用户名: 密码: 验证码:
隧(巷)道开挖扰动区(EDZ)形成过程及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,公路、铁路隧道工程建设以及采矿工程中巷道工程设计、施工、稳定性评价及其支护措施等都直接依赖于对围岩岩体的强度、变形、岩体损伤与破裂规律等特征的研究。开挖扰动区岩体的研究是一个前沿热点研究课题,但目前尚无成熟的系统研究方法。
     本文在对开挖扰动区(EDZ)国内外研究现状进行了较为全面回顾的基础上,对开挖扰动区的相关理论进行了系统分类和归纳,对隧道开挖扰动后围岩的破坏模式及稳定性判据进行了全面分析,总结了以往研究方法及有关模型的优缺点,提出了开挖扰动区研究的本质和特点。从岩石材料的细观结构入手,利用细观力学的研究方法,抓住岩石材料及其力学性质的非均匀性,借助于统计学和现有的数值计算方法,以理论分析和实验结果及现场实测数据为基础,结合隧道开挖、采矿工程巷道施工维护工程实例,建立数值模型,进行围岩开挖扰动区的变形、破坏过程的数值分析,研究了扰动区的形成过程、机理及扰动范围。
     本文从开挖载荷诱发岩石损伤与破裂过程入手,在建立卸荷作用下围岩拉应力区、剪应力区损伤本构关系基础上,研究了不同断面隧道开挖扰动诱发的应力积累和应力迁移等规律,重点对连续岩体、含节理岩体、层状岩体中隧道开挖卸荷的扰动区形成过程和机理进行了研究,阐述了隧道围岩中弱结构体的存在使围岩变形和松动区形态发生奇异变化的影响规律。针对不同的岩体类型,具体分析了开挖后岩体的位移场、应力场变化,并阐释了从弹性区到塑性区以至发生破裂产生残余变形过程的力学演化规律。同时考查了巷道开挖卸荷围岩的蠕变效应,及在动态应力波作用下巷道的失稳破坏过程。
     本文的研究成果将充实岩体力学等相关学科的基础理论,提高开挖扰动区(EDZ)研究的水平和应用范围,为隧(巷)道设计施工、地质灾害预测预报提供重要参考价值,具有一定的理论价值和实践意义。
In the design and construction of underground laneway, we not only concern the size and direction of ground stresses before the laneway is excavated, but also more pay attention to the state of the stress redistribution of the surrounding rock induced by excavation. In the stress analysis of the surrounding rock of the laneway, theoretical analysis may give the stress distribution at the surrounding rock in circular or elliptical roadway. Finite element method has extensive flexibility, may consider some complex laneway with arbitrary shape, and gives the stress distribution at the surrounding rock. Knowledge of the stress distribution as well as the deformation and failure process of roadway pays an important role in controlling the roadway stability and selecting appropriate support parameters.
     Theoretical analysis for the rock stress surrounding the roadway of circular or elliptical roadway subjected to different ratios between pressures in horizontal and vertical directions is carried out by using elastic theory. The equation of tangential stress around the roadway boundary is given, and stress distribution around boundary of the circular and elliptical roadway is summarized. The figures of tangential stress distribution around the boundary of elliptical roadway with different lateral pressure coefficient are drawn. According to finite element atlas of underground engineering analysis, the stress distribution of surrounding rock of the arch laneway is calculated. The figures of stress distribution at the surrounding rock of laneway are drawn. The distribution rules of tensile stresses and compressive stresses around the roadway boundary are summarized. When a tunnel or an underground structure is excavated in rock mass, rock disturbed or damaged zone (EDZ) is formed around the tunnel due to the stress concentration resulting from stress redistribution. Recent studies on the rock EDZ revealed its important to structural stability around underground opening. In this study, the fracture and damage mechanisms of rock induced by the accumulation of microcracks were investigated by AE tests.
     The results of the experiments showed that tensile failure was the major microscopic failure mechanism of rock in excavation damaged and distrubed zone. The damage of tunnel surrounding rock masses usually results from the redistribution of stress indisturbed rock mass in tunnel excavation process. The excavation-disturbed zone (EDZ) is defined as the rock zone where the rock properties and conditions, such as fracture, stress and hydraulic aperture, have been changed dueto the processes induced by excavation.EDZ is considered to be physically less stable and can form a continuousand highly permeable pathway of groundwater flow. The characterization of EDZ will affect tunnel supportstructure design, tunnel construction and tunnel surrounding rock mass stability analysis. Seismic surveytechniques can be, used to examine the nature of EDZ around the tunnel.
     Based on the concept of EDZ and theprimary factors that lead to the change of rock properties, a methodology is proposed to depict mechanical andhydraulic behavior of EDZ. By using the in-situ data, deformability and hydraulic properties are studied bynumerical analysis. The results show that the excavation damage depends on the excavation method. In addition, the influence boundary of the excavation-disturbed stress zone is smaller than that of the seepage. Therefore, theseepage boundary condition should be emphasized in establishing the coupled fluid-solid numerical models. Theresults will make the establishment of coupled fluid-solid model more reasonable.
引文
[1]Bieniawski, Z.T., Rock Mechanics Design in Mining and Tunneling. Balkema, Rotterdam, 1984.
    [2]Sandstrom, G. E., The History of Tunneling, Barrie and Rockliff, London,1963.
    [3]于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定分析[M],煤炭工业出版社,1983.
    [4]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M],科学出版社,1996.
    [5]Goodman R. E. and Brown C. B. Dead load stresses and the instability of slops. PROC.ASCE, J.SM& F DN, Vol.89,SM4, May,1963.
    [6]Brown C.B., and King I.P. Automatic embankment analysis. Geotechnique,16(3),1966.
    [7]Finn W. D. L. Static and dynamic stress in slops. Proc.1st Int. Cong. Rock Mech, Lisbow, 1966.
    [8]Clough R. W. and Woodward R. J. Analysis of embankment stresses and deformations. PROC.ASCE, J.SM & F DN, Vol.93, SM4, July,1967.
    [9]Duncan, J. M. and Donlop, P. Slops in stiff-fissured clays shales. Contract Report, No. S-68-4, USAEWES, June,1968.
    [10]Wittke W. New design concept for underground openings in rock. Finite Elements in Geomechanics, Anchen, p.414.
    [11]Kelsall P. C., Case J. B., Chabannes C.R.Evaluation of excavation-induced changes in rock permeability[J]. Int. J. Rock Mech. Min. Sci.& Geomech Abstr.1984,21(3):123-135.
    [12]Thompson P.M., Martino J.B., Spinney M.H. Detailed measurements of deformation in the excavation disturbed zone[J]. Int. J. Rock Mech. Min. Sci.& Geomech Abstr.1993,30(7): 1511-1514.
    [13]Jakubick A.T., Franz T. Vacuum testing of the permeability of the excavation damaged zone[J]. Rock Mech. Rock Engng.1993,26 (2):165-182.
    [14]Autio J., Siitari-Kauppi M., Timonen J., et al. Determination of the porosity, permeability and diffusivity of rock in the excavation-disturbed zone around full-scale deposition holes using the 14C-PMMA and He-gas methods[J]. Journal of Contaminant Hydrology.1998,35(1-3): 19-29.
