用户名: 密码: 验证码:
类石墨烯纳米片和模型体系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳香烃(PAHs)是煤炭、木材、石油等有机物不完全燃烧的产物,与碳氢燃料的研究密切相关。因为有机燃料的不完全燃烧有很大的副作用,像碳黑、烟尘等释放有害粒子到大气中,造成严重的环境污染。为了理解燃烧反应的潜在机制,我们需要改善碳燃料的燃烧效率,减少其副产品的产量,这对减少污染、节约宝贵的自然资源有重要意义,目前这些化合物的氧化是破坏它们的主要途径。由于各种原因,很难或无法获得燃烧过程的实验数据,使得预测新的体系受到挑战。理论方法能很好的控制反应条件,便于推广到更大、更复杂的研究体系。最近关于多环芳香烃体系的研究,主要集中在研究石墨烯边的性质上,这些体系可以作为石墨烯的氧化模型。石墨烯,是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合材料。由于其奇特的力学、量子和电学性质以及潜在的应用价值,从2004年实验室中制备出石墨烯至今,已经吸引了许多物理和化学家的注意,2010年诺贝尔物理学奖授予了有关石墨烯研究的工作,使其成为了当今科学研究的热点,在化学、物理学和材料学界掀起了新的研究热潮。所以,以石墨烯为基础的系统的理论研究和模型的建立对理解潜在的机制和现在已经存在的材料和技术的特性以及设计新材料有重要的推动作用。
     为了研究大的、复杂的多环芳香烃(PAHs)的氧化反应,考虑到所研究体系的计算花费,我们应用密度泛函方法(DFT)和二阶MΦller-Plesset微扰理论(MP2)研究小的类苯分子,如苯、苯酚、甲苯、萘、萘酚和它们的自由基。通过与实验比较得出,三参数Becke-Lee-Yang-Parr交换关联密度泛函方法(B3LYP)能够给出与实验和高能级理论结果非常符合的基态结构,为大体系的研究以及模拟PAH的燃烧反应提供了重要的途径。我们所研究的性质主要包括:几何优化、能量、振动频率、零点振动能和键离解能。为了寻找石墨烯的氧化反应路径,可以通过基准测试几个计算花费相对少的方法,检测它们预测精确的实验值的可靠性。线性并五苯及其氧化自由基可以作为石墨烯边氧化模型。线性并五苯氧化自由基的相对稳定性能用并五苯分子的离域π电子体系的片段来解释。氧在不同位置的氧化自由基的相对能依赖于局域π芳香碎片形成和它们的性质。该片段的形成可以与作为参照的芳香性碳氢体系,苯(奇数个六元环的原型体系)和萘(偶数个六元环的原型体系)相联系。线性氧化自由基的相对能的计算结果显示,其与累积的HOMA芳香性是线性依赖关系。这种关系可用于快速评价任意大小的石墨烯边缘的氧化自由基的热动力学稳定性。
     由锯齿形和扶手椅形边组成的小石墨烯体系,像矩形多环芳香烃物(PAHs)被广泛地研究,来确定它们的基态电子结构。我们使用对称性破缺密度泛函理论和平面波密度泛函理论,通过开壳层和闭壳层单态的相对能,描述双自由基的开端。基于耦合簇理论的理想成对(PP)方法通过电子在占据轨道和非占据轨道的占据数的改变来描述体系的双自由基特征。我们不能确定4a4z的基态是闭壳层单态还是开壳层单态,对5a5z和6a6z体系,它们的基态是开壳层单态。同时阐明了开壳层形成过程中锯齿形边和扶手形边的作用。延伸锯齿形边,双自由基特征增加,而延伸扶手形边,双自由基特征减小。分析5a5z和6a6z的计算结果显示,在锯齿形边发生自旋极化,至少有五个C6环才可能出现双自由基态。对PP计算得到的轨道进行分析认为双自由基是莫比乌斯(Mobius)芳香性体系。B3LYP和PW91两种方法计算结果的定量差异说明精确的研究石墨烯相关体系的能量特征是很必要的。
     苯酚及其游离态的化学研究在各种各样的科学领域扮演着重要角色。例如,苯是最小的环状碳氢芳香烃,用来模拟不完全燃烧过程中产生的烟尘分子。苯酚的游离态是烟尘的热离解初始阶段氧化反应的一个典型的产物。在生物环境中,苯酚和苯氧基之间的转换形成酪氨酸充当一个电子的氧化还原反应,间接的核苷酸减少,半乳糖的新陈代谢。鉴于苯酚的重要性,以及以前的研究中O-H键离解能的值存在分歧,没有一个确切的值,我们决定使用DMC方法计算O-H的BDE的值。使用受限Hartree-Fock轨道和B3LYP Kohn-Sham轨道构造单行列式试探波函数,得到苯酚的O-H键离解能分别是87.0±0.3 kcal/mol和87.5±0.3 kcal/mol,与以前的理论和实验值符合的很好,具有重要的参考价值,可以推广到大体系的研究中去。
The polycyclic aromatic hydrocarbons (PAHs) have been the focal point of research activities related to hydrocarbon fuels for the last thirty years. The interest is great because incomplete combustion of organic fuels is a costly side effect resulting in discharge into atmosphere of harmful particles of carbon black and soot. By understanding the underlying reaction mechanisms of combustion one could improve on the efficiency of the carbon fuel burning process and at the same time use less of this precious natural resource. Graphene, a two dimensional sheet of sp2-hybridized carbons regularly spaced from each other in honeycomb-like hexagons, has attracted much attention of both experimental and theoretical physicists and chemists because of its unique electronic properties and potential applications. Graphene is related to many systems and processes of high applied and fundamental relevance, e.g., oxidation of fossil fuels, basic processes of battery electrodes and conductivity in two-dimensional systems.
     In order to investigate oxidation reactions of very large polyaromatic hydrocarbons the least computationally expensive yet reliable theoretical approach has been established. Several commonly used DFT and MP2 methods with various basis sets have been benchmarked against experimental and high level theory data available for small benzoid molecules: benzene, phenol, toluene, naphthalene, naphthol and their dehydrogenated and oxygenated radicals. The properties tested were: energies, geometries, frequencies, zero-point vibrational energies and bond dissociation energies. The best overall results are demonstrated by B3LYP method. This method was successfully tested on larger PAHs for its capability to predict thermodynamic stability of PAHs oxidation intermediates. In addition, it correctly described two phenomena large graphene like PAHs show: decreasing of the band gap and ground electronic state as a multiradical state. The relative stability of linear pentacene oxyradicals can be explained by fragmentation of the delocalizedπ-electron system of the precursor pentacene molecule. The relative energies of oxyradicals with different placement of O depend on the amount of locallyπ-aromatic fragments formed and their nature. The fragments formed can be readily related to the reference aromatic hydrocarbons of benzene (prototypical system with odd number of six-atom rings) and naphthalene (prototypical system with even number of six-atom rings). Relative energies of linear oxyradicals show linear dependency of the cumulative HOMA aromaticity measure. This relation can be useful for quickly assessing the thermodynamic stability of oxyradicals for arbitrary-size graphene edges.
