Institute of Aeronautics and Astronautics Journal,2000,38:851-856
    31. Liew K M, Lim C W, Kttipornchai S. Vibration of shallow shells[J], Applied Mechanics Reviews,1997,50:431-444
    32. Qatu M S, Leissa A W. Vibration studies for laminated composite twisted cantilever plates[J], International Journal of Mechanical Science,1991,33:927-940
    33. Lim C W. Vibration of turbomachinery blades with nonlinear twisting curvature, Singapore, Proceedings of Fourth Asia Pacific Conference on Computational Mechanics,1999:493-498
    34. Hu X X, Tsuiji T. Free vibration analysis of rotating twisted cylindrical thin panels[J], Journal of Sound and Vibration,1999,222:209-224
    35. Hu X X, Tsuiji T. Free vibration analysis of curved and twisted cylindrical thin panels[J], Journal of Sound and Vibration,1999,219:63-88
    36. Tomioka T, Kobayashi Y, Yamada G. Analysis of free vibration of rotating disk-blade coupled systems by using artificial springs and orthogonal polynomials[J], Journal of Sound and Vibration,1996,191 (1):53-73
    37. Stange W A, Macbain J C. An investigation of dual mode phenomena in a mistuned bladed disk[J],Transactions of the American Society of Mechanical Engineers, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1983,105:402-407
    38. Albedoor B O. Dynamic model of coupled shaft torsional and bending deformations in rotors [J], Comput methods in applied mechanics and engineering, 1999,169:177-190
    39. Loewy R, Khdaer N. structural dynamics of rotating bladed-disk assemblies coupled with flexible shaft motion, AIAA J,1984,22 (9):1319-1327
    40. Huaang S, Ho R. Coupled shaft-torsion and blade-bending vibration of a rotating shaft-disk-blade unit[J], Gas turbines power,1996,118:100-106
    41. Jianfu Hou, Bryon J Wicks, Ross A. Antoniou. An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis [J], Engineering Failure (?)s,2002,9:201-211
    42. Chen C L, Chen L W. Random vibration of a rotating blade with external and internal damping by the finite element method[J], Journal of Sound and Vibration,2002,252 (4):697-715
    43. Chen C L, Chen L W. Random vibration and reliability of a dampted thick rotating blade of generally orthotropic material, Composite Structures,2001,53:365-377
    44. Chen C L, Chen L W. Random response of a rotating composite blade with flexure-torsion coupling effect by the finite element method, Composite Structures, 2001,54:407-415
    45. Knut 0. Ronold, Jakob Wedel Heinen, Christensen Carl J. Reliability-based fatigue design of wind-turbine rotor blades [J], Engineering Structures,1999,21:1101-1114
    46. Knut 0 Ronold, Gunner C Larsen. Reliability-based design of wind-turbine rotor blades against failure in ultimate loading [J], Engineering Structures,2000,22: 565-574
    47. Knut O Ronold, Carl J Christensen. Optimization of a design code for wind-turbine rotor blades in Fatigue[J], Engineering Structures,2001,23:993-1004
    48. Bihan Y Le, Joubert P Y, Placko D. Wall thickness evaluation of single crystal hollow blades by eddy current sensor[J], NDT & E International,2001,34:363-368
    49. 杨建.叶片可靠性预测的非线性振荡低网络边界元法[J],热能动力工程,2004,19(2):175-178
    50. 段巍,安利强,徐飞.基于随机有限元——一次二阶矩法的汽轮机叶片可靠度计算,华北电力大学学报,2004,31(3):104-107