    [15]Backblom G, Martin C.D. Recent Experiments in Hard Rocks to Study the Excavation Response Implications for the Performance of a Nuclear Waste Geological Repository[J]. Tunneling and Underground Space Technology.1999,14(3):377-394.
    [16]Sato T., Kikuchi T., Sugihara K. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan[J]. Engineering Geology.2000,56(1-2):97-108.
    [17]Sheng Q., Yue Z.Q., Lee C.F. et al. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China[J]. Int. J. Rock Mech. Min. Sci.2002, 39(2):165-184.
    [18]Carlos D. D. G., Vidal N. T. Prediction of EDZ (excavation damaged zone) from explosive detonation in underground openings. ISRM International Symposium on Rock Engineering for Mountainous Regions-Eurock 2002, Funchal, November 25-28,2002.
    [19]Hou Zhengmeng. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities[J]. Int. J. Rock Mech. Min. Sci.2003,40(5):725-738.
    [20]Martino J.B., Chandler N.A. Excavation-induced damage studies at the Underground Research Laboratory [J]. Int. J. Rock Mech. Min. Sci.2004,41(8):1413-1426.
    [21]Cai M., Kaiser P.K. Assessment of excavation damaged zone using a micromechanics model[J]. Tunnelling and Underground Space Technology.2005,20(4):301-310.
    [22]Tsang C. F., Bernier F., Davies C. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal[J]. Int. J. Rock Mech. Min. Sci.2005,42(1):109-125.
    [23]Young, R. P., Martin, C.D. Potential role of acoustic emission microseismicity investigations in the site characterization and performance monitoring of nuclear waste repositories. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 1993,30 (7):797-803.
    [24]Falls, S. D., Young, R. P. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock. Tectonophysics,1998,289:1-15.
    [25]Pettitt, W.S., Baker, C., Young, R.P., Dahlstrom, L.O., Ramqvist, G. The assessment of damage around critical engineering structures using induced seismicity and ultrasonic techniques. Pure and Applied Geophysics,2002,159(1-3):179-195.
    [26]Maxwell S.C., Young R.P., Read R. A micro-velocity tool to assess the excavation damage zone[J]. Int. J. Rock Mech. Min. Sci.1998,35(2):235-247.
    [27]Thompson, P.M., Martino, J.B., Spinney, M.H. Detailed measurements of deformation in the excavation disturbed zone. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts,1993,30(7):1511-1514.
    [28]Read, R.S.20 years of excavation response studies at AECL's Underground Research Laboratory. International Journal of Rock Mechanics & Mining Sciences,2004,41: 1251-1275.
    [29]Hinds, J. J., Bodvarsson, G. S., Nieder-Westermann, G H. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain. Journal of Contaminant Hydrology,2003,62-63:111-132.
    [30]Rutqvist, J., Tsang, C. F. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain. Journal of Contaminant Hydrology,2003,62-63: 637-652.
    [31]Li, GM., Tsang, C. F. Seepage into drifts with mechanical degradation. Journal of Contaminant Hydrology,2003,62-63:157-172.
    [32]Bossart, P., Meier, P.M., Moeri, A., Trick, T., Mayor, J.C. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Engineering Geology,2002,66:19-38.
    [33]Chijimatsu, M., Fujita, T., Sugita, Y, Amemiya, K.,Kobayashi, A. Field experiment, results and THM behavior in the Kamaishi mine experiment. International Journal of Rock Mechanics and Mining Sciences,2001,38 (1):67-78.
    [34]Nguyen, T.S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., Kobayashi, A., Ohnishi, Y, Tanaka, M., Jing, L. Hydro-mechanical response of a fractured granitic rock mass to excavation of a test pit-the Kamaishi Mine experiment in Japan. International Journal of Rock Mechanics and Mining Sciences,2001,38 (1):79-84.
    [35]Rutqvist, J., Borgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J., Tsang, C. F. Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine-comparison of field results to predictions of four finite element codes. International Journal of Rock Mechanics & Mining Sciences,2001,38:129-142.
    [36]夏熙伦,周火明,盛谦等.三峡工程船闸高边坡岩体松动区及其性状[J].长江科学院院报.1999,16(4):1-5.
    [37]邓建辉,王浩,姜清辉等.利用滑动变形计监测岩石边坡松动区[J].岩石力学与工程学报.2002,21(2):180-184.
    [38]董学晟,盛谦,周火明等.三峡永久船闸高边坡开挖扰动区工程岩体力学性状研究[M].武汉:湖北科学技术出版社,2003.
    [39]周火明,盛谦,李维树等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报.2004,23(7):1078-1081.
    [40]肖世国.岩石高边坡开挖松弛区及加固支挡结构研究[D].成都西南交通大学,2003.
    [41]肖世国,周德培.开挖边坡松弛区的确定与数值分析方法[J].西南交通大学学报,2003,38(3):318-322.
    [42]肖世国,周德培.边坡开挖应力场的近似解析解[J].水利学报,2005,36(1):16-21.
    [43]肖世国,夏才初,周德培.开挖边坡松动区的一种定义及分析方法[J].同济大学学报(自然科学版),2005,33(4):451-455.
    [44]李仲奎,莫兴华,王爱民等.地下洞室松动区模型及其在反馈分析中的应用[J].水利水电技术.1999,30(5):49-51.
    [45]邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报.2001,20(2):171-174.
    [46]陈新万,石启麟.梅山铁矿巷道围岩松动区与锚喷支护参数研究[J].金属矿山.1999,(7):3-6(31).
    [47]张世雄,张松,任高峰.硐室巷道围岩松弛范围的超声波测试[J].西部探矿工程.2005,(1):99-100.
    [48]周扬水,吴从师,张庆彬.隧道围岩爆破松动圈测试分析[J].采矿技术.2005,5(3):63-64.
    [49]吉小明.隧道开挖的围岩损伤扰动带分析[J].岩石力学与工程学报,2005,24(10):1697-1702.
    [50]林鹏,黄凯珠,唐春安,周维垣.断续节理岩石中开挖附近扰动区失稳行为的实验.清华大学学报,2003,43(8):1108-1111.
    [51]He, H.L., Ahrens, T.J. Mechanical properties of shock damaged rock. International Journal of Rock Mechanics and Mining Sciences,1994,31 (5):525-533.
    [52]Yang, R., Bawdens, W. F., Katsabaniss, P. D. A new constitutive model for blast damage. Int. J. Rock Mech.Min. Sci.& Geomech. Abstr.,1996,33 (3):245-254.
    [53]郭文章,王树仁,刘殿书,陈寿峰.节理岩体爆破块度预测的力学模型探讨.爆破,1997,14(3):32-34.
    [54]郭文章,王树仁,张奇,员永峰.节理岩体爆破的破裂规律分析.振动与冲击,1999,18(2):30-34.
    [55]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算.北京:科学出版社,1999年4月.
    [56]高文学,杨运通,杨军.脆性岩石冲击损伤模型研究.岩石力学与工程学报,2000,19(2):153-156.
    [57]刘殿书,于滨,杜玉兰,陈寿峰,赵红平,谢夫海.岩石爆破损伤模型及其研究进展.工程爆破,1.999,5(4):78-87.
    [58]蒋建平,汪明武等.地下工程中岩土结构面的影响分析,工程地质学报,2003,11(4),349-352.