     A family of small graphene patches, i.e., rectangular polyaromatic hydrocarbons (PAHs), that have both zigzag and armchair edges is investigated to establish their ground state electronic structure. Broken symmetry density functional theory (DFT) and plane wave DFT were used to characterize the onset of diradical character via relative energies of open-shell and closed-shell singlet states. The perfect pairing (PP) active space approximation of coupled cluster theory was used to establish diradical character on the basis of promotion of electrons from occupied to unoccupied molecular orbitals. The role of zigzag and armchair edges in the formation of open-shell singlet states is elucidated. It is found that elongation of the zigzag edge results in an increase of diradical character whereas elongation of the arm chair edge leads to a decrease of diradical character. Analysis of orbitals from PP calculations suggests that diradical states are formally Mobius aromatic multiconfigurational systems. As a prelude to exploring the relative energies and thermodynamic stabilities of graphene-edge oxidation, the homolytic O-H bond dissociation energy (BDE) of phenol was determined from diffusion Monte Carlo (DMC) calculations using single determinant trial wave functions. The phenol O-H BDE using DMC with restricted Hartree-Fock orbitals and restricted B3LYP Kohn-Sham orbitals are in good agreement with previous theoretical and experimental findings.
引文
[1] H. Richter, J. B. Howard, Prog. Energ. Combust. Sci. 2000, 26, 565.
    [2] H. H. Abdullah, R. M. Kubba, and M. Shanshal, Z. Naturforsch.2003, 58a, 645.
    [3] R. Firouzi M. Zahedi, J. Mol. Struct.: THEOCHEM 2008, 862, 7.
    [4]石油百科-芳香烃,http://www.petrobaike.com
    [5]康得军,多环芳烃性质的量子化学研究,《西安建筑科技大学硕士论文》2006.
    [6] K.Yamagiwa, K.Ichikawa, Mitt. Med. Fak. Tokio 1915, 15, 295.
    [7] P. V. R. Schleyer, "Aromaticity (Editorial)," Chemical Reviews, 2001, 101, 1115.
    [8]王文清,芳香性和非苯芳香化合物,北京:高等教育出版社,1985.
    [9] E.Huckel, Z. Phys. 1931, 70, 204.
    [10] S. Winstein, J. Am. Chem. Soc.,1959, 81, 6524.
    [11] E. Heilbronner, Tetrahedron Lett., 1964, 5, 1923-1928.
    [12] D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature, 2003, 426, 819-821.
    [13] L. Garmon, Science News, 1982, 122, 37.
    [14] C. A. Pickover, The Mobius Strip: Dr. August Mobius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology, Thunder's Mouth Press, 2006.
    [15] R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 1965, 87, 395.
    [16] H.E. Zimmerman, J. Am. Chem. Sci.,1966, 83, 1563.
    [17] H. Jiao, P. V. R. Schleyer, Angew. Chem. Int. Ed. Engl.,1993, 32, 1763.
    [18] P. Garrat, J. Aromaticity (Wiley and Sons, New York, 1986).
    [19] M. Mauksch, V.Gogonea, H. Jiao, and P. V. R. Schleyer, Angew. Chem. Int. Edn Engl. 1998,37, 2395–2398.
    [20] D. M. Walba, T. C. Homan, R. M. Richards, and R. C. Haltiwanger, New J. Chem.,1993, 17, 661–681.
    [21] J. Cz. Dobrowolski, J. Chem. Inf. Comput.Sci., 2002, 42, 490–499.
    [22] M. Guillaume, B.Champagne,et.al., Theor. Chem. Acc.,2001, 105, 431–436.
    [23] R.W. Zoellner, J. F. Krebs, and D. M. Browne, J. Chem.Inf. Comput. Sci.,1994, 34, 252–258.
    [24] S. Martin-Santamaria, and H. S.Rzepa, J. Chem. Soc. Perkin Trans. 2000, 2, 1415–1417.
    [25] D. J. Tantillo, Annu. Rep. Prog. Chem. Sect. B, 2006, 102, 269; K. M. Morgan, Annu. Rep. Prog. Chem. Sect. B, 2005, 101, 284.
    [26] K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Am. Chem. Soc.1982, 104, 5560.
    [27] R. P. Johnson, K. J. Daoust, J. Am. Chem. Soc. 1996, 118, 7381.
    [28] R.W. A. Havenith, L.W. Jenneskens, J. H. van Lenthe, J. Mol. Struct. 1999, 492, 217.
    [29] H. S. Rzepa, Chem. Commun. 2005, 5220.
    [30] T. M. Krygowski, Cyranski, M. K. Chem. Rev. 2001, 101, 1385.
    [31] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao, N. J. R.V. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
    [32] J. Kruszewski, T. M. Krygowski, Bull. Acad. Pol. Sci. Chim. 1972, 20, 907–915.
    [33] J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839.
    [34] T. M. Krygowski, J. Kruszewski, Bull. Acad. Pol. Sci. Chim. 1973, 21, 409–412.
    [35] T. M. Krygowski, J. Kruszewski, Bull. Acad. Pol. Sci. Chim. 1974, 22, 871–876.
    [36] T. M. Krygowski, J. Chem. Inform. Comput. Sci. 1993, 33, 70–78.
    [37] T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385–1419.
    [38] M. K. Cyrański, Chem. Rev. 2005, 105, 3773–3811.
    [39] I. D. Madura, T. M. Krygowski, M. K. Cyrański, Tetrahedron 1998, 54, 14913.
    [40] E. D. Raczyńska, W. Kosińska, B. O?mia?owski, R. Gawinecki, Chem. Rev. 2005, 105, 3561–3612.
    [41] E. D. Raczyńska, Pol. J. Chem. 2005, 79, 1003–1013.
    [42] E. D. Raczyńska, T. M. Krygowski, J. E. Zachara, B. O?mia?owski, R. Gawinecki, J. Phys. Org. Chem. 2005, 18, 892–897.
    [43] B. Osmialowski, E. D. Raczyńska, T. M. Krygowski, J. Org. Chem. 2006, 71, 3727–3736.
    [44] A. M. Mastral, M. S. Callen and T. Garcia, Environ. Sci. Technol, 1999, 33, 3177-3184.
    [45] L. Wang, H. Zhou et al. Analysis technology of polycyclic aromatic hydrocarbons [M] Nanjing, Nanjing University Press 1988.
    [46] K. Liu, W. Han, W.-P. Pan et al., J. Hazard. Mat. 2001, B84, 175-188.
    [47] R. A. Geisbrecht, T. E. Daubert, Ind. Eng. Chem. Process Des. Dev., 1975, 14, 159–166.
    [48] H. H. Abdullah, R. M. Kubba, and M. Shanshal, Z. Naturforsch.2003, 58a, 645.
    [49] S. Parthiban and J. M. L. Martina, J. Chem. Phys. 2001,115, 2051.
