用户名: 密码: 验证码:
三江北段沉积岩容矿铅锌矿床矿区构造变形与控矿模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新的矿床类型,碰撞环境下沉积岩容矿铅锌矿床的矿体就位和构造控制尚不清楚。三江北段位于大陆碰撞造山带的后陆区,大型走滑运动叠加影响较小,是研究碰撞环境下沉积岩容矿铅锌矿床的理想场所。本文通过矿区填图、显微观察和综合分析对东莫扎抓、莫海拉亨、查曲帕查三个大型矿床进行了详细解剖,填制了矿区1:1万地质图;识别出三江北段印支期的两期变形;对矿区控矿构造提出了全新观点;确定了三江北段沉积岩容矿铅锌矿床的三阶段成矿模型;建立了大陆碰撞环境下沉积岩容矿铅锌矿床的控矿模型;同时研究了浅表条件下构造变形与盆地流体成矿的联系。
     构造—岩相填图结果表明,三江北段印支期存在两期构造叠加,早期为波长较大的倒转线状褶皱,伴生不对称寄生褶皱;晚期为波长较短的短轴褶皱。两期褶轴以大角度相交,形成钩状—弯月状叠加干涉式样。地层不整合界限指示两期变形分别发生在二叠纪末、三叠纪末。
     新生代三江北段发育两大推覆系统,即唐古拉山推覆构造和风火山—囊谦逆冲褶皱带。查曲帕查矿区处于两套逆断裂系统的末梢部位,东莫扎抓和莫海拉亨矿区位于风火山—囊谦逆冲褶皱带内。详细填图表明,三个矿区逆断层总体几何学和运动学特点相类似:延伸多东西向或北西—南东向,沿走向有波状弯曲,断面都显示为北倾,断层带附近断层角砾发育,上、下盘岩石挤压变形明显。但不同矿区逆断层伴生的次级构造具有不同表现。查曲帕查矿区逆断层附近岩层产状变陡。东莫扎抓矿区逆断层上盘形成叠瓦状构造岩片;下盘发育走滑断层,同时伴生陡倾构造角砾岩带和喇叭状小型逆冲断层。莫海拉亨矿区逆断层伴生有雁列脉体和角砾破碎带,断层角砾和脉体结构指示断裂为幕式活动,类似最近发生玉树地震的甘孜—玉树断裂的活动特征。另外,查曲帕查矿区还发育伸展有关的正断层,产状陡倾。在九十道班组灰岩内呈锯齿状,在九十道班组和五道梁组接触带上代替不整合面显示为同沉积生长断层。结合区域资料,将莫海拉亨矿区逆断层活动厘定为始新世、东莫扎抓矿区逆断层发生在渐新世末,查曲帕查矿区正断层则是在中新世初。
     控矿因素分析表明,三江北段铅锌矿体围岩都是碳酸盐岩,但控矿构造各有不同。查曲帕查矿区矿化露头尺度上出现在锯齿状正断层附近,钻孔资料揭示主矿体出现在地下20m的角砾带内,角砾特征说明为溶洞坍塌成因,总体显示成矿在伸展构造环境中。东莫扎抓和莫海拉亨两矿区控矿构造主要为逆冲断层上盘的破碎带和次级断面、构造角砾岩带、构造透镜体带和“之”字形追踪张节理,反映成矿发生在总体挤压环境的局部张性裂隙中。
     显微镜观察发现三江北段铅锌矿床矿石结构都为开放空间充填,但被充填的空间性质有差异。查曲帕查矿区为网脉状、晶簇状,常在灰岩角砾间隙内与泥质、方解石一起层状生长,是边沉积边成矿的过程;而东莫扎抓和莫海拉亨两矿区主要为细脉状、浸染状,含矿热液是挤压同期或稍晚就位沉淀,其中莫海拉亨矿石还显示有明显后期破碎。控矿机制主要有碎裂作用、交代—充填作用和压溶作用。结合脆性断裂新生代演化过程,认为成矿分别发生在始新世末、渐新世末和中新世初。
     三江北段沉积岩容矿铅锌矿床成矿三阶段分别对应早期挤压、晚期挤压、后期伸展的背景,成矿过程中流体温度逐渐降低,而流体内压则有明显升高。从渐新世到中新世整个青藏高原发生构造体制大转换,从挤压变为伸展,赋矿部位也从挤压有关的裂隙变为张性构造空间,矿石结构由脉状、浸染状变为网脉状、晶簇状。
     三江北段铅锌矿床的特殊性在于成矿过程与高原隆升密切相关,另外,逆冲推覆形成的断面波状起伏、成矿晚期高压流体造成岩石破裂,这些因素造成岩石渗透性增大,有利于含矿流体向上运移;矿质可以以胶结角砾的形式出现在角砾间,也可以出现在角砾内部,具体与当时岩石渗透性有关。
As a new deposit type, the sediment-hosted Pb-Zn deposit in collisional orogenic belt remains poorly understanded. The Northern segment of the Sanjiang orogenic belt (NSOB), which is located in the hinterland of Tibetan continent-continent collisional orogen, has little been influenced by late large-scale strick-slip fault systems, and thus provides an ideal place for study of the sediment-hosted Pb-Zn deposits under collision environments. Here I try to describe the deformational structures, Ore-controlling structures and Ore micro-texture of the Chaqupacha, Dongmozhazhua, and Mohailaheng deposits in the NSOB by geological field mapping, thin section observations, and synthesizing all available informations of multi-desiphilines. Accordingly we got below main progresses:1) made three geological maps with scale of 1:10000 of the Chaqupacha, Dongmozhazhua, and Mohailaheng Pb-Zn deposits, respectively; 2) two phases of Indosinian structures and their interference pattern are identified; 3) new interpretation of ore-control structures is suggested; 4) a three-phases metallogenetic model is proposed to explain the three kinds of sediment-hosted Pb-Zn deposits in the NSOB,5) establishing structure-control model for sediment-hosted Pb-Zn deposits in continent-continent collision orogen; and 6) discussed the correlation between deformation and metallogenesis of basin fluid under upper crustal environments.
     Detailed geological mapping reveals two stages of folding in the Late Palaeozoic to Early Mesozoic strata. The earlier one is reversal linear fold with numerous asymmetric parasitism folds. The later fold overprinted the earlier one resulting in hook- or crescent- like interference patterns. The angular disconformities suggest that the two stages folding developed in the Late Permian and Late Triassic, respectively.