    [59]任德惠.不同倾角结构面对洞室稳定性的影响,煤炭学报,1988,13(3),51-53.
    [60]杜时贵,周庆良等.公路隧道围岩稳定的结构面影响,中国公路学报,1997,10(6),64-69.
    [61]蒋金泉,曲华等.巷道围岩弱结构灾变失稳与破坏区域形态的奇异性,岩石力学与工程学报,2005,9,24(18),3373-3379.
    [62]张志强,李宁等.软弱夹层分布部位对洞室稳定性影响探究,岩石力学与工程学报,2005,9,24(18),3252-3257.
    [63]布雷迪BHG,布朗ET.地下采矿岩石力学[M].冯树仁,佘诗刚,朱柞铎等译,北京:煤炭工业出版社.1990.
    [64]Prieat, S. D and J. A. Hudson 1976. Discontinuity spacings in rock. Int. J. Rack Mech. Min Sci.13,135-148.
    [65]Prieat. S. D and J. A. Hudson 1981. Estimation of discontinuity spacing and trace length using scanline surveys.. Int. J. Rock Mech. Min Sci.18,183-197.
    [66]郑雨天等译.岩石力学试验建议方法[M].国际岩石力学学会实验室和现场试验标准化委 员会.北京:煤炭工业出版社.1980.
    [67]Goodman E. R., Taylor R. L., Brrekke T. L.,A model for the mechanics of jointed rock. ASCE, SM3.1968. G37-659.
    [68]Zienkiewice O. C., Best., Dallage C., Stag K. G, Analysis on non-linear problems in rock mechanics with particular reference to jointed rock systems. Proc.2nd Int. Congress of ISRM. Beograd:1970.(3):501-509.
    [69]Cudall P. A., A computer model for simulating progressive large scale movements in blocky systems. Proc. Int. Symp. Rock Fracture. Nancy.1971.2-8.
    [70]Goodman E. R., Shi Genhua., Block Theory and Its Application to Engineering. Englewood. Cliffs, NJ. Prentice Hall.1985.
    [71]Kawomoto T., Ichikawa T., Kyoya T., Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory. Int. J. Num. Anal. Method in Geomech.,1988. 12(1):1-30.
    [72]刘东燕,叶晓明,朱凡.断续节理岩体强度评价及承载力预测[J].重庆建筑大学学报,1997.19(2):21-30.
    [73]Patton F D. Multiple models of shear failure in rock. Proc 1st ISRM. Congr Lisbon,1966. 509-513.
    [74]Jeager J C. Friction of rocks and stability of rock slopes. Geotechnique,1971.21:91-134.
    [75]Barton N R. A relationship between joint roughness and shear strength. Proc. Int. Symp on Rock Fracture, Nancy, France.1971.1-8.
    [76]Barton N R. Review of a new shear strength criterion for rock joints[J]. Engng. Geo. 1973.7:287-332.
    [77]. Barton, N.R.1976. The shear strength of rock and rock joints[J]. Int. J. Rock Mech. Min. Sci. & Geoxnech. Abstr.13:255-279.
    [78]Ladanyi B, Archambault G. Simulation of shear behaviour of jointed rock mass. Proc 11th Symp on Rock Mech. (AIME),1970.105-125.
    [79]Gerrard C M. Elastic models of rock masses having one, two and three sets of joints. Int. J. Rock Mech. Min. Sci.1982.19:15-23.
    [80]Gerrard C M. Shear failure of rock joints:Appropriate constraint for empirical relation. Int. J. Rock Mech. Min. Sci.& Geomech Abstr,1986.23:401-429.
    [81]Griffith A A. The Phenomena of rupture and flow in solids. Phil. Trans, Roy. Soc. Lond1924.A221,163-170.
    [82]Meclintock F A., Walsh J B. Fraction and Griffith crack in rock under pressure. In:Prco.4th U.S. Congress Applied Mechanics. New York:1962.
    [83]Hoek E. Rock fracture under static stress condition. Mech. Engg. Res. In. Report MEG 383, CSIR. S.Africa.1975.
    [84]Kemeny J. Cook N G W. Effective moduli, non-linear deformation and strength of a cracked elastic solid. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1986,23(2):107-118.
    [85]Luis Vallejo&Eddy Pramono. Development of Fracture Regions in Brittle Materials, Proc. 25th U.S Symp. on Rock Mechanics.1984.
    [86]C.Li, O. Stephansson. Behaviour of Rock j oints and Rock Bridges in Shear Testing. Rock Joint, Proc. of Int.Symp. on Rock Joints,1990.
    [87]T. Savilahti, E. Nordlund. Shear box Testing and Modeling of Joint Bridges, Proc. of Int.Symp.on Rock Joints,1990.
    [88]Muller L. and Pacher F. Modelllversuche zur Klarung der Bruchgefahr geklafeter Medien. Rock Mech. Eng. Geol. Supplementum No.2.1965.7-24.
    [89]Brown E T. Strength Model of Rock with Intermittent joints. Journal of the Soil Mechanics and Foubdation Diusion. Ascf. Vol.96. No smb (1970).
    [90]Lajtai E. Z. Brittle Fracture in compression[J].Int. J. Fracture.1974. (10):525-536.
    [91]郭志.实用岩体力学[M].北京:地震出版社.1996.
    [92]范景伟,何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报.1992.11(2):190-199.
    [93]白世伟,任伟中,丰定样等.平面应力条件下闭合断续节理岩体破坏机理及强度特性[J].岩石力学与工程学报.1999.18(6):635-640.
    [94]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992,14(2):1-11.
    [95]凌建明,节理裂隙岩体损伤力学研究中的若干问题[3].力学进展.1994.25(2):257-263.
    [96]刘东燕,朱可善.岩石压剪断裂的模型试验研究[J].重庆建筑大学学报,1994.16(1):56-62.
    [97]陈蕴生,李宁,李爱国等,非贯通节理介质细观损伤演化的CT分析[J].石力学与工程学报.19(6):702-705.
    [98]陈卫忠,朱维申,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报.1998.19(4):355-360.
    [99]张林,范景伟,何江达等.拱坝坝肩含断续节理岩体破坏机理研究[J].四川大学学报(工程科学版).2000.23(1):7-11.
    [100]钱惠国,潘瑞林,薄爵光.确定节理岩体抗剪强度的结构影响函数法[J].西南交通大学学报.1992.(2):57-63.
    [101]何江达,范景伟.含一组未闭合断续节理脆性岩体强度特性[J].成都科技大学学报.1990.(6):57-64.
    [102]刘东燕,范景伟.用有限单元法分析含断续节理脆性岩体断裂强度[J].成都科技大学学报.1992.(2):51-56,76.
    [103]刘东燕,范景伟.二向应力作用下断续节理岩体的强度特性研究[J].贵州工学院学报.1991.20(4):92-98.
    [104]刘东燕,朱可善.含断续节理岩体强度的各向异性研究,岩石力学与工程学报[J].1999.17(4):366-371.
    [105]刘东燕,朱可善,范景伟.双向应力作用下X型断续节理岩体的强度特性研究[J].重庆建筑工程学院学报,1991.13(4):40-46.
    [106]周群力.刘振洪.岩石压剪断裂核的扩容效应[J].石力学与工程学报.1999.18(4):444-446.
