用户名: 密码: 验证码:
第二相对复相结构陶瓷力学性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程结构陶瓷包括用于各种环境中的耐磨、耐腐蚀、耐高温等构件的各类陶瓷材料,运用材料的微观结构设计来制造和加工满足各种使用要求,主要强调材料的力学性能。单相陶瓷的强度和韧性一般较低,因此向陶瓷基体中添加第二相是强韧化结构陶瓷的一种主要途径。在本论文中,使用热压烧结的方法制备了不同第二相形式的陶瓷基复相材料,第二相的类型包括微米、纳米颗粒及低熔点相等,并对复相陶瓷的力学性能进行了研究。通过研究得到的主要结论如下:
     对于纳米SiC强化Al2O3复相陶瓷,在同样的制备工艺下,添加1~2wt%纳米SiC使纯Al2O3的弯曲强度由280 MPa提高到516 MPa,断裂韧性也由3.2 MPa·m1/2提高到约5 MPa·m1/2。表明少量纳米SiC颗粒添加对力学性能的提高起了很大的作用,纳米SiC颗粒位于Al2O3晶粒内部,由于对晶界扩散的抑制作用显著细化了纯Al2O3的晶粒尺寸,因此降低了陶瓷材料内部的微裂纹大小,这是导致复相陶瓷强度增大的重要原因。此外,由于SiC和Al2O3由于热膨胀系数的失配使晶内的SiC颗粒在Al2O3晶界上产生压应力强化了晶界,也是导致强度和韧性提高的原因。
     对于微米SiC强化Al2O3复相陶瓷,随着SiC添加量的增多烧结性变差,烧结温度提高,强度随着SiC添加量的增加而提高,当添加量达到20wt%时,复相陶瓷的弯曲强度达到615 MPa;断裂韧性随着SiC的添加先增大后减小,当添加5wt%SiC时断裂韧性最大达到7.6 MPa·m1/2。晶粒细化以及SiC在复相陶瓷基体内产生的径向压应力、切向拉应力是复相陶瓷强度提高的主要原因,断裂韧性随着穿晶断裂的趋势越明显而逐渐减低,显微组织观察表明Al2O3/SiC界面结合良好。
     对于液相烧结的AlN陶瓷,YAlO低熔点相的引入促进了AlN陶瓷的致密化。力学性能分析结果表明:由于气孔率的降低,纯AlN陶瓷的强度和韧性随着晶界低熔点相的加入而提高,当添加2wt%Y2O3时,弯曲强度由245 MPa提高到383 MPa,断裂韧性由2.88 MPa·m1/2提高到3.1 MPa·m1/2;随着烧结助剂添加量的增多,YAlO相的含量也增加,并且布满整个晶界,但复相陶瓷材料的强度和韧性却随之下降;显微结构分析表明低熔点相和AlN基体间的润湿性极差,界面结合强度低,并由于两相间的热膨胀系数差在两相界面处产生拉应力,更进一步弱化了界面结合,使裂纹扩展更容易,导致力学性能的下降。
     对于B4C/SiC两相陶瓷材料,SiC的添加对B4C陶瓷的烧结致密度基本无影响,影响B4C陶瓷致密化的因素主要是初始的粉末粒度和烧结温度及压力,采用超细的亚微米B4C粉在2000℃、30 MPa烧结条件下制备出达到理论密度的B4C及B4C/SiC复相陶瓷。显微结构观察发现B4C/SiC界面间的结合力很强,裂纹沿着SiC晶内或晶间扩展,因此随着SiC相的加入,B4C陶瓷的弯曲强度由500 MPa提高到约700 MPa,但断裂韧性由于穿晶断裂的倾向略有下降。
Engineering ceramics are the ceramic materials applied in various environments such as wear resistance, corrosion resistance, and high temperature resistance etc. It has been produced and machined to satisfy kinds of need by means of designing microstructure, and it emphasize particularly on mechanical properties. Because the strength and toughness of single-phase ceramics are lower, adding second phases in single-phase ceramics is an effective approach to strengthen and toughen the engineering ceramics. In this paper, ceramic composites have been prepared by hot pressing sintering with different second phases, including microsized particles, nanosized particles or glass phase, and the mechanical properties of the ceramic composites have been investigated. The experimental results are as follows:
     As for nanosized SiC strengthening Al2O3 ceramic composites,1~2wt% SiC addition enhanced the flexural strength of pure Al2O3 from 280 MPa to 516 MPa and the fracture toughness from 3.2 MPa·m1/2 to about 5 MPa·m1/2, which indicates that small amount nanosized SiC addition can lead to a great improvement of mechanical properties for Al2O3 ceramics. Nanosized SiC particles were located within Al2O3 grains and significantly refined the grain size of pure Al2O3 by inhibiting grain boundary migration, therefore decreased the size of microcrack in the sintered ceramics, and this was the main reason for strength improvement. In addition, the residual compressive stress on the Al2O3 grain boundary generated due to the mismatch of thermal expansion coefficient between SiC and Al2O3 matrix, which also resulted in the improvement of strength and toughness.