     Previously studies have identified two Cenozoic thrust nappe systems in NSOB:the Tanggula Thrust System (TTS), and the Fenghuoshan-Nangqian Thrust System respectively. The Chaqupacha deposit is located at the tip portion of the two systems, while the Dongmozhazhua and Mohailaheng are located within the Fenghuoshan-Nangqian thrust system. The thrusts in the three deposit regions have similar geometry and kinematics; all are characterized by a northward, northwestward, or northeastward dipped plane depended on its location. Fault breccia developed very well. On the other hand, the fault-associeted small structures are quite variable among the three deposit regions. For example, imbricate slices, strike-slip faults and associated tectonic breccia developed very well in the Dongmozhazhua deposit region, which have not been identified in the Chaqupacha area, while en-echelon extensional veins occur in the lower plate of the thrusts in Mohailaheng. Microtectural observations reveal episodic brecciation suggesting episodic faulting for the thrusts, just like the fault activity of the Ganzhi-Yushu fault that caused the 4.14 Yushu earthquake. In the Chaqupacha deposit region, normal fault cut across the thrusts. These normal faults commonly have zig-zag geometry in map-view, and its fracture is locally filled by marl of the Wudaoliang Formation. Taking regional geological data into account, we suggest that the thrust in Mohailaheng developed at the Eocene; that in Dongmozhazhua at the end of Oligocene; and normal fault in Chaqupacha occurred at the Miocene.
     Although all the Pb-Zn deposits in NSOB are hosted in carbonatic rocks, ore-controlling structure differs from one to other. The surface mineralization of Chaqupacha Pb-Zn deposit is identified mainly along the normal fault; but drilling data reveal that main ore bodies are located at ca.20 m below the surface. Further more, the main ore-body is strictly limited in breccia belts; there is evidence that the breccias formed by dissolution and collapse of paleo-caves. In contrast, the ore-control structures in Dongmozhazhua and Mohailaheng deposits are mainly subsidiary fractures of the thrusts, including locally developed extensional breccias and minor trans-extensional fault.
     Micro-textural observations reveal that all Pb-Zn minerals deposited in open-space; but the filled voids have different geometrical and/then kinematic feature. The vein-like ore bodies in Chaqupacha interconnect each other to form network, whereas drustic texture is widespread in these ore veins. Among the drusy calcite and sulfides, marl is common displaying stratiform structure. Such phenomenon suggests a syn-sedimentation mineralization. On the other hand, the ore body of the Dongmozhazhua and Mohailaheng deposits presents as minor veins or porphyry ore. The tightly correlationship between the thrust and the ore veins suggests that the precipitation of sulfides in both Dongmozhazhua and Mohailaheng occurred during or slightly later than the N-S direction compression. As evidence, the ores in Mohailaheng are commonly broken up.