    [107]周群力.佘泳琼.岩石压剪断裂核的试验研究[[J].固体力学学报.1991.12(4):329-336.
    [108]周群力.岩石压剪判据及其应用[J].岩土工程学报.1987.9(6):67-73.
    [109]李建林,孙志宏.节理岩体压剪断裂及其强度研究[J].岩石力学与工程学报.2001.19(4):444-448.
    [110]李建林,刘东燕,王康平.岩石压剪断裂的等效判据[J].葛洲坝水电工程学院学报.1995.17(3):7-13.
    [111]徐靖南,朱维申.压剪应力作用下共线裂纹的强度判定[J].岩石力学与工程学报.1995.14(4):306-311.
    [112]任伟中,白世伟,丰定祥等.直剪条件下共面闭合断续节理岩体的强度特性分析.中国岩石力学与工程学会第六次学术大会论文集[C].北京:中国科学技术出版社,2000:147-151.
    [113]任伟中,王庚苏,白世伟等.共面闭合断续节理岩体的直剪强度研究[J].石力学与工程学报.2003.22(10):1667-1672.
    [114]伍法权,王思敬等.岩体力学中的统计方法与理论[J].科学通报.1993.38(15):1345-1354.
    [115]唐辉明,晏同珍.岩体断裂力学理论与工程应用[M].武汉:中国地质大学出版社.1993.
    [116]Li X P and Zhu W S. The damage fracture analysis of a jointed rock mass and its application. Engng. Fracture Mech.,1992.43(2):165-170.
    [117]于学馥等.岩石记忆与开挖理论.北京:冶金工业出版社.1993.
    [118]孙钧.岩石力学在我国的若干进展[J].西部探矿工程.1999.11(1):1-5.
    [119]Brady B. H. G and Brown E. T., Rock Mechanics for Underground Mining [M]. George Allen & Unwin, London,1985:212-213.
    [120]Bieniawskik Z. T. Engineering Rock Mass Classification. New York.1989.
    [121]Barton, N. R., Recent experiences with the Q-system of tunnel support design, In Proc. Symp. Exploration for Rock Engineering, Johannesburg (Edited by Bieniawshi ZT), ASCE, New York,1976,Vol.1,163-177; discussion,234-241.
    [122]Barton, N. and Bandis, S. C., Effects of block size on the shear behavior of jointed rock, In Proc.23rd U.S. Symp. Rock Mech., Berkeley, CA (Edited by Goodman RD and Heuze FE), Am. Soc. Min. Eng., New York,1983,739-760.
    [123]Bandis, S. C., Lumsden, A. C. and Barton, N. R., Experimental Studies of Scale Effects on the Shear Behaviour of Rock Joints, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,,1981,Vol. 18,1-21.
    [124]Goodman, R. E., Introduction to Rock Mechanics, John Wiley& Sons.1980.
    [125]孙广忠.岩体结构力学[M].北京:科学出版社.1988.
    [126]谢和平.岩石、混凝土损伤力学[M].中国矿业大学出版社,1990.
    [127]石根华.岩块非连续变形数值新解法[M].北京:科学技术出版社.1991.
    [128]华安增等.层状非连续岩体稳定学[M].徐州:中国矿业大学出版社.1997.10.
    [129]石根华,裴觉民.数值流形方法与非连续变形分析[M].北京:清华大学出版社.1997.8.
    [130]任青文.块体单元法及其在岩体稳定分析中的应用[J].河海大学学报.1995.23(1):1-7.
    [131]董方庭.锚喷支护研究—围岩松动圈区和锚固体研究[J].中国矿业学院学报.1980(2):25-36.
    [132]宋宏伟.松动圈锚喷支护理论在稳定围岩中的应用[D].中国矿业、学院硕士论文.1987.5.121-141.
    [133]董方庭等.锚喷支护机理研究.国际来矿学术会议论文集,中国矿业大学.1985.9.
    [134]董方庭.巷道围岩(软岩)的岩石分类问题[J].建井技术,1985(3).
    [135]董方庭等.中等稳定岩石巷道锚喷支护合理参数的研究及工业试验[J].中国矿业大学学 报,1985(2).
    [136]Hoek, E. and Brown, E. T., Practical Estimates of Rock Mass Strength, Int. J. Rock Mech. Min. Sci.1997,Vol.34,1165-1186.
    [137]Brown, E. T. Rock Characterization Testing & Monitoring, Pergamon Press.1981.
    [138]Zhao, J. Joint matching coefficient (JMC) of rock joints, Int. J. Rock Mech. Min. Sci.& Geotech. Abstr,1989, Vol.26, A177.
    [139]Zhao, J. Geothermal testing and measurements of rock and rock fractures, Geothermics,1994 Vol.23,215-231.
    [140]Swanson, S. R. and Brown, W S., An observation of loading path independence of fracture in rock, Int. J. Rock Mech. Min. Sci.,1971,Vol.8,277-281.
    [141]Milne, D., Hadjigeorgiou, J. and Pakalnis, R., Rock Mass Characterization for Underground Hard Rock Mines, Tunnelling and Underground Space Technology,1998, Vol.13,383-391.
    [142]Nomiko, PP, Sofianos A.I. and Tsoutrelis C.E., Structural Response of Vertically Multi-jointed Roof Rock Beams, Int. J. Rock Mech. and Min. Sci.,2002, Vol.39,79-94.
    [143]Priest S. D. and Hudson J. A., Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci.& Geotech. Abstr.,1976, Vol.13:135-148.
    [144]Germanovich, L. N. and Dyskin, A. V, Fracture Mechanisms and Instability of Qpenings in Compression, Int..I. Rock Mech.& Min. Sci.,2000.Vol.37,263-284.
    [145]Cornet, F. H., Special Topic in Rock Mechanics,5th International Congress on Rock Mechanics. Melbourne, Rotterdam:Balkema,1983,257-286.
    [146]Donath, F. A., Experimental study of shear failure in anisotropic rocks, Geol. Soc. Am. Bull. 1961, Vol.72,985-990.
    [147]Amadei B., Rogers J. D. and Goodman R. E.. Elastic Constants and Tensile Strength of Anisotropic Rocks, In Proc.52th Int. Congr. Rock Mechanics, Melbourne. Balkema, Rotterdam.1983. Vol.1.A189-196.
    [148]Aydan, O.& Kawamoto, T., Discontinuities and Their Effect on Rock Mass, Rock Joints, Balkema & Rotterdam,1990,149-156.
    [149]Bardsley, W. E., Major, T. J., and Selby, M. J., Note on a Weibull property for joint spacing analysis, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1990,Vol.27.133-134.
    [150]于学馥.岩石力学的科学主题一第一层次科学方法论[J].岩石力学与工程学报.1995.15(4):401-404.
    [151]Muller L,Fecker F.新奥法的基本思想和主要原则[J].地下工程.1980.(6):26-32.
    [152]凌贤长、蔡德所.岩体力学,哈尔滨工业大学出版社,2002.
    [153]Tsang, C. F., Coupled thermomchanical hydrochemical processes in rock fractures. Review of Geophysics,29(1991)537.
    [154]DECOVALEX-An International Co-Operative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1995,32(5):389-398.