     As for microsized SiC strengthening Al2O3 ceramic composites, the sintering propery became poor with the increase of SiC addition and the sintering temperature was increased. The flexural strength of ceramic composites was enhanced with adding the SiC content, and the flexural strength reached 615 MPa for 20wt% SiC addition. The fracture toughness increased at first then decreased and the highest fracture toughness was 7.6 MPa·m1/2 for 5wt%SiC composite. Grain refinement and the residual radial compressive stress and tangential tensile stress in the matrix are the main reasons for strength improvement, and fracture toughness gradually decreased with the tendency of transgranular fracture. The observation of microstructure showed the good bonding of Al2O3/SiC interface.
     As for liquid phase sintered AlN ceramics, the addition of YAlO low melting point phase promoted the densification of AlN ceramics. The measurement of mechanical properties showed that the strength and toughness of pure AlN were increased with the addition of second phase due to the elimination of pures, and the flexural strength and fracture toughness were increased from 245 MPa and 2.88 MPa·m1/2 to 383 MPa and 3.1 MPa·m1/2 respectively. The content of YA10 phase increased and covered the whole AlN grain boundary with the increase of sintering aids, which however lowered the strength and toughness. The observation of microstructure indicated the poor wettability between AIN matrix and glass phase, therefore, the poor interfacial bonding. Moreover, the tensile stress between AIN and glass phase resulted from thermal mismatch between the two phases. This further weakened the interfacial bonding, made crack propagate more easily, and led to the decline of mechanical properties.
     As for B4C/SiC two phase ceramics, the addition of SiC basically had no influence on the densificaton of B4C ceramics. The influencing factors were mainly the size of starting powders, sintering temperature, and pressure. Pure B4C and B4C/SiC composites with full density were obtained using the ultrafine submicrosized B4C powder under the sintering temperature of 2000℃and pressure of 30 MPa. It was found the strong B4C/SiC interfacial bonding by the observation of microstructure, and the crack propagated through SiC grain transgranularly or along SiC grain boundary. The flexural strength of pure B4C increased from 500 MPa to the highest of 700 MPa with the addition of SiC for ceramic composites, however the fracture toughness decined slightly because of the tendency of transgranular fracture.
引文
[1]郭瑞松,蔡舒,季惠明,等.工程结构陶瓷[M].天津:天津大学出版社,2001.
    [2]周彬.氧化铝基陶瓷刀具的发展与应用[J].机械管理开发,2004,3:37-39.
    [3]张希华,张建华,刘长霞.氧化铝基陶瓷材料增韧研究现状及其发展方向[J].山东大学学报,2004,34(5):14-17.
    [4]朱志斌,郭志军,刘英.氧化铝陶瓷的发展与应用[J].陶瓷,2003,1:5-8.
    [5]黄勇,何锦涛,马天.氧化锆陶瓷的制备及其应用[J].稀有金属快报,2004,23(6):11-17.
    [6]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社,2001.
    [7]宋世学,艾兴,赵军.Al2O3/TiC纳米复合刀具材料的力学性能与增韧强化机理[J].机械工程材料,2003,27(12):35-38.
    [8]Nakahira A, Niihara K, Hirai T. Microstructure and mechanical properties of Al2O3-SiC composites [J]. International Journal of High Technology Ceramics,1987,3:174-174.