     The ore-forming processes may include cataclasis, strain-solution, dissolution to form cavies and/then filling the cavies. Because of the tight relationship between the evolution of brittle faults and the ore-bodies, we suggest here that the Dongmozhazhua, Mohailaheng and Chaqupacha deposits formed at the Late Eocene, Late Oligocene and Early Miocene, respectively.
     The suggested three satges of ore-forming process are tightly correlated with two compressional at eaerly and middle periods and an extensional strain at late time respectively. During the ore-forming process, the temperature of fluid gradually decreased while the inner pressure of the fluid increased very likely due to a decrease in the confining pressure. Such a variation is in consistence with the Cenozoic tectonic evolution of the North-central Tibet:A change in tectonic regime from compression to extension completed during the interval of the Oligocene to Miocene in the Tibet Plateau; in corresponding, the the ore-filling structures changed from thrust-related ones to those formed by extensional strain, which have filled by ore-bodies with different texture.
     Conclusively, the Pb-Zn deposits in NSOB are tightly related with the tectonic evolution of Himalayan-Tibetan Plateau. Intensive and multi-stages compressional and extensional deformations, which are likely alternative, greatly increased permeability of the carbonitic rocks in the study areas. A high permeability in host rock is very significant for fluid moving and ore-mineral precipitation.
引文
Aharonov, E.,2006. The basics of stylolite formation:insights from modeling, pp.07198.
    Anderson, E. M.1951. The dynamics of faulting. Oliver and Boyd.
    Atkinson, B. K.1987. Fracture mechanics of rocks. Academic Press, London.
    Barnicoat, A. C., Sheldon, H. A., Ord, A.2009. Faulting and fluid flow in porous rocks and sediments: implications for mineralisation and other processes. Mineralium Deposita,44(6):705-718.
    Barrie, C. D., Boyce, A. J., Boyle, A. P., Williams, P. J., Blake, K., Wilkinson, J. J., Lowther, M., McDermott, P., Prior, D. J.2009. On the growth of colloform textures:a case study of sphalerite from the Galmoy ore body, Ireland. Journal of Geological Society, London,166(3):563-582.
    Barton, C. A., Zoback, M. D., Moos, D.1995. Fluid flow along potentially active faults in crystalline rock. Geology,23(8):683-686.
    Barton, P. B., Bethke, P. M., Roedder, E.1977. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part III, Progress toward interpretation of the chemistry of the ore-forming fluid for the OH Vein. Economic Geology,72(1):1-24.
    Basuki, N. I., Spooner, E. T. C.2002. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-type Zn-Pb Deposits:Identifying Thresholds for Metal Transport. Explor. Mining Geol.,11(1-4):1-17.
    Beaudoin, G.2000. Acicular sphalerite enriched in Ag, Sb, and Cu embedded within color-banded sphalerite from the Kokanee range, British Columbia, Canada. Canadian Mineralogist,38(6): 1387-1398.
    Belayneh, M., Cosgrove, J. W.2010. Hybrid veins from the southern margin of the Bristol Channel Basin, UK. Journal of Structural Geology,32(2):192-201.
    Berger, B. R., Drew, L. J.2003. Mineral deposit models:New developments. In:A.G. Fabbri, G. Gaal and R.B. McCammon, Editors, Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security, Nato Science Series, Partnership Sub-Series 2:Environmental Security 80: 121-134.
    Berube, D., Jebrak, M.1999. High precision boundary fractal analysis for shape characterization* 1. Computers & Geosciences,25(9):1059-1071.
    Bjornerud, M. G.1998. Superimposed deformation in seconds:breccias from the impact structure at Kentland, Indiana (USA). Tectonophysics,290(3-4):259-269.
    Blenkinsop, T. G.1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics, 136(1):59-86.
    Blundell, D. J.2002. The timing and location of major ore deposits in an evolving orogen:the geodynamic context. Geological Society, London, Special Publications,204(1):1-12.
    Blundell, D. J., Karnkowski, P. H., Alderton, D. H. M., Oszczepalski, S., Kucha, H.2003. Copper mineralization of the Polish Kupferschiefer:a proposed basement fault-fracture system of fluid flow. Economic Geology,98(7):1487.
    Bradley, D. C., Leach, D. L.2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineralium Deposita,38(6):652-667.
    Brantley, S. L.1992. The effect of fluid chemistry on quartz microcrack lifetimes. Earth and Planetary Science Letters,113(1-2):145-156.
    Byerlee, J.1993. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology,21(4):303-306.
    Caputo, R.2005. Stress variability and brittle tectonic structures. Earth-Science Reviews,70(1-2):103-127.
    Caputo, R., Hancock, P. L.1999. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing. Journal of Geodynamics,27(1):45-60.