    [50] H. Richter, J. B. Howard, Prog. Energ. Combust. Sci. 2000, 26, 565.
    [51] Jan M. L. Martin, J. El-Yazal, and J.-P. Franois, J. Phys. Chem. 1996, 100, 15358; A. J. Abkowicz-Bienko, Z. Latajka, D. C. Bienko, and D. Michalska, Chem. Phys. 1999,250, 123; A. Miani, E. Cane, P. Palmieri, A. Trombetti, and N. C. Handy, J. Chem. Phys. 2000, 112, 248; O. Nwobi, J. Higgins, X. Zhou, R. Liu, Chem. Phys. Lett.1997, 272, 155.
    [52] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255; J. S. Wright, D. J. Carpenter, D. J. McKay,and K. U. Ingold, J. Am. Chem. Soc. 1997,119,4245.
    [53] A. K. Chandra and T. Uchimaru, Int. J. Mol. Sci. 2002,3,407;E. Klein and V.Luke, J. Mol. Struct.: THEOCHEM 2007,805,153; N. C. Handy, C. W. Murray and R. D. Amos, J. Phys. Chem.,1993,97,4392.
    [54] P. J. Stephens, F. J. D., C. F. Chabalowski, M. J. Frisch. J. Phys. Chem. 1994, 98, 11623.
    [55] F. Billes and I. Mohammed-Ziegler, Appl. Spectrosco. Rev.2007, 42, 369.
    [56] E. Klein and V. Lukes Chem. Phys. 2006, 330, 515.
    [57] J. T.-Rives and W. L. Jorgensen, J. Chem. Theor. Comput. 2008, 4, 297.
    [58] L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and O. Yu. Shumovskii, J. Struct. Chem. 2007, 48, 400.
    [59] V. Barone and S. Fliszar, J. Mol. Struct.: THEOCHEM 1996,369, 29.
    [60] D. Michalska, D. C.Bienko, A. J. AbkowiczBienko, and Z. Latajka, J. Phys. Chem. 1996,100,17786.
    [61] N. C. Handy, P. J. Knowles, Theor Chim Acta 1985, 68, 87.
    [62] B. Hajgató, M. S. Deleuze, J. Tozer, and F. De Proft, J. Chem. Phys. 2008, 129, 084308.
    [63] H. Lampert, W. Mikenda, and A. Karpfen, J. Phys. Chem. A 1997, 101, 2254.
    [64] G. da Silva, C.-C. Chen, J. W. Bozzelli, Chem. Phys. Lett. 2006, 424, 42.
    [65] C. Lee, W. T. Yang, and R.G. Parr. Phys. Rev. B 1988, 37, 785.
    [66] Chen, C.; Bozzelli, J.; Farrell, J. J. Phys. Chem. A 2004, 108, 4632–4652.
    [67] Olivella, S.; Solé, A.; Garcia-Raso, A. J. Phys. Chem. 1995, 99, 10549–10556.
    [68] Volkamer, R.; Klotz, B.; Barnes, I.; Imamura, T.;Wirtz, K.;Washida, N.; Becker, K.; Platt, U. Phys. Chem. Chem. Phys. 2002, 4, 1598–1610.
    [69] Perry, R.; Atkinson, R.; Pitts, J. J. Phys. Chem. 1977, 81, 296–304.
    [70] Wayner, D.; Lusztyk, E.; Page, D.; Ingold, K.; Mulder, P.; Laarhoven, L. J. Am. Chem. Soc.1995, 117, 8737–8744.
    [71] DeTuri, V.; Ervin, K. Int. J. Mass Spectrom. 1998, 175, 123–132.
    [72] Angel, L.; Ervin, K. J. Phys. Chem. A 2006, 110, 10392–10403.
    [73] Borges dos Santos, R.; Martinho Sim?es, J. Phys. Chem Ref. Data 1998, 27,707.
    [74] Mulder, P.; Korth, H.; Pratt, D.; DiLabio, G.; Valgimigli, L.; Pedulli, G.; Ingold, K. J. Phys. Chem. A 2005, 109, 2647–2655.
    [75] Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: New York, 2003.
    [76] B. Costa Cabral, S. Canuto, Chem. Phys. Lett. 2006, 417, 570–572.
    [77] J. Nagle; Strickland-Constable, R. F. Proc. Fifth Carbon Conf. 1962, 1, 154; Kennedy, I. M. Prog. Energy Combust. Sci. 1997, 23, 95; Stanmore, B. R.; Brilhac, J. F.; Gilot, P. Carbon 2001, 39, 2247; Higgins, K. J.; Jung, H.; Kittelson, D. B.; Roberts, J. T.; Zachriah, M. R. J. Phys. Chem. A 2002, 106, 96; Kim, C. H.; Xu, F.; Faeth, G. M. Combust. Flame 2008, 152, 301.
    [78] Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S., Science. 2009, 323, 610; Z. Yuanbo, T. Tsung-Ta, G. Gaglar, H.Zhao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang. Nature, 2009, 459, 820-823; K.D. Jordan, P.D. Burrow. J.Am.Chem.Soc. 1977, 11, 341.
    [79] Novoselov, K.S. et al., Science, 2004, 306, 666-669; PNAS, 2005, 102, 10451.
    [80] G. Eda, G. Fanchini and M. Chhowalla, Nature Nanotech. 2008, 3, 270-274; X. Wang, L. J. Zhi and K. Müllen, Nano Lett. 2007, 8, 323-327; L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus and G. W. Flynn, Nano Lett. 2008, 8, 1965-1970.
    [81] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys.2009, 81, 109; A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
    [82] K. N. Houk, P. S. Lee and M. Nendel, J. Org. Chem. 2001, 66, 5517-5521.
    [83] M. Bendikov, H. M. D., K. Starkey, K. N. Houk, E. A. Carter and F. Wudl. J. Am. Chem. Soc. 2004, 126, 7416-7417.
    [84] D. E. Jiang and S. Dai, J. Phys. Chem. A 2008,112, 332-335.
    [85] M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, J. Phys. Soc. Jap. 1996, 65, 1920-1923; K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. B 1996, 54, 17954-17961; Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803; Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe and Y. Kaburagi, Phys. Rev. B 2005, 71, 193406
    [86] M. Ezawa, Phys. Rev. B 2007, 76, 245415; M. Ezawa, Physica E 2008, 40, 1421-1423.
    [87] J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett. 2007, 99, 177204.
    [88] O. Hod, V. Barone and G. E. Scuseria, Phys. Rev. B 2008, 77, 035411.
    [89] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868; J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
    [90] A. F. Izmaylov, G. E. Scuseria and M. J. Frisch, J. Chem. Phys.2006,125, 104103;
    [91] J. A. Vergés, G. Chiappe, E. Louis, L. Pastor -Abia and E. SanFabián, Phys. Rev. B 2009, 79, 094403.
    [92] J. Hachmann, J. J. Dorando, M. Aviles and G. K. L. Chan, J. Chem. Phys. 2007, 127, 134309.