    [9]Stearns L C, Zhao J, Harmer M P. Processing and microstructure development in Al2O3-SiC 'nanocomposites'[J]. Journal of the European Ceramic Society,1992,10:473-477.
    [10]葛启录,雷廷全.Al2O3-Zr2O3陶瓷复合材料研究进展[J].金属学与工艺,1992,11(1):85-99.
    [11]林振汉.氧化锆材料的特性及在结构陶瓷中的应用与发展[J].稀有金属快报,2004,32(6):6-10.
    [12]陈潮钿,黄超华,梁亮.高性能复合氧化锆的研发与产业化[J].稀有金属快报,2007,26(1):45-47.
    [13]胡宝玉,张宏达,李丹.氧化锆特种耐火材料在工业中的应用[J].稀有金属快报,200,4,23(6):31-35.
    [14]黄勇,何锦涛,马天.氧化锆陶瓷的制备及其应用[J].稀有金属快报,2004,23(6):11-17.
    [15]张长瑞,郝元恺.陶瓷基复合材料[M].长沙:国防科技大学出版社,2001.
    [16]李鹏,罗发,徐洁,等.部分稳定氧化锆陶瓷的力学及介电性能[J].硅酸盐学报,2008,36(3):306-310.
    [17]余鑫萌,徐宝奎,袁发得.二氧化锆的稳定化及其应用[J].稀有金属快报,2007,26(1):28-32.
    [18]孙静,黄传真,刘含莲,等.稳定氧化锆陶瓷的研究现状[J].机械工程材料,2005,29(8):1-4.
    [19]王玉春,丘泰,沈春英.ZrO2-Al2O3浮想陶瓷的研究[J].硅酸盐通报,2004,1:35-39.
    [20]周泽华,丁培道,陈蓓.氧化锆力学性能和热学性能的综合分析[J].重庆大学学报,2002,25(2):60-62.
    [21]Yong-xin Qi, Mu-sen Li, Cheng-guo Wang. Low-temperature preparation of silicon nitride viachemical metathesis route [J]. Materials Letters,2004,58:3345-3347.
    [22]Yang Haitao, Gao Ling, Yuan Runzhang et al. Effect of MgO/CeO2 on pressureless sintering of silicon nitride [J]. Materials Chenmistry and Physics,2001,69:281-283.
    [23]Matovic B, Rixecker G, Aldinger F. Pressureless sintering of silicon nitride with Lithia and yttria [J]. Journal of the European Ceramic Society,2004,24:3395-3398.
    [24]Gao Ling, Haitao Yang. Pressureless sintering of silicon nitride with magnesia and yttria [J].Materials Chenmistry and Physics,2005,90:31-34.
    [25]Fisher J G, Woo S K, Bai K. Microwave reaction bonding of silicon nitride using an inverse temperature gradient and ZrO2 and Al2O3 sintering additives [J]. Journal of the European Ceramic Society,2003,23:791-799.
    [26]Yoshikazu Kameshima, Masaki Irie, Atsuo Yasumori. Low temperature systhesis of AlN by addition of various Li-salts [J]. Journal of the European Ceramics Society,2004,24: 3801-3806.
    [27]Terao R, Tatami J, Meguro. Fracture behavior of AlN ceramics with rare earth oxides [J]. Journal of the European Ceramics Society,2002,22:1051-1059.
    [28]Cai K F, Mclachlan D S. Preparation, microstructure and properties of reaction bonded AlN ceramics [J]. Materials Research Bulletion,2002,37:575-581.
    [29]Li X L, Ma H A, Zheng Y J, et al. AlN ceramics prepared by high pressure sintering with La2O3 as a sintering aid [J]. Journal of Alloy and Compounds,2008,463:412-416.
    [30]Xueli Du, Mingli Qin, Akhtar Farid, et al. Study of rare-earth oxide sintering aid systems for AlN ceramics [J]. Materials Science and Engineering A,2007,460-461: 471-474.
    [31]李玉增.半导体SiC的研究现状与应用前景[J].稀有金属,1995,19(3):204-210.