    Carrier, A., Jebrak, M.1994. Structural evolution and metallogeny of the Silidor mesothermal gold-quartz deposit, southern Abitibi greenstone belt, Quebec. Geological Association of Canada-Mineralogical Association of Canada, Annual Meeting Abstracts(19):A-18.
    Chen, T. T.1978. Colloform and framboidal pyrite from the Caribou deposit, New Brunswick. Can. Mineral,16:9-15.
    Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q., Wang, Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,68(3-4):173-196.
    Clark, C., James, P.2003. Hydrothermal brecciation due to fluid pressure fluctuations:examples from the Olary Domain, South Australia. Tectonophysics,366(3-4):187-206.
    Clark, C., Mumm, S.2006. A coupled micro-and macrostructural approach to the analysis of fluid induced brecciation, Curnamona Province, South Australia. Journal of Structural Geology,28(5):745-761.
    Coward, M. P., Kidd, W. S. F., Yun, P., Shackleton, R. M., Hu, Z.1988. The structure of the 1985 Tibet geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,327(1594):307-333.
    Cox, S. F.2005. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Economic Geology,100th Anniversary Volume:39-75.
    Cox, S. F., Knackstedt, M. A., Braun, J.2001. Principles of structural control on permeability and fluid flow in hydrothermal systems. Reviews in Economic Geology,14:1-24.
    Craig, J. R.2001. Ore-mineral textures and the tales they tell. Canadian Mineralogist,39(4):937-956.
    Cyr, A. J., Currie, B. S., Rowley, D. B.2005. Geochemical Evaluation of Fenghuoshan Group Lacustrine Carbonates, North-Central Tibet:Implications for the Paleoaltimetry of the Eocene Tibetan Plateau. The Journal of Geology,113:517-533.
    Davis, G. H.1984. Structural geology of rocks and regions. John Wiley & Sons.
    Dewey, J. F., Shackleton, R. M., Chengfa, C., Yiyin, S.1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences:379-413.
    Ding, L., Kapp, P., Yue, Y. H., Lai, Q. Z.2007. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters,254(1-2):28-38.
    Ding, L., Kapp, P., Zhong, D. L., Deng, W. M.2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology,44(10):1833-1865.
    Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., Onasch, C. M.2004. Calcite twin morphology:a low-temperature deformation geothermometer. Journal of Structural Geology, 26(8):1521-1529.
    Flook, A. G.1978. The use of dilation logic on the quantimet to achieve fractal dimension characterisation of textured and structured profiles. Powder Technology,21(2):295-298.
    Freed, A. M.2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Reviews Earth and Planetary Science Letters,33:335-367.
    Galve, A., Him, A., Mei, J. A., Gallart, J., de Voogd, B., Lepine, J. C., Diaz, J., Wang, Y. X., Hui, Q. A. 2002. Modes of raising northeastern Tibet probed by explosion seismology. Earth and Planetary Science Letters,203(1):35-43.
    Genna, A., Jebrak, M., Marcoux, E., Milesi, J. P.1996. Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java. Canadian Journal of Earth Sciences,33(1): 93-102.
    Gessner, K.2009. Coupled Models of Brittle-plastic Deformation and Fluid Flow:Approaches, Methods, and Application to Mesoproterozoic Mineralisation at Mount Isa, Australia. Surveys in Geophysics, 30(3):211-232.
    Ghosh, S. K., Mandal, N., Khan, D., Deb, S. K.1992. Modes of superposed buckling in single layers controlled by initial tightness of early folds. Journal of Structural Geology,14(4):381-394.
    Gold, T., Soter, S.1984. Fluid ascent through the solid lithosphere and its relation to earthquakes. Pure and Applied Geophysics,122(2):492-530.
    Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., Liu, T. S.2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature,416(6877):159-163.
    Guo, Z., Wilson, M., Liu, J., Mao, Q.2006. Post-collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau:Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. J. Petrology,47(6):1177-1220.
    Hancocka, P. L., Chalmersa, R. M. L., Altunelb, E., Cakirc, Z.1999. Travitonics:using travertines in active fault studiesp. Journal of Structural Geology,21:903-916.
    Harrowfield, M. J., Wilson, C. J. L.2005. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. Journal of Structural Geology,27(1):101-117.
    Heijlen, W., Muchez, P., Banks, D. A., Schneider, J., Kucha, H., Keppens, E.2003. Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland:origin and evolution of mineralizing fluids and constraints on genetic models. Economic Geology,98(5):911-932.
    Hitzman, M. W., Redmond, P. B., Beaty, D. W.2002. The Carbonate-Hosted Lisheen Zn-Pb-Ag Deposit, County Tipperary, Ireland. Economic Geology,97(8):1627-1655.
    Hooper, E. C. D.1991. Fluid migration along growth faults in compacting sediments. Journal ol Petroleum Geology,14(2):161-180.