    [93] Nagle, J.; Strickland-Constable, R. F. Proc. Fifth Carbon Conf. 1962, 1, 154; Kennedy, I. M. Prog. Energy Combust. Sci. 1997, 23, 95; Stanmore, B. R.; Brilhac, J. F.; Gilot, P. Carbon 2001, 39, 2247; Higgins, K. J.; Jung, H.; Kittelson, D. B.; Roberts, J. T.; Zachriah, M. R. J. Phys. Chem. A 2002, 106, 96; Kim, C. H.; Xu, F.; Faeth, G. M. Combust. Flame 2008, 152, 301.
    [1] M.Born and R.Oppenheimer.Ann.der Physik 1927, 84, 457-484.
    [2] E. Schr?dinger, Phys. Rev.1926, 28,1049-1070.
    [3] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, New York, 1996).
    [4] Cramer, J. Christopher: Essentials of Computational Chemistry: Theories and Models, Wiley, New York, 2002. 562. pp.153-189; F. Jensen, Introduction to Computational Chemistry; Wiley: Chichester, UK, 1999.
    [5] D. Maurice and M. Head-Gordon, Mol. Phys. 1999, 96,1533–1541; M. Head- Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 1994, 219, 21–29.
    [6] C. M?ller and M. S. Plesset, Phys. Rev. 44, 618–622, 1934; K. Raghavachari and J. A. Pople, Int. J. Quant. Chem. 14, 91–100, 1978.
    [7] G. D. Purvis and R. J. Bartlett, J Chem. Phys. 76, 1910–1919, 1982; Krishnan Raghavachari, G. W. Trucks, J. A. Pople and, M. Head-Gordon, Chem. Phys. Lett. 157, 479–483, 1989; T. V. Voorhis and M. Head-Gordon, J. Chem. Phys., 115, 5033–5041, 2001.
    [8] P. Hohenberg and W. Kohn, Phys. Rev.,1964,136, B864-B71; W. Kohn and L. J. Sham, Phys. Rev.,1965,140, A1133-A38; R. G. Parr and W. Yang, Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989). The Challenge of d and f Electrons, Ed. D. R. Salahub and M. C. Zerner (ACS, Washington, D.C., 1989).
    [9] D. R. Hartree, Proc. Camb. Phil. Soc., 1928, 24, 89.
    [10] V. Fock, Z. Physik. 1930, 61,126.
    [11] J.Slater, Phys. Rev. 1930, 35, 210.
    [12] W. Pauli, Z. Physik. 1925, 31, 353.
    [13] C. C. J. Roothaan, Rev. Mod. Phys. 1951, 23, 69.
    [14] H. G. Kümmel, (2002). "A biography of the coupled cluster method". inBishop, R. F.; Brandes, T.; Gernoth, K. A. et al.. Recent progress in many-bodytheories Proceedings of the 11th international conference. Singapore: WorldScientific Publishing. pp. 334–348.
    [15] Cramer, J. Christopher. Essentials of Computational Chemistry. Chichester:John Wiley & Sons, Ltd. 2002, pp. 191–232.
    [16] J. ?í?ek, J. Chem. Phys. 1966, 45, 4256.
    [17] O. Sinano?lu, K. Brueckner,. Three approaches to electron correlation inatoms. 1971 Yale Univ. Press.and references therein
    [18] O. Sinano?lu, J. Chem. Phys. 1962, 36, 706.
    [19] J. Cízek, Adv. Chem. Phys. 1969, 14, 35.
    [20] J. Cízek and J. Paldus, Int. J. Quantum Chem. 1971, 5, 359.
    [21] A. C. Hurley, Electron Correlation in Small Molecules (Academic Press,London, 1976).
    [22] H. J. Monkhorst, Int. J. Quantum Chem. Symp.1977, 11, 421.
    [23] J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. QuantumChem. Symp.1978, 14, 545.
    [24] R. J. Bartlett and G. D. Purvis,Int. J. Quantum Chem. 1978,14,561.
    [25] G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
    [26] G. E. Scuseria, A. C. Scheiner, T. J. Lee, J. E. Rice, and H. F. Schaefer, J.Chem. Phys. 1987, 86, 2881; T. J. Lee and J. E. Rice, Chem. Phys. Lett. 1988,150, 406; G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, J. Chem. Phys.1988, 89, 7382. J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, J.Chem. Phys. 1991, 94, 4334.
    [27] C. L. Janssen and H. F. Schaefer, Theoret. Chim. Acta 1991, 79, 1; P. J.Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 1993, 99, 5219; P.Neogrády, M. Urban, and I. Hubac, J. Chem. Phys. 1994, 100, 3706; X. Li andJ. Paldus, J. Chem. Phys. 1994, 101, 8812; X. Li and J. Paldus, J. Chem. Phys.1995, 102, 2013
    [28] J. Noga and R. J. Bartlett, J. Chem. Phys. 1987, 86, 7041; M. R. Hoffman andH. F. Schaefer, Adv. Quantum Chem. 1986, 18, 207; G. E. Scuseria and H. F. Schaefer, Chem. Phys. Lett. 1988, 152, 382; R. J. Bartlett, H. Sekino, and G. D. Purvis, Chem. Phys. Lett. 1983, 98, 66; J. Noga, R. J. Bartlett, and M. Urban, Chem. Phys. Lett. 1987, 134, 126; K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479; R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys. Lett. 1990, 165, 513.
    [29] K. R. Glaesemann, N. Govind, S. Krishnamoorthy, K. Kowalski, J. Phys. Chem. A, 2010, 114, 8764–8771.
    [30] H.Thomas, Proc. Camb. Phil. Soc. 1927,23,542; E. Fermi, Accad. Naz. Lincei, 1927, 6, 602. Thomas H. Proc. Camb. Phil. Soc.,23,542,1927; Fermi E. Accad. Naz. Lincei, 6, 602, 1927.
    [31] Y.S. Jung, and M. Head-Gordon, Chem. Phys. Phys. Chem., 2003, 4, 522.
    [32] A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, and M. Head–Gordon, J. Chem. Phys., 1998, 109, 10669.
    [33] N. Metropolis, A. W. Rosenbluth, et al., J. Chem. Phys. 1953, 21, 1087.
    [34] M. Weissbluth, Atoms and molecules, Academic Press, New York, 1978, PP. 570- 572; R. Feynman, Phys. Rev. 1939, 56, 340; H. Hellman, Einf¨uhrung in die Quanten Theorie, Deuticke, 1937.
    [35] T. Kato, Comm.in Pure.and Appl.Math.1957,10,151.
    [36] A. Bijl, Physica 1940, 7, 869; R. B. Dingle, Phil. Mag. 1949, 40, 573; R. Jastrow, Phys. Rev. 1955, 98, 1479.
    [37] A. A. Frost, R. E. Kellog, and E. A. Curtis, Rev. Mod. Phys. 1960, 32, 313.