    [155]徐平、杨挺清.岩石流变试验与本构模型辨识,岩石力学与工程学报,2001,20(增),1739-1744.
    [156]曹树刚、边金、李鹏.岩石蠕变本构关系及改进的西原正夫模型,岩石力学与工程学报,2002,21(5),632-634.
    [157]袁静、龚晓南、益德清.岩土流变模型的比较研究,岩石力学与工程学报,2001,20(6),772-779.
    [158]陈宗基.岩石的封闭应力、蠕变和扩容及本构方程,岩石力学与工程学报,1991,10(2),299-312.
    [159]范广勤.岩土工程流变力学,煤炭工业出版社,1993.
    [160]张忠亭、王宏、陶振宇.岩石蠕变特性研究进展概况,长江科学院院报,1996,13(增),1-5.
    [161]J. F. Shao. (2003):Modeling of creep in rock materials in terms of material degradation. Computer and Geotechnics; 30:549-555.
    [162]Vemeny J M,A Model for Nonlinear Rock Deformation under Compression Due to sub-critical crack Growth,Int. J. Rock Mech. Min. SCI.& Geomech. ABStr.,1991,28(6),459-467.
    [163]Schmidtke, R.H.& Lajtai, E.Z.1985. The long-term strength of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,22,461-465.
    [164]Su, K., Ghoreychi, M.& Chanchole, S.2000. Experimental study of damage in granite, Geotechnique.50:235-241.
    [165]Heuze, F.E.1983. High-temperature mechanical, physical and thermal properties of granitic rocks—a review. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.20:3-10.
    [166]Potyondy, D.& Cundall, P.2001. The PFC model for rock:predicting rock-mass damage at the Underground Research Laboratory. Ontario Power Gen., Nuclear Waste Management Div.Report 06819-REP-01200-10061-R00.
    [167]周维垣、杨若琼等.岩体边坡非线性非连续卸荷及流变分析,岩石力学与工程学报,1997,16(3),210-216.
    [168]孙钧.岩土材料流变及其工程应用,北京,水利电力出版社,1990.
    [169]余天庆、钱济成.损伤理论及其应用,北京,国防工业出版社,1993.
    [170]缪协兴、陈至达.岩石材料的一种蠕变损伤方程,固体力学学报,1995,16(4),343-346.
    [171]朱维申、李述才等.节理岩体破坏机理和锚固效应及工程应用,2002,北京,科学出版社.
    [172]刘雄,岩石流变学概论,北京,地质出版社,1994.
    [173]陈有亮、孙钧,岩石的蠕变断裂特性分析,同济大学学报,1996,24(5),504-508.
    [174]杨春和、陈锋、曾义金,盐岩蠕变损伤关系研究,岩石力学与工程学报,2002,21(11):1602-1604.
    [175]C. F. Tsanga, O. Stephansson, J.A. Hudson, A discussion of thermo-hydro-mechanical (THM) processes associated with nuclear waste repositories, International Journal of Rock Mechanics and Mining Sciences,37 (2000) 397-402.
    [176]L. Bor rgesson, M. Chijimatsu, T. Fujita, T.S. Nguyen, J. Rutqvist, L. Jing, Thermo-hydro-mechanical characterisation of a bentonite-based bu.er material by laboratory tests and numerical back analyses International Journal of Rock Mechanics & Mining Sciences 38 (2001) 95-104.
    [177]Lanru Jing, Chin-Fu Tsang, coupled thermo-hydro-mechanical processes of fractured media-mathematical and experimental studies,1996, elsevier science B.V.All rights reserved, ISBN:0-444-82545-2.
    [178]Stephansson, O. (ed), Special issue on Thermo-Hhdro-Mechanical coupling in rock mechanics, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,32(1995).
    [179]Chan, T., Khair, K., Jing, L., Ahola, M., Noorishad, J. and Vuillod, E., International comparision of coupled thermo-hydro-mechanical models of a multiple-fracture bench mark problem:DECOVALEX Phase I, Bench mark test2, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr.,32(5)m 435-452,1995.
    [180]朱维申,邱祥波等,损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报,Vol.16,No.S,1997.
    [181]李新平,朱维申,多裂隙岩体的损伤断裂分析及工程应用[J].岩土工程学报,Vol.14,No.4,1992.
    [182]李新平,夏元友,裂隙的工程地质调查与损伤效应[J].岩土工程学报,Vol.17,No.4,1995.
    [183]杨更社,岩石损伤特性的CT识别.岩石力学与工程学报[J].Vol.15,NO.1,1996.
    [184]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [185]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[[J].岩石力学与工程学报.1998:17(6):628-635.
    [186]朱德仁,王金华.巷道煤帮稳定性相似材料模拟试验研究[[J].煤炭学报,Vol23,No.1,1998.
    [187]马念杰,侯朝炯.采准巷道矿压理论及应用[M].北京:煤炭工业出版社,1995.
    [188]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨阴.煤炭学报,1989.No.4.
    [189]林崇德.层状岩石顶板破坏机理数值模拟过程分析[[J].岩石力学与工程学报,1999,18(4):392-396.
    [190]林崇德,陆士良,史元伟.煤巷软弱顶板锚杆支护作用的研究[J].煤炭学报,2000,25(5):482-485.
    [191]林崇德,牛锡悼,软弱岩体中巷道围岩的特性及其支护特点[J].煤炭学报,No.1,1988.
    [192]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制设计[M].煤炭工业出版社,1999.
    [193]刘传孝.采准巷道围岩结构稳定性分析与控制研究[D].泰安:山东矿业学院,1997.
    [194]谭云亮,刘传孝.巷道围岩稳定性预测与控制[M].徐州:中国矿业大学出版社,1999.
    [195]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D].徐州:中国矿业大学,1998.
    [196]勾攀峰,侯朝炯.回采巷道锚杆支护顶板稳定性分析[[J].煤炭学报,1999,24(5):466-470.
    [197]刘高,聂德新,韩文蜂.高应力软岩巷道围岩变形破坏研究[[J].岩石力学与工程学报,2000,19(6):726-730.
    [198]段克信.用巷帮松裂爆破卸压维护软岩巷道[J].煤炭学报,Vol.20,No.3,1995.
    [199]葛家良.软岩巷道注浆加固机理及注浆技术若干问题的研究[D].徐州:中国矿业大学,1995.
    [200]葛家良.注浆技术的现状与发展趋势综述[J].矿业世界,1995,No.1:81-85.
    [201]葛家良,陆士良.注浆模拟试验及其应用的研究[J].岩土工程学报,1997,19(3):28-33.
    [202]杨新安,陆博良,葛家良.软岩巷道锚注支护技术及其工程实践[J].岩石力学与工程学报,1997,16(2):171-177.
    [203]何满潮,王俊臣.软岩巷道关键部位二次耦合支护技术.世纪之交软岩工程技术现状与展望,煤炭工业出版社,1999.5.
    [204]王俊臣,贾明魁,何满潮等.关键部位二次组合支护技术及其应用[J].煤炭科学技 术,1999,27(10):1-3.
    [205]王彩根.软岩巷道壁后充填支护机理与技术的研究[D].徐州:中国矿业大学,1995.
    [206]王彩根,陆士良等.软岩巷道支护阻力与围岩变形的关系[J].矿山压力与顶板管理,1995,No.3-4.