    Horton, B. K., Yin, A., Spurlin, M. S., Zhou, J. Y, Wang, J. H.2002. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geological Society of America Bulletin,114(7):771-786.
    Hou, Z. Q., Ma, H. W., Zaw, K., Zhang, Y. Q., Wang, M. J., Wang, Z., Pan, G. T., Tang, R. L.2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology,98(1):125-145.
    Hou, Z., Cook, N. J.2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews,36:2-24.
    Huston, D. L., Logan, G. A.2004. Barite, BIFs and bugs:evidence for the evolution of the Earth's early hydrosphere. Earth and Planetary Science Letters,220(1-2):41-55.
    Jebrak, M.1984. Contribution a l'histoire naturelle des filons F-Ba des Hercynides francaises et marocaines. These es Sciences, Document Bureau de Recherches Geologiques et Minieres 99.
    Jebrak, M.1997. Hydrothermal breccias in vein-type ore deposits:A review of mechanisms, morphology and size distribution. Ore Geology Reviews,12(3):111-134.
    Jiang, Y., Jiang, S.-Y., Ling, H., Dai, B.-Z.2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranote-porphyry, east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constrints. Earth Planet. Sci. Lett.,241:617-633.
    Kapp, P., Yin, A., Harrison, T. M., Ding, L.2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin,117(7-8):865-878.
    Kucha, H., Piestrzy'nski, A., Viaene, W.2001. Post-deposition transformation in banded sphalerite, MVT-deposits, Upper Silesia, Poland. In:A. Piestrzy'nski. Mineral deposits at the beginning of the 21st century:Joint Biennial SGA-SEG Meeting,6th. Krakow, Poland, pp.145-148.
    Laznicka, P.1989. Breccias and ores. Part 1:History, organization and petrography of breccias. Ore Geology Reviews,4(4):315-344.
    Leach, D. L., Dwight, B., Lewchuk, M. T., Symons, D. T. A., de Marsily, G, Brannon, J.2001. Mississippi Valley-type lead-zinc deposits through geological time:implications from recent age-dating research. Mineralium Deposita,36(8):711-740.
    Leach, D. L., Sangster, D. L., Kelly, K. D., Large, R. R., Garven, G, Allen, C. R., Gutzmer, J., Walter, S. 2005. Sediment-hosted lead-zinc deposits:a global perspective. In:J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, J. P. Richards. SEG 100th Anniversary Special Publication, pp.561-607.
    Lee, M. J., Wilkinson, J. J.2002. Cementation, hydrothermal alteration, and Zn-Pb mineralization of carbonate breccias in the Irish Midlands:textural evidence from the Cooleen zone, near Silvermines, County Tipperary. Economic Geology,97(3):653-662.
    Leeder, M. R., Smith, A. B., Jixiang, Y.1988. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences:107-143.
    Liu, Z., Wang, C.2001. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet. Sedimentary Geology,140(3-4):251-270.
    Liu, Z., Zhao, X., Wang, C., Liu, S., Yi, H.2003. Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin:implications for the Cenozoic tectonic history of the Tibetan Plateau. Geophysical Journal International,154(2):233-252.
    Lorilleux, G, Jebrak, M., Cuney, M., Baudemont, D.2002. Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada):From fractal analysis to structural significance. Journal of Structural Geology,24(2):323-338.
    Loucks, R. G.1999. Paleocave carbonate reservoirs:Origins, burial-depth modifications, spatial complexity, and reservoir implications. Aapg Bulletin,83:1795-1834.
    Loucks, R. G., Mescher, P. K., McMechan, G A.2004. Three-dimensional architecture of a coalesced, collapsed-paleocave system in the Lower Ordovician Ellenburger Group, central Texas. Aapg Bulletin, 88(5):545-564.
    Matte, P., Mattauer, M., Olivet, J. M., Griot, D. A.2006. Continental subductions beneath Tibet and the Himalayan orogeny:a review. Terra Nova,9(5-6):264-270.
    McLimans, R. K., Barnes, H. L., Ohmoto, H.1980. Sphalerite stratigraphy of the upper Mississippi Valley zinc-lead district, southwest Wisconsin. Economic Geology,75(3):351-361.
    Micklethwaite, S.2007. The Significance of Linear Trends and Clusters of Fault-Related Mesothermal Lode Gold Mineralization. Economic Geology,102(6):1157-1164.
    Micklethwaite, S.2009. Mechanisms of faulting and permeability enhancement during epithermal mineralisation:Cracow Goldfield, Australia. Journal of Structural Geology,31(3):288-300.
    Micklethwaite, S., Cox, S. F.2004. Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology,32(9):813-816.