    [32]代学刚.SiC的转子的制作与应用[J].有色冶炼,2001,2:39-42.
    [33]韦进全,江斌,李延辉.B4C纳米线的制备和结构[J].物理化学学报,2004,20(3):256-259.
    [34]王零森,尹邦跃,方寅初.用掺碳活化烧结技术制取B4C材料[J].中国有色金属学报,2002,12(6):1210-1213.
    [35]丁硕,温广武,雷廷全.B4C材料研究进展[J].材料科学工艺,2003,11(1):101-105.
    [36]Schwetz K A, Sigl L S, Greim J. Wear of boron carbide ceramics by abrasive waterjets [J].Wear,1995 181-183:348-355.
    [37]Nishiyama K. Sintering and tribology of boride hard materials [J]. Journal of the Japan Society of Powder and Powder metallurgy,1996,43:464-471.
    [38]Deng J X, Sun J L. Sand erosion performance of B4C based ceramic nozzles [J]. Journal of Refractory Metals and Hard Materials,2008,26:128-134.
    [39]逢婷婷,傅正义,张东明.TiB2陶瓷的放电等离子烧结[J].硅酸盐学报,2003,31(6):533-537.
    [40]Krishnarao R V, Subrahmanyam J. Studies on the formation of Ti2B through carbothermal reduction of TiO2 and B2O3 [J]. Materials Science and Engineering A,2003,362:145-151.
    [41]蒋军,朱德贵,王良辉.热等静压原位合成TiB2/TiC复合陶瓷[J].西南交通大学学报,2004,39(1):131-134.
    [42]董艳玲,王为民.TiB2-BN复相陶瓷的制备工艺及性能研究[J].武汉理工大学学报,2004,26(4):18-21.
    [43]Yunle Gu, Yitai Qian, Luyang Chen. A mild solvothermal route to nanocrystalline titanium diboride [J]. Journal of Alloys and Compounds,2003,352:325-327.
    [44]冯培忠,曲选辉,王晓虹.二硅化钼材料复合强韧化的研究进展[J].材料导报,2005,19(9):12-15.
    [45]刘伯威,潘进,杨德明,等.碳对二硅化钼复合材料性能的影响[J].粉末冶金材料科学与工程,2000,5(4):295-300.
    [46]姜建华.无机非金属材料工艺原理[J].北京:化学工业出版社,2005.
    [47]李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1997.
    [48]王零森.特种陶瓷[M].长沙:中南大学出版社,2005.
    [49]尹衍升.Al2O3陶瓷及其复合材料[M].北京:化学工业出版社,2001.
    [50]Griffith A A. The Phenomena of Rupture and Flow in Solids [J]. Philosophical Transactions of the Royal Society of London,1920, A221:163-198.
    [51]Penas 0, Zenati J R. Processing, microstructure mechanical properties of Si3N4 obtained by slip casting and pressureless sintering [J]. Ceramics International,2001,27: 591-596.
    [52]Li C W, Lee D J, Lui S C. R-curve behavior and strength for in-situ reinforced silicon nitrides with different microstructures [J]. Journal of the American Ceramic Society, 1992,75(7):1777-1785.
    [53]冯泉,艾德生,于忠淇,等.原料纳米化对锶铁氧体断裂韧性的影响[J].磁性材料及器件,2009.4:45-48.
    [54]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用[J].陶瓷学报,2004,21(1):46-50.
    [55]Matsuzaw M, Fujimagari E, Horibe S. Cyclic deformation and crack growth in zirconia ceramics. Materials Science and Engineering A,2001,314:105-109.
    [56]蔡舒,袁启明,孟佳宏.氧化锆(氧化钇)增韧莫来石陶瓷的组成与强韧化机理的研究[J].硅酸盐通报,2000,6:11-15.
    [57]缪世群,葛存旺,罗明忠.SiC晶须的含量对ZTA陶瓷基复合材料抗热震性能的影响[J].扬州大学学报(自然科学版),2002,5(1):40-43.
    [58]何新波,杨辉,张长瑞.连续纤维增强陶瓷基复合材料概述[J].材料科学工程,2002,6:272-278.