    [38] J. B. Anderson, J. Chem. Phys.,1975, 63, 1499-1503; J. B. Anderson, J. Chem. Phys.,1976, 65, 4121-4127.
    [39] J. P. Reynolds, D.M. Ceperley, J. Chem. Phys.,1982, 77, 5593-5603.
    [40] P. Reynolds, D. Ceperley, B. Alder, and W. Lester Jr, J. Chem. Phys. 1982, 77, 5593; M. DePasquale, S. Rothstein, and J. Vrbik, J. Chem. Phys. 1988, 89, 3629; C. Umrigar, M. Nightingale, and K. Runge, J. Chem. Phys. 1993, 99, 2865.
    [1] P. J. Stephens, F. J. D., C. F. Chabalowski, M. J. Frisch. J. Phys. Chem. 1994, 98, 11623.
    [2] R. D. Adamson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett., 1998, 284, 6.
    [3] C.Y. Lin, M.W. George, and P.M.W. Gill, Aust. J. Chem., 2004,57, 365.
    [4] C. M?ller and M. S. Plesset, Phys. Rev. 44, 618–622, 1934.
    [5] H. Richter, J. B. Howard, Prog. Energ. Combust. Sci. 2000, 26, 565.
    [6] H. H. Abdullah, R. M. Kubba, and M. Shanshal, Z. Naturforsch.2003, 58a, 645.
    [7] R. Firouzi M. Zahedi, J. Mol. Struct.: THEOCHEM 2008, 862, 7.
    [8] S. Parthiban and J. M. L. Martina, J. Chem. Phys. 2001,115, 2051.
    [9] Jan M. L. Martin, J. El-Yazal, and J.-P. Franois, J. Phys. Chem. 1996, 100, 15358; A. J. Abkowicz-Bienko, Z. Latajka, D. C. Bienko, and D. Michalska, Chem. Phys. 1999,250, 123; A. Miani, E. Cane, P. Palmieri, A. Trombetti, and N. C. Handy, J. Chem. Phys. 2000,112, 248; O. Nwobi, J. Higgins, X. Zhou, R. Liu, Chem. Phys. Lett.1997, 272,155.
    [10] S. J. BLANKSBY, G. B. Ellison,Acc. Chem. Res. 2003, 36, 255; J. S. Wright, D. J. Carpenter, D. J. McKay,and K. U. Ingold, J. Am. Chem. Soc. 1997, 119, 4245.
    [11] A. K. Chandra and T. Uchimaru, Int. J. Mol. Sci. 2002,3,407;E. Klein and V. Luke, J. Mol. Struct.: THEOCHEM 2007,805,153; N. C. Handy, C. W. Murray and R. D. Amos, J. Phys. Chem.,1993,97,4392.
    [12] F. Billes and I. Mohammed-Ziegler, Appl. Spectrosco. Rev.2007, 42, 369.
    [13] E. Klein and V. Lukes Chem. Phys. 2006, 330, 515.
    [14] J. T.-Rives and W. L. Jorgensen, J. Chem. Theor. Comput. 2008, 4, 297.
    [15] L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and O. Yu. Shumovskii, J.Struct. Chem. 2007, 48, 400.
    [16] V. Barone and S. Fliszar, J. Mol. Struct.: THEOCHEM 1996,369, 29.
    [17] D. Michalska, D. C.Bienko, A. J. AbkowiczBienko, and Z. Latajka, J. Phys. Chem. 1996, 100, 17786.
    [18] N. C. Handy, P. J. Knowles, Theor Chim Acta 1985, 68, 87.
    [19] B. Hajgató, M. S. Deleuze, J. Tozer, and F. De Proft, J. Chem. Phys. 2008, 129, 084308.
    [20] H. Lampert, W. Mikenda, and A. Karpfen, J. Phys. Chem. A 1997, 101, 2254.
    [21] G. da Silva, C.-C. Chen, J. W. Bozzelli, Chem. Phys. Lett. 2006, 424, 42.
    [22] C. S. Ashvar, F. J. Devlin, and P. J. Stephens, J. Am. Chem. Soc. 1999, 121, 2836.
    [23] C. W. Murray, G. J. Laming, N. C. Handy and R. D. Amos, Chem. Phys. Lett. 1992, 199, 551.
    [24] C. Lee, W. T. Yang, and R.G. Parr. Phys. Rev. B 1988, 37, 785.
    [25] Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C. P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Physical Chemistry Chemical Physics 2006, 8, 3172.
    [26] F. Weigend, M. H?ser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett.1998, 294,193.
    [27] Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon. J. Chem. Phys. 2004, 121, 9793.
    [28] J. P. Merrick, D. Moran, and L. Radom. J. Phys. Chem. A, 2007, 111, 11683.
    [29] R. D. Johnson, NIST Computational Chemistry Comparison and Benchmark Database; NIST Standard Reference Database, Number 101, May 2005;.
    [30] J. P. Perdew, Physica B 1991, 172, 1.
    [31] J.P.Perdew, Electronic Structure of Solids; Ed. P. Ziesche and H.Eschrig; Akademie Verlag, Berlin, 1991.
    [32] R. C. Guedes, K. Coutinho, B. J. C. Cabral, S. Canuto, C. F. Correia,; R. M. Borges dos Santos, a. J. A. M. Simoes, J. Phys. Chem. A 2003, 107, 9197.
    [33] W. M. C. Foulkes, L.Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 2001, 73, 33.
    [34] P. J. Reynolds and D. M. Ceperley, B. J. Alder, W. A. Lester, Jr. J. Chem. Phys 1982, 77, 5593.
    [35] B. L. Hammond, W. A. L., Jr., P. J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry; World Scientific Pub Co Inc (October 1994) 1994.
    [36] R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem.1978, 77, 561.
    [37] J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S.Binkley, Int. J. Quantum Chem.1978, 14, 545.
    [38] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon. Chem. Phys. Lett.1989, 157, 479.
    [39] M. S. Deleuze, L. Claes, E. S. Kryachko, and J.-P. Francois. J. Chem. Phys 2003, 119, 3106.
    [40] D. M. Robert and W. Williams, Chem. Phys. 2006,327, 54.
    [41] K. K. Irikura, R. D. Johnson III, and R. N. Kacker, J. Phys. Chem. A, 2005, 109, 8430.
    [42] A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502.
    [43] Roger S. Grev, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 1991, 95,5128.
    [44] M. Eekert-Maksi, M. Klessinger, and Z.B. Maksi, Chem. Phys. Lett. 1995, 232, 472.
    [45] D.-S. Ahn, I.-S. Jeon, S.-H. Jang, S.-W. Park, S. Lee, and W. Cheong, Bull. Kore. Chem. Soc. 2003, 24, 695.
    [46] I. Góméz, E. Rodríguez, and M. Reguero, J. Mol. Struct.: THEOCHEM 2006, 767, 11.
    [47] L. K. Madden, L. V. Moskaleva, S. Kristyan, and M. C. Lin. J. Phys. Chem. A 1997, 101, 6790.