    Micklethwaite, S., Cox, S. F.2006. Progressive fault triggering and fluid flow in aftershock domains: Examples from mineralized Archaean fault systems. Earth and Planetary Science Letters,250(1-2): 318-330.
    Micklethwaite, S., Sheldon, H. A., Baker, T.2009. Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology.
    Mitchell, A. H. G, Garson, M. S.1981. Mineral deposits and global tectonic settings. London:Academic Press Inc. Ltd.
    Mort, K., Woodcock, N. H.2008. Quantifying fault breccia geometry:Dent Fault, NW England. Journal of Structural Geology,30(6):701-709.
    Muchez, P., Heijlen, W., Banks, D., Blundell, D., Boni, M., Grandia, F.2005.7:Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geology Reviews,27(1-4):241-267.
    Nelson, R. A.2001. Geologic analysis of naturally fractured reservoirs. Gulf Professional Publishing.
    Neuzil, C. E.2003. Hydromechanical coupling in geologic processes. Hydrogeology Journal,11(1):41-83.
    Nicholson, R.1991. Vein morphology, host rock deformation and the origin of the fabrics of echelon mineral veins. Journal of Structural Geology,13(6):635-641.
    Ohle, E. L.1985. Breccias in Mississippi Valley-type deposits. Economic Geology,80(6):1736-1752.
    Oliver, N. H. S.2001. Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting. Tectonophysics,335(1-2):147-161.
    Passchier, C. W., Trouw, R. A. J.2005. Microtectonics. Springer Verlag.
    Price, N. J., Cosgrove, J. W.1990. Analysis of geological structures. Cambridge Univ Pr.
    Ramsay, J. G.1980. The crack-sreal mechanism of rock deformation. Name:Nature (London,284: 135-139.
    Ramsay, J. G, Huber, M. I.1987. The techniques of modern structural geology:Folds and fractures. Academic Pr.
    Ramsey, J. M., Chester, F. M.2004. Hybrid fracture and the transition from extension fracture to shear fracture. Nature,428(6978):63-66.
    Reeve, J. S., Cross, K. C., Smith,.R. N., Oreskes, N.1990. Olympic Dam copperuranium-gold-silver deposit. Geology of the mineral deposits of Australia and Papua New Guinea,2:1009-1035.
    Reid, A. J., Wilson, C. J. L., Liu, S.2005. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan plateau. Journal of Structural Geology,27(1):119-137.
    Renard, F., Gratier, J. P., Jamtveit, B.2000. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology,22(10):1395-1407.
    Robert, F., Boullier, A. M., Firdaous, K.1995. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical Research,100(B7):12,861-12,879.
    Rodriguez, E.2005. A microstructural study of the extension-to-shear fracture transition in Carrara Marble, MSc thesis. Texas A&M University.
    Roger, F., Arnaud, N., Gilder, S., Tapponnier, P., Jolivet, M., Brunel, M., Malavieille, J., Xu, Z. Q., Yang, J. S.2003. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics,22(4):1-11. Artn 1037, Doi 10.1029/2002tc001466.
    Rolandone, F., Burgmann, R., Nadeau, R. M.2004. The evolution of the seismic-aseismic transition during the earthquake cycle:Constraints from the time-dependent depth distribution of aftershocks. Geophys. Res. Lett,31(10.1029).
    Rowland, J. V., Sibson, R. H.2004. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids,4(4):259-283.
    Rowley, D. B., Currie, B. S.2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature,439(7077):677-681.
    Rutqvist, J., Stephansson, O.2003. The role of hydromechanical coupling in fractured rock engineering. Hydrogeology Journal,11(1):7-40.
    Sass-Gustkiewicz, M.1996. Internal sediments as a key to understanding the hydrothermal karst origin of the Upper Silesian Zn-Pb ore deposits. Carbonate-hosted lead-zinc deposits:Society of Economic Geologists Special Publication,4:171-181.
    Scholz, C. H.2002. The mechanics of earthquakes and faulting. Cambridge Univ Pr.
    Scholz, C. H.,1990. The mechanics of earthquakes and faulting. Cambridge Univ. Press, New York, pp. 439.
    Schwartz, S. Y, Rokosky, J. M.2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys,45:RG3004,10.1029/2006RG000208.
    Sengupta, S., Ghosh, S. K., Deb, S. K., Khan, D.2005. Opening and closing of folds in superposed deformations. Journal of Structural Geology,27(7):1282-1299.
    Sheldon, H. A., Micklethwaite, S.2007. Damage and permeability around faults:Implications for mineralization. Geology,35(10):903-906.
    Sheldon, H. A., Ord, A.2005. Evolution of porosity, permeability and fluid pressure in dilatant faults post-failure:implications for fluid flow and mineralization. Geofluids,5(4):272-288.