    [59]赵军,邓建新,艾兴.晶须增韧陶瓷刀具材料的R曲线与增韧机制的关系[J].无机材料学报,1997,12(3):341-345.
    [60]郭景坤.陶瓷材料的强化与增韧新途径的探索[J].无机材料学报,1998,13(1):23-26.
    [61]王宏志,高濂,郭景坤.Al2O3/SiC纳米复合陶瓷中的残余应力分析[J].中国科学(E辑),1999,29(3):200-205.
    [62]赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析[J].硅酸盐学报,1996,24(5):491-497.
    [63]Deng Z Y, Zhang Y F, Shi J L, et al. Microstructure and flexure creep behaviour of SiC-paticle reinforced Al2O3 matrix composites [J]. Journal of the European Ceramic Society,1996,16:1337-1343.
    [64]S. Gustafsson, L. K. L. Falk, E. Liden, E, et al. Pressureless sintered Al2O3-SiC nanocomposites [J]. Ceramics International,2007,34,1609-1615.
    [65]M V斯温.陶瓷的结构与性能[M].北京:科学出版社,1998.
    [66]P. G. Rao, M. Iwasa, T. Tanaka, et al. Preparation and mechanical properties of Al2O3-15wt.%ZrO2 composites [J].Scripta Materialia,2003,48:437-441.
    [67]张清纯.陶瓷材料的力学性能[M].北京:科学出版社,1987.
    [68]周玉,雷廷权.ZrO2增韧陶瓷的研究进展(下)[J].金属科学与工艺,1986,5(4):97-112.
    [69]江东亮.陶瓷材料的表面强化和增韧[J].无机材料学报,1989,4(2):97-107.
    [70]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,22(3):259-269.
    [71]穆柏春.TiC颗粒增韧SiC基复合材料及其冷处理的研究[J].复合材料学报,1997,14(4):38-41.
    [72]穆柏春.SiCp/Si3N4复合材料的低温冷处理与强韧化[J].硅酸盐学报,1997,25(4):413-419.
    [73]Niihara K. New design concept of structural ceramics-ceramic nanocomposites [J]. Journal of the Ceramic Society of Japan,1991,99:974-982.
    [74]Zhao J, Sterns L C, Harmer M P, et al. Mechanical behavior of alumina-silicon carbide nanocomposites [J]. Journal of the American Ceramic Society,1993,76:503-510.
    [75]Fang J, Chan H M, Harmer M P. Residual stress relaxation behavior in Al2O3-SiC nanocomposite [J].Materials Science and Engineering A,1995,195:163-167.
    [76]Thompson A M, Chan H M, Harmer M P, et al. Crack healing and stress relaxation in Al2O3-SiC nanocomposites [J]. Journal of the American Ceramic Society,1995,78:567-571.
    [77]Borsa C E, Jiao S, Todd R I, et al. Processing and properties of Al2O3/SiC nanocomposites [J]. Journal of Microscopy,1995,177:305-312.
    [78]Chou I A, Chan H M, Harmer M P, et al. Machining induced surface residual stress behavior in Al2O3-SiC nanocomposite [J]. Journal of the American Ceramic Society,1996,79: 2403-2409.
    [79]Gao L, Wang H Z, Hong J S, et al. Mechanical properties and microstructure of nano-SiC-Al2O3 composites densified by spark plasma sintering [J]. Journal of the European Ceramic Society,1999,19(5):609-613.
    [80]Deng Z Y, Shi J L, Zhang Y F, et al. Pinning effect of SiC particles on mechanical properties of Al2O3-SiC ceramic matrix composites [J]. Journal of the European Ceramic Society,1998,18(5):501-508.
    [81]Teng X Y, Liu H L, Huang C Z. Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics [J]. Materials Science and Engineering A,2007,452-453: 545-551.
    [82]钟金豹,黄传真.纳米氧化锆增韧氧化铝基陶瓷刀具材料的研究[J].工具技术,2008,42(10):15-18.
    [83]彭晓峰,黄校先,张玉峰.碳化硅晶须补强氧化铝复合材料的制备及其力学性能[J].无机材料学报,1998,13(4):15-18.