    [207]陆士良,王悦汉.软岩巷道支架壁后充填与围岩关系的研究[[J].岩石力学与工程学报,1999,18(2):180-183.
    [208]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [209]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [210]胡斌.深切峡谷区大型巷道群围岩稳定性的动态数值仿真研究[D].成都:理工大学,2001.
    [211]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [212]Deere D C. Technical description of rock cores for engineering purposes. Rock Mech & Engng Geol,1964,1:17-22.
    [213]Deere,D U, Hendron,A J, Patton, F D et al. Design of surface and near surface construction in rock, Proceeding of 8th Symposium on Rock Mechanics, AIME,1967,237.
    [214]Bienlawski Z T. Engineering rock mass classification, Intercience Publication, Viley, New York,1973.
    [215]Bienlawski Z T. Engineering classification of jointed rock mass, Trans. S. Africa Inst, Civ. Engrs,1973,15 (12).
    [216]Bienlawski Z T. Rock mass classification in rock engineering, Proc. Symposium on Exploration for Rock Engineering, Johan-nesbarg, Vol.,1976.
    [217]Barton N, Lien R& Lunde J. Engineering classification of rock masses for design of the tunnel support, Rock Mechanics,1974,6(4).
    [218]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [219]中国水力发电工程工程地质卷[M].北京:中国电力出版社,2000.
    [220]白明洲.大型巷道围岩稳定性的岩体结构控制效应研究[D].成都理工学院,2000.
    [221]孙广忠.岩体力学基础[M].北京:科学出版社,1984.
    [222]徐卫亚,赵立永.坝基工程岩体结构分类分数维研究[J].武汉水利电力大学(宜昌)学报,1999,(1):7-10.
    [223]孙玉科.赤平投影在岩体工程地质力学中的应用[M].北京:科学出版社,1980.
    [224]袁宝远,杨志法,肖树芳.岩体结构要素分形几何研究[J].工程地质学报,1998(4):355-361.
    [225]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [226]GBrady B H, Brown E T. Rock mechanics for underground mining. George Allen & Unwin, 1985.
    [227]孙钧,候学渊.地下结构(上册)[M].北京:科学出版社,1987.
    [228]候学渊.地下圆形结构弹塑性理论[J].同济大学学报,1982,(4):50-62.
    [229]重庆建筑工程学院,同济大学.岩体力学[M].北京:中国建筑工业出版社,1981.
    [230]王龙甫.弹性理论(第二版)[M].北京:科学出版社,1984.
    [231]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,施普林格出版社,2001.
    [232]尹祥础.固体力学[M].地震出版社,1985.
    [233]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994.
    [234]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [235]王桂芳.无衬砌隧道围岩应力的计算[J].土木工程学报,1965,(2):30-42.
    [236]刘金高,王润富.马蹄形孔口和梯形孔口的应力集中问题[J].岩土工程学报,1995,(5):57-64.
    [237]王润富.弹性力学的复变函数计算机解[J].河海大学学报,1991,(2):84-86.
    [238]朱大勇,钱七虎,周早生等.复杂形状洞室围岩应力的弹性解析分析[J].岩石力学与工程学报,1998,(4):402404.
    [239]钱伯勤.单孔无限域应力函数的通式[J].江苏力学,1990(6):66-67.
    [240]王润富.一种保角映射法及其微机实现[J].河海大学学报,1991(1):86-90.
    [241]范广勤,汤澄波.应用三个绝对收敛级数相乘法解非圆形洞室的外域映射函数[J].岩石力学与工程学报,1993,(3):255-264.
    [242]吕爱钟.应用最优化技术求解任意截面形状巷道映射函数的新方法[J].岩石力学与工程学报,1995(3):269-274.
    [243]朱大勇,钱七虎,周早生等.复杂形状洞室映射函数的新解法[J].岩石力学与工程学报,1999(3):279-282.
    [244]张悼元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [245][美]石根华著,裴觉民译.数值流形方法与非连续性形变分析方法[M].北京:清华大学出版社,1997.
    [246]刘竹华,吕祖布.块体理论及其在工程岩体稳定性分析中的应用[M].北京:水利电力出版社,1986.
    [247]张子新,孙钧.三峡岩体边坡稳定的块体力学分形研究[J].自然灾害学报,Vol.6 No.2:42-47.
    [248]张清,莫勋涛.利用关键块体理论估计岩石隧道的塌方部位[J].岩石力学与工程学报,Vol.8No.2:163-168.
    [249]赵文.块体理论中关键块滑落的概率分析[J].有色金属学报,Vol.8 No.2:356-359.
    [250]张子新,华安增.块体理论解析法及其在洞室稳定分析中的应用[J].江苏煤炭,1992(4):12-15.
    [251]谢全敏,王瑞赓,程康.可疑关键块体成为真正关键块体的概率分析[J].武汉工业大学学报,Vol.20,No.3:98-100.
    [252]王英学,王建宇.考虑节理尺寸的随机块体可靠度及其出现概率分析[J].铁道工程学报,1999,3:73-77.
    [253]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [254]杨淑清.巷道围岩开挖稳定性分析[J].武汉水利电力学院学报,1986(2):73-82.
    [255]陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究[J].武汉水利电力大学学报,1994(1):17-23.
    [256]赵震英,叶勇.复杂地质条件下巷道围岩应力及变形模拟试验研究[J].岩石力学与工程学报,1989(4):298-305.
    [257]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [258]唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [259]Chun'an Tang, J.A. Hudson, Xiaohe Xu. (1993). Rock failure instability and related aspect of earthquake mechanism. China Coal Industry Publishing House.
    [260]Tang C.A. Numerical simulation on progressive failure leading to collapse and associated seismicity. International Journal of Rock Mechanics and Mining Science,1997, Vol.34, No.2, pp.249-261.
    [261]Tang C.A., Kaiser, P.K. (1998). Numerical simulation of cumulative damage and seismic energy release in unstable failure of brittle rock-Part Ⅰ. Fundamentals. International Journal of Rock Mechanics and Mining Science, Vol.35, No.2, pp.113-121.
    [262]唐春安,傅宇方,赵文.震源孕育模式的数值模拟研究.地震学报,1997,Vol.19,No.4,pp.337-346.
    [1]周希圣,宋宏伟.国外围岩松动圈支护理论研究概况[J].建井技术,1994,(4,5):67-71.
    [2]陈炎光,陆士良等.《中国煤矿洞室围岩控制》,徐州:中国矿业大学出版社,1994.
    [3]董方庭等.巷道围岩松动圈支护理论.煤炭学报.1994.19(1):21-31.
    [4]凌贤长,蔡德所.岩体力学[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [5]Tsang C. F., Bernier F., Davies C. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal[J]. Int. J. Rock Mech. Min. Sci.2005,42(1):109-125.
    [6]苏永华,高谦,陈新万.南芬铁矿胶带运输系统洞室松动圈测定及支护设计[J].冶金矿山设计与建设,1998,30(2):11-14.
    [7]史永东,张凯.弹性波测试技术在巷道围岩松动圈测试中的应用[J].有色矿冶,2002,18(6):1-4.
    [8]宋宏伟,王闯,贾颖绚.用地质雷达测试围岩松动圈的原理与实践[J].中国矿业大学学报,2002,031(004):370-373.