    Sibson, R. H.1986. Brecciation processes in fault zones:inferences from earthquake rupturing. Pure and Applied Geophysics,124(1):159-175.
    Sibson, R. H.1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology,15(8): 701-704.
    Sibson, R. H.1989. Earthquake faulting as a structural process. Journal of Structural Geology,11(1-2): 1-14.
    Sibson, R. H.1992. Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface. Earth-Science Reviews,32(1-2):141-144.
    Sibson, R. H.2001. Seismogenic framework for hydrothermal transport and ore deposition:Reviews in Economic Geology, v.14. ndash,50:25.
    Sibson, R. H., Robert, F., Poulsen, K. H.1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology,16(6):551.
    Sillitoe, R. H.1985. Ore-related breccias in volcanoplutonic arcs. Economic Geology,80(6):1467-1514.
    Sinha-Roy, S.2002. Kinetics of differentiated stylolite formation. Current Science,82(8):1038-1046.
    Spurlin, M. S., Yin, A., Horton, B. K., Zhou, J., Wang, J.2005. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geological Society of America Bulletin,117(9-10):1293-1317.
    Tarasewicz, J., Woodcock, N. H., Dickson, J. A. D.2005. Carbonate dilation breccias:Examples from the damage zone to the Dent Fault, northwest England. Bulletin of the Geological Society of America, 117(5-6):736-745.
    Taylor, R.1992. Ore Textures:Recognition and Interpretation 1. infill textures. Springer Verlag.
    Taylor, R.2000. Ore Textures:Recognition and Interpretation 4. Broken Rocks-Breccias. Springer Verlag.
    Tenthorey, E., Cox, S. F., Todd, H. F.2003. Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones. Earth and Planetary Science Letters,206(1-2): 161-172.
    Tenthorey, E., Gerald, F., John, D.2006. Feedbacks between deformation, hydrothermal reaction and permeability evolution in the crust:Experimental insights. Earth and Planetary Science Letters, 247(1-2):117-129.
    Turcotte, D. L.1986. Fractals and fragmentation. Journal of Geophysical Research,91(B2):1921-1926.
    Twiss, R. J., Moores, E. M.1992. Structural geology. WH Freeman.
    Urai, J. L., Williams, P. F., Van Roermund, H. L. M.1991. Kinematics of crystal growth in syntectonic fibrous veins. Journal of Structural Geology,13(7):823-836.
    Wang, C., Liu, Z., Yi, H., Liu, S., Zhao, X.2002. Tertiary crustal shortening and peneplanation in the Hoh Xil region:implications for the tectonic history of the northern Tibetan Plateau. Journal of Asian Earth Sciences,20(3):211-223.
    Wang, E., Burchfiel, B.1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. International Geology Review, 39(3):191-219.
    Wang, J. H., Yin, A., Harrison, T. M., Grove, M., Zhang, Y. Q., Xie, G. H.200.1. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters,188(1-2):123-133.
    Wang, J., Xia, B., Ji, S.2004. On deposits controlled by tectonic lenses. Science in China Series D:Earth Sciences,47(12):1095-1101.
    Wang, Q., McDermott, F., Xu, J.-f., Bellon, H., Zhu, Y.-t.2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting Geology,33(6): 465-468.
    Wang, Q., Wyman, D. A., Xu, J. F., Wan, Y. S., Li, C. F., Zi, F., Jiang, Z. Q., Qiu, H. N., Chu, Z. Y, Zhao, Z. H., Dong, Y. H.2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet):evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology,155(4):473-490.
    Wilkinson, J. J., Eyre, S. L., Boyce, A. J.2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits:Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology,100(1):63-86.
    Wilkinson, J. J., Johnston, J. D.1996. Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation. Geology,24(5):395-398.
    Williams, H. M., Turner, S. P., Pearce, J. A., Kelley, S. P., Harris, N. B. W.2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. Journal of Petrology,45(3):555-607.
    Woodcock, N. H., Dickson, J. A. D., Tarasewicz, J. P. T.2007. Transient permeability and reseal hardening in fault zones:evidence from dilation breccia textures. Geological Society London Special Publications,270(1):43-53.
    Woodcock, N. H., Mort, K.2008. Classification of fault breccias and related fault rocks. Geological Magazine,145(03):435-440.
    Woodcock, N. H., Omma, J. E., Dickson, J. A. D.2006. Chaotic breccia along the Dent Fault, NW England: implosion or collapse of a fault void? Journal of the Geological Society,163(3):431-446.
    Wu, Z., Barosh, P. J., Wu, Z., Hu, D., Zhao, X., Ye, P.2008. Vast early Miocene lakes of the central Tibetan Plateau. Geological Society of America Bulletin,120(9-10):1326-1337.