    [48] D. Domin, B. Bra?da, and W. A. Lester, Jr., J. Phys. Chem. A 2008, 112, 8964.
    [49] C. A. McFerrin, R. W. Hall, and B. Dellinger, J. Mol. Struct.: THEOCHEM 2008, 848, 16.
    [50] D. J. V. A. dos SANTOS, A. S. Newton, R. BERNARDINO, and R. C. Guedes, Int. J. Quantum Chem. 2007, 108, 754.
    [51] P. Mulder, H.-G. Korth, D. A. Pratt, G. A. DiLabio, L. Valgimigli, G. F. Pedulli, and K. U. Ingold, J. Phys. Chem. A 2005, 109, 2647.
    [52] R. M. B. dos Santos and J. A. M. Simoes, J. Phys. Chem. Ref. Data 1998, 27, 707.
    [53] B. J. C. Cabral and S. Canuto, Chem. Phys. Lett. 2005, 406, 300.
    [54] L. A. Angel,. K. M. Ervin, J. Phys. Chem. A 2006, 110, 10392.
    [55] R. Liu, K. Morokuma, A. M. Mebel, and M. C. Lin, J. Phys. Chem. C 1996, 100, 9314.
    [56] Y.-R. Luo, Handbook of bond dissociation energies in organic compounds, 2002.
    [57] K. Brezinsky, Prog. Energy Combust. Sci. 1986, 12, 1; S.Olivella, A. Sole, A. Garcia-Raso, J. Phys. Chem. 1995, 99, 10549; M. Fadden, C. M. Hadad, J. Phys. Chem. A 2000, 104, 3004; Z. F. Xu, M. C. Lin, J. Phys. Chem. A 2006, 110, 1672.
    [58] A. Montoya, F. Mondragon, T. N. Truong, Fuel Proc. Technol.2002, 77-78,125; K. Sendt, B. S. Haynes, Proc. Combust. Inst. 2005, 30, 2141; K. Sendt, B. S. Haynes, Combust. Flame 2005, 143, 629; K. Sendt, B. S. Haynes, J. Phys. Chem. A 2005, 109, 3438.
    [59] L. R. Radovic, B. Bockrath, J. Am. Chem. Soc. 2005, 127, 5917.
    [60] S. E. Stein, R. L. Brown, Carbon 1985, 23, 105; S. E. Stein, R. L. Brown, J. Am. Chem. Soc. 1987, 109, 3721; M. R. Philpott, Y. Kawazoe, Chem. Phys. 2009, 358, 85; Z. Y. Li, W. H. Zhang, Y.Luo, J. L.Yang, J. G. Hou, J. Am.Chem. Soc. 2009, 131, 6320.
    [61] J. Nagle, R. F. Strickland-Constable, Proc. Fifth Carbon Conf.1962, 1, 154; I. M. Kennedy, Prog. Energy Combust. Sci. 1997, 23, 95; B. R. Stanmore, J. F. Brilhac, P. Gilot, Carbon 2001, 39, 2247; K. J. Higgins, H.Jung, D. B. Kittelson, J. T. Roberts, M. R. Zachriah, J. Phys. Chem. A 2002, 106, 96; C. H. Kim, F. Xu, G. M. Faeth, Combust. Flame 2008, 152, 301.
    [62] J. Hachmann, J. J. Dorando, M. Aviles, G. K. L. Chan, J. Chem. Phys. 2007, 127, 134309.
    [63] M. J. Frisch, Gaussian 03, ReVision A.1; Gaussian, Inc.: Pittsburgh PA, 2003.
    [64] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; A. D. Becke, J. Chem. Phys. 1993, 98, 5648; R. Ditchfie, W. J. Hehre, J. A.Pople, J. Chem. Phys. 1971, 54, 724 ; W. J. Hehre, R. Ditchfie, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
    [65] R. D. Johnson, III. National Institute of Standards and Technology,Release 14, Sept. 2006.
    [66] Y. Shao et al. Phys. Chem. Chem. Phys. 2006, 8, 3172.
    [67] P. V. Schleyer, Chem. ReV. 2001, 101, 1115.
    [68] U. Varetto, MOLEKEL 5.3; Swiss National Supercomputing Centre: Manno (Switzerland), 2008.
    [69] D. Y. Zubarev, A. I. Boldyrev, Phys. Chem. Chem. Phys. 2008, 10, 5207; D. Y. Zubarev, A. I. Boldyrev, J. Org. Chem. 2008, 73, 9251; E. Clar, The Aromatic Sextet; J. Wiley and Sons: London, 1972.
    [70] Special edition on aromaticity, P. v. R. Schleyer, Chem. Rev. 2001, 101, 5; Special edition on heterocycles, A. Katrizky, Chem. Rev. 2004, 104, 5.
    [71] Special edition on delocalizationπandσ, P. v. R. Schleyer, Chem.Rev. 2005, 105, 10.
    [72] Schleyer, P. V.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. Am. Chem. Soc. 1996, 118, 6317.
    [73] Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. Chem. ReV. 2005, 105, 3842.
    [74] Hemelsoet, K.; Van Speybroeck, V.; Marin, G. B.; De Proft, F.; Geerlings, P.; Waroquier, M. J. Phys. Chem. A 2004, 108, 7281.
    [75] Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. Org. Lett. 2006, 8, 863.
    [76] Merino, G.; Heine, T.; Seifert, G. Chem.-Eur. J. 2004, 10, 4367.
    [77] J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 3839.
    [78] P. V. Schleyer, H. J. Jiao, Pure Appl. Chem. 1996, 68, 209; J. Aihara, H. Kanno, J. Phys. Chem. A 2005, 109, 3717; M. K. Cyranski, T. M. Krygowski, A. R. Katritzky, P. V. Schleyer, J. Org. Chem. 2002, 67, 1333.
    [79] M. K. Cyranski, B. T. Stepien, T. M. Krygowski, Tetrahedron 2000, 56, 9663; G. Portella, J. Poater, J. M. Bofill, P. Alemany, M. Sola, J. Org. Chem. 2005, 70, 2509.
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 2004, 306, 666-669.
    [2] A. K. Geim and K. S. Novoselov, Nature Mater. 2007, 6, 183-191.
    [3] E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard and K. Kern, Nature Nanotech. 2008, 3, 486-490.
    [4] G. Eda, G. Fanchini and M. Chhowalla, Nature Nanotech. 2008, 3, 270-274.
    [5] X. Wang, L. J. Zhi and K. Müllen, Nano Lett. 2007, 8, 323-327.
    [6] L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus and G. W. Flynn, Nano Lett. 2008, 8, 1965-1970.
    [7] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, Nature phys. 2006, 2, 177-180.
    [8] S. Banerjee and D. Bhattacharyy, Comput. Mater. Sci. 2008, 44, 41-45.
    [9] P. Bultinck, Faraday Discuss. 2007, 135, 347-365.
    [10] K. N. Houk, P. S. Lee and M. Nendel, J. Org. Chem. 2001, 66, 5517-5521.