    [84]Wu H Z, Lawrence C W, Roberts S G, et al. The strength of Al2O3/SiC nanocomposites after grinding and annealing [J].Acta Metallurgica,1998,46(11):3839-3848.
    [85]Kim Y W, Lee J G. Effect of polycarbosilane addition on mechanical properties of hot-pressed silicon carbide [J]. Journal of Materials Science,1992,27:4746-4750.
    [86]Li H B, Zhang L T, Cheng L F, et al. Polymer-ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics [J]. Journal of Materials Sc ience,2008,43:2806-2811.
    [87]Walker C N, Borsa C E, Todd R I, et al. Processing and properties of Al2O3/TiN nanocomposites [J]. Journal of Materials Science,1994,53:249-264.
    [88]Coble R L, Kingery W D. Effect of porosity on physical properties of sintered alumina [J]. Journal of the American Ceramic Society,1956,39:377-385.
    [89]Swanson P L, Fairbanks C J, Lawn B R, et al. Crack-interface grain bridging as a fracture resistance mechanism in ceramics. I:Experimental study on alumina [J]. Journal of the American Ceramic Society,1987,70:279-289.
    [90]Yiu W M, Lawn B R. Crack-interface grain bridging as a fracture resistance mechanism in ceramics. II:Theoretical fracture mechanics model [J]. Journal of the American Ceramic Society,1987,70:289-294.
    [91]Bennison S J, Lawn B R. Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of nontransforming ceramics [J].Acta Metallurgica,1989,37:2659-2671.
    [92]Evans A G. Microfracture from thermal expansion anisotropy. I Single phase systems [J]. Acta Metallurgica,1978,26:1845-1853.
    [93]Giuseppe Pezzotti, Wolfgang H Muller. Strengthening mechamisms in Al2O3/SiC nanocomposites [J]. Computational Materials Science,2001,22:155-168.
    [94]Lee H Y, Riehemann W, Mordike B L. Sintering of nanocrystalline ZrO2 and zirconia toughened alumina (ZTA) [J]. Journal of the European Ceramic Society,1992,10:245-253.
    [95]Luo J, Stevens R. The role of residual stress on the mechanical properties of Al2O3-5vol% SiC nano-composites [J]. Journal of the European Ceramic Society,1997,17:1565-1572.
    [96]Jiao S, Jenkins M L, Davidge R W. Interfacial fracture energy-mechanical behaviour relationship in Al2O3/SiC and Al2O3/TiN nanocomposites [J].Acta Metallurgica, 1997,45:149-156.
    [97]Groza J R, Risbud S H, Yamazaki K. New processing of alumina nitride [J]. Journal of Materials Research,1992,7(10):2643-2645.
    [98]周和平,刘耀诚,乔梁.高热导率氮化铝陶瓷的低温过渡液相烧结[J].中国学术期刊文摘,1999,5(1)106-108.
    [99]Shoichi Kume, Masaki Yasuoka, Sang-Kee Lee. Dielectric and thermal properties of AlN ceramics [J]. Journal of the European Ceramic Society,2007,27(8-9):2967-2971.
    [100]Qiao L, Zhou H P, Chen K X, et al. Effects of Li20 on the low temperature sintering and thermal conductivity of AlN ceramics [J]. Journal of the European Ceramic Society, 2003,23(9):1517-1524.
    [101]Boey F, Tok A I Y, Lam Y C, et al. On the effects of secondary phase on thermal conductivity of AlN ceramic substrates using a microstructural modeling approach [J]. Materials Science and Engineering A,2002,335:281-289.
    [102]Qiao L, Zhou H P, Li C W. Microstructure and thermal conductivity of spark plasma sintering AlN ceramics [J]. Materials Science and Engineering B,2003,99:102-105.
    [103]Kusunose T, Sekino T, Niihara K. Production of a grain boundary phase as conducting pathway in insulating AlN ceramics [J].Acta Materialia,2007,55:6170-6175.
    [104]Du X L, Qin M L, Farid A, et al. Study of rare-earth oxide sintering aid systems for AlN ceramics [J]. Materials Science and Engineering A,2007,460-461:471-474.
    [105]Cai K F, Mclachlan D S, Sauti G, et al. The effects of annealing on thermal and electrical properties of reaction-bonded AlN ceramic [J]. Solid State Sciences,2005,7:945-949.