    51. 安利强,段巍,徐飞.叶片振动特性分析中的随机力学方法[J],热量透平,2003,32(3):143-150
    52. 江龙平,徐可君,隋育松.叶片振动的灰色可靠性研究[J],汽轮机技术,2002,44(5):286-287
    53. 陈晓伟等.压气机叶片的静强度可靠性研究,2000,1:9-12
    54.南宫自军,汪亮,张铎.Neumann随机有限元法计算涡轮叶片的可靠度[J],推进技术,1998,19(2):35-37
    55. 曾春华,邹十践.疲劳分析方法及应有[M],北京:国防工业出版社,1991
    56. 谢济洲.低循环疲劳手册[M],北京航空材料研究所,1992
    57. 航空航天工业部科学技术研究所.应变疲劳分析手册[M],北京:科学出版社,1987
    58. 北京航空材料研究所.航空发动机设计用材料数据手册[M],中国航空发动机总公司,1990
    59. Coffin L F. A study of cyclic thermal stress on a ductile metal[J], ASME,1954,76
    60. Manson S S. Behavior of material under condition of thermal stress[J], NACA T.R,1954
    61. Lemaitre J. Evaluation of dissipation and damage in metals submitted to dynamic loading. In:Proceedings of ICM1, Kyoto,1971
    62. Sidoroff F. Description of anisotropic damage application to elasticity[J], Proc. Of IUTAM colloquium. Physical nonlinearities in structural analysis,1981:237-244
    63. 余寿文,冯西桥.损伤力学[M],北京:清华大学出版社,1997
    64. Lemaitre J.损伤力学教程[M],北京:科学技术出版社,1996
    65. 余天庆,钱济成.损伤理论及其应用[M],北京:国防工业出版社,1993
    66. 李灏.损伤力学基础[M],济南:山东科学技术出版社,1992
    67. Kachanov L M. Time of the rupture process under creep conditions, TVZ Akad. S.S.R.Otd.Tech.Nauk,1958
    68. Rabotnov Yu N. On the equations of state for creep[J], Progress in Applied Mechanics, 1963:307-315
    69. Janson J, Hult J. Fracture mechanics and damage mechanics, a combined approach[J], J.de Mech.Appl,1977,1(1):59-64
    70. Kachanov L M. Introduction to continuum damage mechanics[M], Dordrecht, The Netherlands:Martinus Nijhoff Publishers,1986
    71. Lemaitre J and Chaboche J L. Mechanics of solid materials[M], Cambridge: Cambridge University Press,1988
    72.王卫国,郑雯.12Cr1MoV钢低周疲劳损伤研究[J],材料科学与工艺,2005,13(2):193-195
    73. 吕涛,杨晓华,李年,杜百平,史耀武.2Cr13钢低周疲劳损伤演变规律研究[J],机械强度,1999,21(2):118-121
    74. Chaboche J T, Lesne P M. A non-liner continuous fatigue damage model[J], Fatigue Fract Engng Mater Struct,1998,1(1):1-17
    75. 周柏卓,杨士杰.正交各向异性材料粘塑性损伤寿命研究[J],航空发动机,2001,(2):4-7
    76. 丁智平,刘义伦,尹泽勇.镍基单晶高温合金蠕变—疲劳寿命评估方法进展[J],机械强度,2003,25(3):254-259
    77. 陈凌,蒋家羚.一种新的低周疲劳损伤及试验验证[J],金属学报,2005,42(2):157-160
    78. Sandeep Kumar, Niranjan Roy, Ranjan Ganguli. Monitoring low cycle fatigue damage in turbine blade using vibration characteristics [J], Mechanical Systems and Signal Processing,2007,21:480-501
    79. Paepegem W Van, Degrieck J. Simulating damage and permanent strain in composites under in-plane fatigue loading[J], Computers and Structures,2005,83:1930-1942
    80. Yangt Xiaohua, Lit Nian, Jint Zhihao, Wang Tiejun. A continuous low cycle fatigue damage model and its application in engineering materials, Int. J. Fatigue,1997,19 (10):687-692
    81. Krajcinovic D, Lemaitre J. A continuum Damage Mechnics:Theory and Application. Berlin:Springer Verlag,1987
    82. Desmorat R, Kane A, Seyedi M, Sermage J P. Two scale damage model and related numerical issues for thermo-mechanical High Cycle Fatigue[J], European Journal of Mechanics A/Solids,2007
    83. Gerber W W. Low and high cycle fatigue a continuum supported by afm observations[J], Acta mater 1998,46 (14):5007-5021
    84. Xiao Y C, Li S, Gao Z. A continuum damage mechanics model for high cycle fatigue[J], Int. J. Fatigue,1998,20 (2):503-508