    [11] M. Bendikov, H. M. D., K. Starkey, K. N. Houk, E. A. Carter and F. Wudl. J. Am. Chem. Soc. 2004, 126, 7416-7417.
    [12] D. E. Jiang and S. Dai, J. Phys. Chem. A 2008,112, 332-335.
    [13] M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, J. Phys. Soc. Jap. 1996, 65, 1920-1923.
    [14] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. B 1996, 54, 17954-17961.
    [15] Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803.
    [16] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe and Y.Kaburagi, Phys. Rev. B 2005, 71, 193406.
    [17] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada and H. Fukuyama, Phys. Rev. B 2006, 73, 085421.
    [18] D. E. Jiang B. G. Sumpter and S. Dai, J. Chem. Phys. 2007, 127, 124703.
    [19] M. Ezawa, Phys. Rev. B 2007, 76, 245415, M. Ezawa, Physica E 2008, 40,1421-1423.
    [20] J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett. 2007, 99, 177204.
    [21] O. Hod, V. Barone and G. E. Scuseria, Phys. Rev. B 2008, 77, 035411.
    [22] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
    [23] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
    [24] J. Heyd, G. E. Scuseria and M. Ernzerhof, J.Chem. Phys. 2003, 118, 8207-8215.
    [25] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 2006, 124, 219906.
    [26] A. F. Izmaylov, G. E. Scuseria and M. J. Frisch, J. Chem. Phys.2006,125, 104103 .
    [27] J. A. Vergés, G. Chiappe, E. Louis, L. Pastor -Abia and E. SanFabián, Phys. Rev. B 2009, 79, 094403.
    [28] J. Hachmann, J. J. Dorando, M. Aviles and G. K. L. Chan, J. Chem. Phys. 2007,127, 134309.
    [29] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
    [30] C. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
    [31] B. Miehlich, A. Savin, H. Stoll and H. Preuss. Chem. Phys. Lett. 1989, 157, 200-206.
    [32] Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T.Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, ; M. S. Lee, W. L., I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A.C.Simmonett, J. E. Subotnik, H. L. Woodcock, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer, J. Kong, A. I. Krylov, P. M. W. Gill and M. Head-Gordon. Phys. Chem. Chem. Phys. 2006, 8, 3172-3191.
    [33] J. A. Pople, P. M. W. Gill and N. C. Handy, Int. Quantum Chemistry 1995, 56, 303-305.
    [34] R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 1996, 104, 9047-9052.
    [35] H. B. Schlegel and J. J. McDouall, in Computational Advances in Organic Chemistry, edited by C. ?gretir and I. G. Csizmadia, Kluwer Academic, The Netherlands, 1991, pp.167-85.
    [36] R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 1978,14, 561-581.
    [37] J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum Chem. 1978, 14, 545-560.
    [38] J. Cullen, Chem. Phys. 1996, 202, 217-229.
    [39] G. J. O. Beran, B. Austin, A. Sodt and M. Head-Gordon, J. Phys. Chem. A 2005, 109, 9183-9192.
    [40] W.J. Stevens, H. Basch and M. Krauss, J. Chem. Phys. 1984, 81, 6026-6033.
    [41] W. J. Stevens, M. Rauss, H. Basch and P. G. Jasien, Can. J. Chem. 1992, 70, 612-630.
    [42] T. R. Cundari and W. J. Stevens, J. Chem. Phys. 1993, 98, 5555-5565.
    [43] S. F. Boys, Rev. Mod. Phys. 1960, 32, 296-299.
    [44] C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 1963, 35, 457-464.
    [45] S. F. Boys, in Quantum Theory of Atoms, Molecules and the Solid State, editted by P. O. Lowdin, Academic, New York, 1966, pp. 253.
    [46] K. Yamaguchi, in Self-Consistent Field: Theory and applications, edited by R. Carbo, M. Klobukowski, Elsevier, Amsterdam, 1990, pp. 727.
    [47] S. Yamanaka, M. Okumura, M. Nakano and K. Yamaguchi, J. Mol. Struc.: THEOCHEM 1994, 310, 205-218.
    [48] M. Nakano, H. Nagai, H. Fukui, K. Yoneda, R. Kishi, H. Takahashi, A.Shimizu, T. Kubo, K. Kamada, K. Ohta, B. Champagne and E. Botek, Chem. Phys. Lett. 2008, 467, 120-125.
    [49] G. Kresse and J. Hafner, Phys. Rev. B 1993, 47, 558-561.
    [50] G. Kresse and J. Hafner, Phys. Rev. B 1994, 49, 14251-14269.
    [51] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15-50.
    [52] G. Kresse and J. Hafner, Phys. Rev. B 1996, 54, 11169-11186.
    [53] G. Kresse and J. Joubert, Phys. Rev. B 1999, 59, 1758-1775.
    [54] P. E. Bl?chl, Phys. Rev. B 1994, 50, 17953-17979.
    [55] J. P. Perdew,“Unified theory of exchange and correlation beyond the local density approximation”in Electronic Structure of Solids 1991, ed. P. Ziesche and H. Eschrig, Akademie-Verlag, Berlin, 1991.
    [56] J. P. Perdew and Y. Wang, Phys. Rev. B 1992, 45, 13244-13249.
    [57] G.Schaftenaar and J.H. Noordik, J. Comput.-Aided Mol. Design, 2000, 14, 123-134; T. B. Terriberry, D. F. Cox and D. A. Bowman, Comput. Chem. 2002, 26, 313-319.
    [58] I. de P. R. Moreira, R. Costa, M. Filatov, and F. Illas, J. Chem. Theory Comput. 2007, 3, 764-774.
    [59] I. de P. R. Moreira and F. Illas, Phys. Chem. Chem. Phys. 2006, 8, 1645-1659.
    [60] L. Noodleman, J. Chem. Phys. 1981, 74, 5737-5743.
    [61] J. E. McGrady, R. Stranger and T. Lovell, J. Phys. Chem. A 1997,101, 6263-6272.
    [62] T. Soda, Y. Kitagawa, T. Onishi, Y.Takano, Y. Shigeta, H. Nagao, Y. Yoshioka and K.Yamaguchi, Chem. Phys. Lett. 2000, 319, 223-230.
    [63] K.Yamaguchi, Y. Takahara and T. Fueno, In Applied Quantum Chemistry; V. H. Smith, F. Schaefer, K. Morokuma, Eds. Reidel: Dordrecht, The Netherlands, 1986; p 155.
    [64] S. Sinnecker, F. Neese, L. Noodleman and W. Lubitz, J. Am. Chem. Soc. 2004, 126, 2613-2622.
    [65] H. E. Zimmerman, J. Am. Chem. Soc. 1966, 88, 1564-1565.
    [66] H. E. Zimmerman, Acc. Chem. Res. 1971, 4, 272-280.
    [67] E. Heilbronner, E. Tetrahedron Lett. 1964, 5, 1923-1928.