    [106]Qiao L, Zhou H P, Fu R L. Thermal conductivity of AlN ceramics sintered with CaF2 and YF3 [J]. Ceramics International,2003,29:893-896.
    [107]秦明礼,曲选辉,黄化等.高导热氮化铝陶瓷的粉末注射成形技术[J].粉末冶金材料科学与工程,2009,14(5)343-346.
    [108]Virkar A V, Jackson T B, Cutler R A. Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride [J]. Journal of the American Ceramic Society,1989,72(11):2031-2042.
    [109]Mashhadi M, Taheri-Nassaj E, Sglavo V M, et al. Effect of Al addition on pressureless sintering of B4C [J]. Ceramics International,2009,35(2):831-837.
    [110]Levin L, Frage N, Dariel M P. A novel approach for the preparation of B4C-based cermets [J]. International Journal of Refractory Metals and Hard Materials,2009,18:131-135.
    [111]Wang M C, Zhang Z G, Sun Z J, et al. Effect of fiber type on mechanical properties of short carbon fiber reinforced B4C composites [J]. Ceramics International,2009, 35(4):1461-1466.
    [112]李文新,李文辉.碳化硼陶瓷相对密度与性能的关系[J].哈尔滨理工大学学报,2002,7(3):52-54.
    [113]Zorzi J E, Perottoni C A, Da Jornada J A H. Hardness and wear resistance of B4C ceramic sprepared with several additives[J]. Materials Letters,2005,59:2932-2935.
    [114]Sigl L S. Processing and mechanical properties of boron carbide sintered with TiC[J]. Journal of the European Ceramic Society,1998,18:1521-1529.
    [115]穆柏春,张辉,唐立丹.制备工艺对碳化硼陶瓷性能的影响[J].粉末冶金技术,2007,25(4):275-280.
    [116]Subramanian C, Roy T K, Murthy T S R Ch, et al. Effect of zirconia addition on pressureless sintering of boron carbide[J].Ceramics International,2008,34:1543-1549.
    [117]Suzuya Yamada, Kiyoshi Hirao, Yukihiko Yamauchi, et al. High strength B4C-TiB2 composites fabricated by reaction hot-pressing[J]. Journal of the European Ceramic Society,2003,23:1123-1130.
    [118]Deng J X, Zhou J, Feng Y H, et al. Microstructure and mechanical properties of hot-pressed B4C/(W, Ti)C ceramic composites[J]. Ceramics International,2002, 28:425-430.
    [119]李世波,温广武,张宝生.掺加WC/Co对B4C材料烧结行为的研究[J].科研与探讨,2001,88(2):10-13.
    [120]Cai K F, Nan C W, Paderno Y, et al. Effect of titanium carbide addition on the thermoelectric properties of B4C ceramics [J]. Solid State Communications, 2000,115:523-526.
    [121]Srivatsan T S, Guruprasad G, Black D, et al. Influence of TiB2 content on microstructure and hardness of TiB2-B4C composite [J]. Powder Technology,2005,159:161-167.
    [122]Deng J X, Sun J L. Microstructure and mechanical properties of hot-pressed B4C/TiC/Mo ceramic composites [J]. Ceramics International,2009,35:771-778.
    [123]李平,杨建锋,王永兰,等.热压B4C-C陶瓷复合材料的组织与性能[J].稀有金属材料与工程,1999,28(3):151-154.
    [124]谢丽初,尹邦跃.碳化硼-硼化钛复合陶瓷的制备[J].材料热处理,2006,35(14):30-32.
    [125]王零森,方寅初,尹邦跃.碳化硼陶瓷力学性能及影响因素[J].粉末冶金材料科学与工程,2001,6(4):255-259.
    [126]Guo Q G, Song J R, Liu L, et al. Relationship between oxidation resistance and structure of B4C-SiC/C composites with self-healing properties [J]. Carbon,1999,37:33-40.
    [127]范壮军,刘郎,李建刚.细颗粒B4C-SiC/C复合材料的抗氧化性能[J].材料研究学报,2003,17(3):287-292.
    [128]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700