    [9]霍志芳,谷拴成,韩庆达.巷道围岩松动圈测试的研究[J].西安矿业学院学报,1994,(01):18-21.
    [10]王建宇.地下工程喷锚支护原理和设计[M].北京:中国铁道出版社.1980.
    [11]徐志英.岩石力学.南京:河海大学出版社.1985.
    [12]Terzaghi, K., Theoretical Soil Mechanics, John Wiley & Sons, New York,1943.
    [13]Terzaghi, K. and Peck R. B., Soil Mechanics in Engineering Practice, John Wiley & Sons, Chapman & Hall, London.1948.
    [14]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [15]吴澎.节理岩体损伤的模型及非线性有限元分析[J].岩石力学与工程学报,1988,Vol.7,No.3:193-202.
    [1]沈珍瑶.高放废物处置评价中应用的有关程序,辐射防护通讯,2001,21(1):23-27.
    [2]周维垣.岩体力学数值计算方法的现状与展望.岩石力学与工程学报,1993,12(1):84-88.
    [3]夏梦棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(I).力学进展,1995,Vol.25,No.1,pp.1-40.
    [4]Van Mier, J.G.M. (ed.) (1997). Fracture Processes of concrete:assessment of material parameters for fracture models. CRC Press, Inc, Boca Raton, Florida, U.S., pp.3-5.
    [5]Dougill J W, et al. Mechanics in Engineering [J]. ASCE. EMD,1976:333-355.
    [6]Tang C.A. (1997). Numerical simulation on progressive failure leading to collapse and associated seismicity. International Journal of Rock Mechanics and Mining Science, Vol.34, No.2,pp.249-261.
    [7]唐春安.岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    [8]刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟.岩土工程学报,2001,23(2):201-204.
    [9]唐春安,傅宇方,赵文.震源孕育模式的数值模拟研究[J].地震学报,1997,19(4):337-346.
    [10]朱万成,唐春安.岩板中混合裂纹扩展过程的数值模拟.岩土工程学报,2000,22(2):231-234.
    [11]唐春安,刘红元,秦四清,等.非均匀性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000,43(1):116-121.
    [12]W.C. Zhu, C.A. Tang, Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model, Construction and Building Materials 16 (2002):453-463.
    [13]唐春安,傅宇方,朱万成.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J].复合材料学报,1999,16(4):112-120.
    [14]唐春安,傅宇方,林鹏,等.短纤维增强复合材料破坏过程的数值模拟研究[J].力学学报,2000,32(3):373-378.
    [15]黄克智,徐秉业.固体力学发展趋势.北京:北京理工大学出版社,1995.196-198.
    [16]Weibull W. A statistical theory of strength of materials [J]. Proc. Roy. Acad. Engng. Sci.,1939, 15.168.
    [17]Weibull W. A statistical distribution function of wide applicability [J]. Journal of Applied Mechanics,1951,18(3):293-297.
    [18]Hudson J A, Fairhurst C. Tensile strength Weibull's theory and a general statistical approach to rock failure.Structure, Solid Mechanics and Engineering Design[A]. The Proceeding of Civil Engineering MaterialsConference, Teeni(eds.), Southampton,1969.
    [19]唐春安,刘红元,非均匀性对岩石介质中裂纹扩展模式的影响,地球物理学报,2000, 143(1):116-121.
    [20]俞茂宏,何丽南,宋凌宇.双剪强度理论及其推广[J].中国科学,A辑,1985,28(12):1113-1120.
    [21]Duncan J.M. State of the Art:Limit Equilibrium and Finite-element Analysis of Slopes. Journal of Geotechnical Engineering, ASCE, Vol.122, No.7,577-596.1996.
    [22]于学馥.信息时代岩土力学与采矿计算初步.科学出版社,1991.
    [23]朱万成,混凝土断裂过程的细观数值模型及其应用,东北大学博士学位论文,沈阳,2001.
    [1]康红普.巷道围岩的关键圈理论[J].力学与实践,1997,19(1):34-36.
    [2]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993.24-36.
    [3]田永山.巷道维护原理及其研究方向的探讨[J].东北煤炭技术,1993,(5):12-15.
    [4]黄明利,张绍文,田永山.巷道围岩应力分布影响因素的研究[J].阜新矿业学院学报1997,(3):375-380.
    [5]王述红,刘斌,刘之洋.南芬铁矿1号驱动站大硐室围岩自稳结构及其稳定性分析[J].中国矿业,1999,(5)84-87.
    [6]大连力软(Mechsoft)科技有限公司.真实破裂过程分析RFPA系统用户手册.2006.
    [7]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [8]陈志敏.不同岩性侧压比随深度变化规律探讨.西部探矿工程,2006,122(6):99-101.
    [9]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [10]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [11]钟世航.并行隧道超小净距施工技术.世界隧道,2002年增刊.
    [12]Terzaghi, K. and Richart, F.E. Stresses in rock about cavities. Geotechnique, Vol.3,1952, pages 57-90.
    [13]Tang C.A. (1997). Numerical simulation on progressive failure leading to collapse and associated seismicity. International Journal of Rock Mechanics and Mining Science, Vol.34, No.2,pp.249-261.
    [14]唐春安.岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    [15]北京科技大学,鲁中冶金矿山集团公司.高应力区软破岩采场巷道变形机理及控制技术[R].1998,11
    [16]鲁中矿业集团公司,东北大学,长沙矿冶研究院.大型紧缺金属矿产资源基地综合勘查与高效开发技术研究[R].2003,12
    [1]蒋建平,汪明武等,地下工程中岩土结构面的影响分析,工程地质学报,2003,11(4),349-352.
    [2]任德惠,不同倾角结构面对洞室稳定性的影响,煤炭学报,1988,13(3),51-53.
    [3]杜时贵,周庆良等,公路隧道围岩稳定的结构面影响,中国公路学报,1997,10(6),64-69.
    [4]蒋金泉,曲华等,巷道围岩弱结构灾变失稳与破坏区域形态的奇异性,岩石力学与工程学报,2005,9,24(18),3373-3379.
    [5]张志强,李宁等,软弱夹层分布部位对洞室稳定性影响探究,岩石力学与工程学报,2005,9,24(18),3252-3257.
    [6]来兴平,蔡美峰.岩石基复合材料支护采空区动力失稳声发射特征统计分析[J].岩土工程学报,2003,25(1):51.
    [7]来兴平,黄昌富,蔡美峰.采空区动力灾害监测的非平衡信号的子波变换分析[J].西安科技学院学报,2003,23(3):237-240.
    [8]王泉章,围岩松动圈理论及其在软岩巷道锚喷支护中底应用,煤矿开采,2002,7(2)
    [9]于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定分析.北京:煤炭工业出版社.1983.
    [10]保长汉,陶振宇.节理岩体的等效连续弹性模型.中国岩石力学与工程学会第三次大会论文集,北京:中国科学技术出版社.1994.5.
    [11]孙建生,永井哲夫.一个新的节理岩体力学分析模型极其应用.岩石力学与工程学报,1994,9(3):193-204.
    [12]李术才,朱维申,张玉军.裂隙岩体大型洞室群施工顺序优化研究.岩土工程学报,1998,1(1):1~4.