    [68] S. Banerjee, M. Sardar, N. Gayathri, A. K. Tyagi and Baldev Raj, Phys. Rev. B 2005, 72, 075418.
    [69] S. Banerjee, M. Sardar, N. Gayathri, A. K. Tyagi and Baldev Raj, Appl. Phys. Lett. 2006, 88, 062111.
    [1] Stubbe, J.; van der Donk, W. Chem. Rev. 1998, 98, 705–762.
    [2] Costa Cabral, B.; Canuto, S. Chem. Phys. Lett. 2005, 406, 300–305.
    [3] DiLabio, G.; Mulder, P. Chem. Phys. Lett. 2006, 417, 566–569.
    [4] Costa Cabral, B.; Canuto, S. Chem. Phys. Lett. 2006, 417, 570–572.
    [5] Chen, C.; Bozzelli, J.; Farrell, J. J. Phys. Chem. A 2004, 108, 4632–4652.
    [6] Olivella, S.; Solé, A.; Garcia-Raso, A. J. Phys. Chem. 1995, 99, 10549–10556.
    [7] Volkamer, R.; Klotz, B.; Barnes, I.; Imamura, T.;Wirtz, K.;Washida, N.; Becker, K.; Platt, U. Phys. Chem. Chem. Phys. 2002, 4, 1598–1610.
    [8] Perry, R.; Atkinson, R.; Pitts, J. J. Phys. Chem. 1977, 81, 296–304.
    [9] Wayner, D.; Lusztyk, E.; Page, D.; Ingold, K.; Mulder, P.; Laarhoven, L. J. Am. Chem. Soc.1995, 117, 8737–8744.
    [10] DeTuri, V.; Ervin, K. Int. J. Mass Spectrom. 1998, 175, 123–132.
    [11] Angel, L.; Ervin, K. J. Phys. Chem. A 2006, 110, 10392–10403.
    [12] Borges dos Santos, R.; Martinho Sim?es, J. J. Phys. Chem Ref. Data 1998, 27, 707–739.
    [13] Mulder, P.; Korth, H.; Pratt, D.; DiLabio, G.; Valgimigli, L.; Pedulli, G.; Ingold, K. J. Phys. Chem. A 2005, 109, 2647–2655.
    [14] Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: New York, 2003.
    [15] Gomez, I.; Rodriguez, E.; Reguero, M. J. Mol. Struc.-Theochem 2006, 767, 11–18.
    [16] Scemama, A.; Lelievre, T.; Stoltz, G.; Cances, E.; Caffarel, M. J. Chem. Phys. 2006, 125,114105.
    [17] Benoit, D.; Chavagnac, A.; Clary, D. Chem. Phys. Lett. 1998, 283, 269–276.
    [18] Benoit, D.; Clary, D. J. Phys. Chem. A 2000, 104, 5590–5599.
    [19] Lüchow, A.; Spangenberg, D.; Janzen, C.; Jansen, A.; Gerhards, M.; Kleinermanns, K. Phys. Chem. Chem. Phys. 2001, 3, 2771–2780.
    [20] Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    [21] Becke, A. D. J. Chem. Phys. 1993, 98, 1372–1377.
    [22] Shao, Y. et al. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191.
    [23] Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683–11700.
    [24] Cox, J.;Wagman, D.; Medvedev, V. CODATA Key Values for Thermodynamics; Hemisphere: New York, 1989.
    [25] Umrigar, C. J.; Nightingale, M. P.; Runge, K. J. J. Chem. Phys. 1993, 99, 2865–2890.
    [26] Reynolds, P.; Ceperley, D.; Alder, B.; LESTER, W., Jr. J. Chem. Phys. 1982, 77, 5593–5603.
    [27] Anderson, J. B. Quantum Monte Carlo: Atoms, Molecules, Clusters, Liquids and Solids. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; John Wiley and Sons: New York, 1999; Vol. 13, pp 133–182.
    [28] Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Rev. Mod. Phys. 2001, 73, 33–83.
    [29] Lester, Jr., W. A.; Mitas, L.; Hammond, B. Chem. Phys. Lett. 2009, 478, 1–10.
    [30] Aspuru-Guzik, A.; Salomon-Ferrer, R.; Austin, B.; Perusquia-Flores, R.; Griffin, M.;Oliva, R. A.; Skinner, D.; Domin, D.; Lester, Jr., W. A. J. Comp. Chem. 2005, 26, 856–862.
    [31] Schmidt, K. E.; Moskowitz, J. W. J. Chem. Phys. 1990, 93, 4172–4178.
    [32] Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J., J. A. J. Comp. Chem. 1993, 14, 1347–1363.
    [33] Burkatzki, M.; Filippi, C.; Dolg, M. J. Chem. Phys. 2007, 126, 234105.
    [34] Greeff, C. W.; Lester, Jr., W. A. J. Chem. Phys. 1998, 109, 1607–1612.
    [35] Toulouse, J.; Umrigar, C. J. J. Chem. Phys. 2007, 126, 084102.
    [36] Mitas, L.; Shirley, E.; Ceperley, D. J. Chem. Phys. 1991, 95, 3467–3475.
    [37] Colussi, A. J.; Zabel, F.; Benson, S. W. Int. J. Chem. Kinet. 1977, 9, 161–178.
    [38] Defrees, D. J.; McIver, R. T.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 3334–3338.
    [39] Peters, K. S. Pure Appl. Chem. 1986, 58, 1263–1266.
    [40] Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A. J. Am. Chem. Soc. 1988, 110, 1229–1231.
    [41] Walker, J. A.; Tsang, W. J. Phys. Chem. 1990, 94, 3324–3327.
    [42] Lucarini, M.; Pedrielli, P.; Pedulli, G.; Cabiddu, S.; Fattuoni, C. J. Org. Chem. 1996, 61, 9259–9263.
    [43] Bordwell, F.; Liu, W. J. Am. Chem. Soc. 1996, 118, 10819–10823.
    [44] Kim, H.; Green, R.; Qian, J.; Anderson, S. J. Chem. Phys. 2000, 112, 5717–5721.
    [45] Angel, L.; Ervin, K. J. Phys. Chem. A 2004, 108, 8346–8352.
    [46] Wright, J.; Carpenter, D.; McKay, D.; Ingold, K. J. Am. Chem. Soc. 1997, 119, 4245–4252.
    [47] Wright, J.; Johnson, E.; DiLabio, G. J. Am. Chem. Soc. 2001, 123, 1173–1183.
    [48] Chandra, A.; Uchimaru, T. International Journal of Molecular Sciences 2002, 3, 407.
    [49] da Silva, G.; Chen, C.-C.; Bozzelli, J. Chem. Phys. Lett. 2006, 424, 42– 45.
    [50] Shi, J.; Liang, S.; Feng, Y.-S.; Wang, H.-J.; Guo, Q.-X. J. Phys. Org. Chem. 2009, 22, 1038–1047.
    [51] Truhlar, D. Chem. Phys. Lett. 1998, 294, 45–48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700