    85. Li Z X, Chan T H T, Ko J M. Fatigue damage model for bridge under traffic loading:application made to Tsing Ma Bridge[J], Theoretical and Applied Fracture Mechanics,2001,35:81-91
    86. 康继东,陈世煊.压气机叶片外物损伤及其维修性的研究进展[J],燃气涡轮试验与研究,1998,11(1)
    87. Storance Albert F. Foreign object impact design criteria[M], AFAPL-TR-78-81
    88. Nicholas T, Barber J P, Bertke R S. Impact damage on Titaninm leading edges from small hard objects[J], Experimental mechanics,1980,20 (3):357-364
    89. peters J O, Ritchie R O. Influence of foreign object damage on crack initiation and early crack growing during high cycle fatigue of Ti-6A1-4V[J], engineering fracture mechanics,2000,67:193-207
    90. Bache M R, Evans W J. The resistance to impact damage and subsequent fatigue response of two titanium alloys[J], Materials science and engineering,2002, A333:287-294
    91. Xi Chen, John W. Hutchinson. Particle impact on metal substrates with application to foreign object damage to aircraft engines[J], Journal of the Mechanics and Physics of solid,2002,50:2669-2690
    92. Shankar Mall, Nicholas T. High cycle fatigue behaviour of Ti-6Al-4Vwith simulated[J], foreign object damage Mechanics of Materials,2001,33:679-692
    93. John Ruschau, Steven R Thompson, Ted Nicholas. High cycle fatigue limit stresses for airfoils subjected to International Journal of Fatigue,2003,25:955-962
    94. Mirco D Chapetti. Application of a threshold curve model to high cycle fatigue behaviour of small cracks induced by foreign object damage in Ti-6A1-4V[J], Journal of Fatigue,2005,27:493-501
    95. 孙振德,鲁启新.外物撞击损伤叶片的模拟试验方法[J],航空动力学报,1989,1(1):29-32
    96. 乔文逍,熊昌炳.航空发动机外物损伤试验技术研究[J],航空动力学报,1990,5(3):227-229
    97. 康继东,陈世煊,徐志怀.压气机叶片外物损伤模拟的撞击能量当量法[J],南京 航空航天大学学报,1998,30(6):611-615
    98. 邓小禾,赵永红.航空发动机压气机叶片疲劳寿命的研究[J],新疆工学院学报,2000,21(3):221-225
    99. 哈尔滨工业大学理论力学教研室编.理论力学(Ⅰ),第六版[M],北京:高等教育出版社,2002
    100.黄克智,黄永刚.固体本构关系[M],北京:清华大学出版社,1999
    101.姜弘道.有限单元法的程序设计[M],北京:水利电力出版社,1989
    102.孙家广,许隆文.计算机图形学[M],北京:清华大学出版社,1986
    103.王勖成,邵敏.有限元法基本原理和数值方法[M],北京:清华大学出版社,1997
    104.吴厚钰.透平零件结构和强度计算[M],北京:机械工业出版社,1982
    105.黄克智,肖纪美主编.材料的损伤断裂机理和宏细观力学理论,第三章[M],北京:清华大学出版社,1999
    106. 《工程材料实用手册》编辑委员会编.工程材料实用手册(第二版),第四卷,北京:中国标准出版社,2002
    107. 《航空发动机设计手册》总编委会编.航空发动机设计手册,第18册[M],北京:航空工业出版社,2001
    108. Parlett B N, Scott D. The Lanczos algorithm with selective orthogonalization[J], Mathematics of Computation,1997,33 (145):217-238
    109. Nour-Omid B, Clough R W. Dynamic analysis of structures using Lanczos coordinates[J], Earthquke Engineering and Structural Dynamics,1984,12:565-577
    110. Bathe K J, Ramaswamy S. An acceleration subspace iteration method[J], Computer Methods in Appl Mech and Eng,1980 23:313-331
    111.刘更.结构动力学有限元程序设计[M],北京:国防工业出版社,1993
    112. Chen X. Foreign object damage on leading edges of a thin blade [J], Mechanics of Materials,2005,37:447-457
    113. Nowell D, Duoa P, Stewart I F. Prediction of fatigue performance in gas turbine blades after foreign object damage [J], Int. Journal of Fatigue,2003,25:963-969
    114.罗荣梅.叶片外物冲击损伤及其对疲劳寿命的影响[D],东北大学,2006
    115. Hamrick J L. Effect of foreign object damage form small hard particles on the high-cycle fatigue life of Ti-6A1-4V[D], Air Force Institute of Technology,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700