    [13]唐春安,赵文,岩石破裂全过程分析软件系统RFPA2D,岩石力学与工程学报,1997,16(5):507-508.
    [1]凌贤长、蔡德所,岩体力学,哈尔滨工业大学出版社,2002
    [2]Schmidtke, R.H.& Lajtai, E.Z.1985. The long-term strength of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,22,461465.
    [3]徐平、杨挺清,岩石流变试验与本构模型辨识,岩石力学与工程学报,2001,20(增),1739-1744
    [4]曹树刚、边金、李鹏,岩石蠕变本构关系及改进的西原正夫模型,岩石力学与工程学报,2002,21(5),632-634
    [5]袁静、龚晓南、益德清,岩土流变模型的比较研究,岩石力学与工程学报,2001,20(6),772-779
    [6]陈宗基,岩石的封闭应力、蠕变和扩容及本构方程,岩石力学与工程学报,1991,10(2),299-312
    [7]范广勤,岩土工程流变力学,煤炭工业出版社,1993
    [8]Potyondy, D.& Cundall, P.2001. The PFC model for rock:predicting rock-mass damage at the Underground Research Laboratory. Ontario Power Gen., Nuclear Waste Management Div. Report 06819-REP-01200-10061-R00.
    [9]C.-F. Tsanga, O. Stephansson, J.A. Hudson, A discussion of thermo-hydro-mechanical (THM) processes associated with nuclear waste repositories, International Journal of Rock Mechanics and Mining Sciences,37 (2000) 397-402
    [10]L. Bor rgesson, M. Chijimatsu, T. Fujita, T.S. Nguyen, J. Rutqvist, L. Jing, Thermo-hydro-mechanical characterisation of a bentonite-based bu.er material by laboratory tests and numerical back analyses International Journal of Rock Mechanics & Mining Sciences 38(2001)95-104
    [11]Lanru Jing, Chin-Fu Tsang, coupled thermo-hydro-mechanical processes of fractured media-mathematical and experimental studies,1996, elsevier science B.V.All rights reserved, ISBN:0-444-82545-2.
    [12]Stephansson, O. (ed), Special issue on Thermo-Hhdro-Mechanical coupling in rock mechanics, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,32(1995)
    [13]Chan, T., Khair, K., Jing, L., Ahola, M., Noorishad, J. and Vuillod, E., International comparision of coupled thermo-hydro-mechanical models of a multiple-fracture bench mark problem:DECOVALEX Phase I, Bench mark test2, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr.,32(5)m 435-452,1995
    [14]C.D. Martin, N.A. Chandler. The progressive fracture of LacDu Bonnet Granite. [J]. International Journal of Rock Mechanics and Mining Science,1994,31(6):643-659
    [1]宋守志.固体介质中的应力波.煤炭工业出版社,1989
    [2]李夕兵,古德生.岩石冲击动力学.长沙:中南工业大学出版社,1994
    [3]李夕兵,古德生.岩石冲击动力学研究内容及其应用[J].西部探矿工程,1996,8(6):35-40
    [4]刘德顺,李夕兵.冲锤—杆撞击反演方法.东北大学学报,1995,16(增)
    [5]黄理兴,陈奕柏.我国岩石动力学研究状况与发展.岩土力学与工程,2003,22(11):1881~1886
    [6]王可钧.岩石力学与工程的几个研究热点[A].见:中国岩石力学与工程学会编.中国岩石力学与工程学会第六次学术大会论文集[C].北京:中国科学技术出版社,2000
    [7]黄明昌,肖春喜,王靖涛.应力波在主洞围绕射时的波长-洞径比效应[J].岩土力学,1984,5(1):47~56
    [8]王靖涛.加速发展岩石动力学[J].岩土力学,1989,10(3):6-12
    [9]Souley, M., Homand, F., Pepa, S., Hoxha, D. Damage-induced permeability changes in granite: a case example at the URL in Canada. Int. J. Rock Mech. Min. Sci,2001,38:297~310
    [10]Grady, D.E., Kipp, M.E. The micromechanics of impact fracture of rock. Int. J. Rock Mech. Min. Sci.1979,16:293~302
    [11]Suaris, W., Shah, S.P. Constitutive model for dynamic loading of concrete. Journal of Structural Engineering, ASCE,1985,111(3):563~576
    [12]Taylor, L.M., Chen, E.P., Kuszmaul, J.S. Microcrack-induced damage accumulation in brittle rock under dynamic loading. Computer Method in Applied Mechanics and Engineering,1986, 55:301~320
    [13]Fahrenthold, E.P. A continuum damage model for fracture of brittle solids under dynamic loading. Journal of Applied Mechanics ASME,1991,58:904-909
    [14]Homand-Etienne, F., Hoxha, D., Shao, J.F. A continuum damage constitutive law of brittle rocks. Computers and Geotechnics,1998,22(2):135-151
    [15]Sanchidrian, J.A., Pesquero, J.M., Garbayo, E. Damage in rock under explosive loading: implementation in DYNA2D of a TCK model. International Journal of Surface Mining & Reclamation,1992,6(3):109~114
    [16]常振檝译,[美]S.P.铁木辛柯.《材料力学史》,上海科学技术出版社,1961
    [17]戈革等编,《地震波动力学基础》,石油工业出版社,1980
    [18]马在田,张叔伦译,A.J.别尔克豪特,《地震偏移波场外推法声波成像》,石油工业出版社,1983
    [19]徐则民,黄润秋等.静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析.岩石力学与工程学报,2003,22(8):1255-1262
    [20]Corner B. Seismic research associated with deep level mining:rock burst prediction and vibration damage to buildings in South Africa. Geophysics,1985,50(12):2914~2915
    [21]Rudajev V, Sileny J. Seismic events with non-shear component Ⅱ:rock bursts with implosive source component[J]. Pure and Applied Geophysics,1985,123(1):17-25
    [22]关宝树,张志强.隧道发生岩爆的基本条件研究[J].铁道工程学报,1998,(增):326-330
    [23]李春杰.秦岭隧道岩爆特征与施工处理[J].世界隧道,1999,(1):36-41
    [24]谭以安.岩爆形成机理研究[J].水文地质工程地质,1989,16(1):34-38
    [25]周德培,洪开荣.太平驿隧洞岩爆特征及防治措施[J].岩石力学与工程学报,1995,14(2):171-178
    [26]Senfaute G, Chambon C, Bigarre P, et al. Spatial distribution ofmining tremors and the relationship to rock burst hazard [J]. Pure and Applied Geophysics,1997,150(3/4):451~ 459
    [27]Frid V. Calculation of electromagnetic radiation criterion for rockbursts hazard forecast in coal mines[J]. Pure and Applied Geophysics,2001,158(5/6):931-944
    [28]Zhao J. Application of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock. Int. J. Rock Mech. Min. Sci.2000; 37:105-112
    [29]Zhu WC, Tang CA. Micromechanical model for simulating the fracture process of rock. Rock Mechanics and Rock Engineering 2004; 37 (1):25-56
    [30]Zhu WC, Tang CA, Huang ZP, Liu J. A numerical study of the effect of loading conditions on the dynamic failure of rock. International Journal of Rock Mechanics & Mining Sciences 2004; 41(3):424-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700