    Wu., Z., Barosh, P. J., Wu., Z., Hu., D., Zhao., X., Ye., P.2008. Vast early Miocene lakes of the central Tibetan Plateau. Geological Society of America Bulletin,120(9-10):1326-1337.
    Xiao, L., Zhang, H. F., Clemens, J. D., Wang, Q. W., Kan, Z. Z., Wang, K. M., Ni, P. Z., Liu, X. M.2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau:Geochronology, petrogenesis and implications for tectonic evolution. Lithos,96(3-4):436-452.
    Yang, T., Hou, Z., Wang, Y, Zhang, H., Wang, Z., Wang, M., Dai, C. Late Paleozoic to Early Mesozoic tectonic evolution of the north-central Tibetan plateau:Indosinian Arc-Continent Collision. submitted to the Journal of Geological Society, London.
    Yi, H. S., Wang, C. S., Liu, S., Liu, Z. F., Wang, S. F.2000. Sedimentary record of the planation surface in the Hoh Xil region of the northern Tibet Plateau. Acta Geologica Sinica-English Edition,74(4): 827-835.
    Yin, A., Harrison, T. M.2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,28:211-280.
    Zhang, H. F., Zhang, L., Harris, N., Jin, L. L., Yuan, H. L.2006b. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau:constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152(1):75-88.
    Zhang, H.-F., Harris, N., Parrish, R., Zhang, L.2006a. Association of granitic magmatism in the Songpan-Garze fold belt, eastern Tibet Plateau:Implication for lithospheric delamination. Geochimica Et Cosmochimica Acta,70(18, Supplement 1):A734-A734.
    Zhang, H.-F., Parrish, R., Zhang, L., Xu, W.-C., Yuan, H.-L., Gao, S., Crowley, Q. G.2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination. Lithos,97(3-4):323-335.
    Zhu, L. D., Wang, C. S., Zheng, H. B., Xiang, F., Yi, H. S., Liu, D. Z.2006. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the plateau. Palaeogeography Palaeoclimatology Palaeoecology,241(1):49-60.
    蔡雄飞,刘德民,魏启荣,顾延生,袁晏明,李德威,王国灿,罗中杰.2008.古新世—中新世以来青藏高原北缘隆升的特征——来自可可西里盆地的报告.地质学报,82(002):194-203.
    陈建平,唐菊兴,丛源,董庆吉,郝金华.2009.藏东玉龙斑岩铜矿地质特征及成矿模型.地质学报,83(012):1887-1900.
    陈立春,王虎,冉勇康,孙鑫喆,苏桂武,王继,谭锡斌,李智敏,张晓清.2010.玉树MS7.1级地震地表破裂与历史大地震.科学通报,55:1200-1205.
    成都理工大学.2004.1:25万温泉兵站幅区域地质调查报告.
    邓军,杨立强,翟裕生,孙忠实,陈学明.2000.构造—流体—成矿系统及其动力学的理论格架与方法体系.地球科学:中国地质大学学报,25(001):71-78.
    邓万明,黄萱.1998a.滇西金沙江带北段的富碱斑岩及其与板内变形的关系.中国科学:D辑,28(002):111-117.
    邓万明,黄萱.1998b.滇西新生代富碱斑岩的岩石特征与成因.地质科学,33(004):412-425.
    邓万明,张玉泉.1999.青海囊谦盆地新生代火山岩的K—Ar年龄.科学通报,44(023):2554-2558.
    邓万明.2003.中国西部新生代火山活动及其大地构造背景——青藏及邻区火山岩的形成机制.地学前缘,10(002):471-478.
    段其发,王建雄,牛志军,涂兵,赵小明,姚华舟.2006.青海南部治多县扎河地区发现中二叠世放射虫化石.地质通报,25(1-2):173-175.
    段其发,王建雄,白云山,牛志军,何龙清,姚华舟,寇晓虎,张克信.2010.唐古拉山东段莫云地区二叠纪玄武岩地球化学特征及源区性质.岩石矿物学杂志,29(2):125-138.
    郭晓东,王治华,陈祥,王欣,王淑贤.2009.云南马厂箐斑岩型铜钼(金)矿床地质特征与矿床成因.地质学报,83(012):1901-1914.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.2006b.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,33(02):340-351.
    侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清.2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质,25(05):521-543.
    侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,郑绵平,郑有业,聂凤军,高永丰,江思宏,李光明.2006a.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,25(06):629-651.
    侯增谦,宋玉财,李政,王召林,杨志明,杨竹森,刘英超,田世洪,何龙清,陈开旭,王富春,赵呈祥,薛万文,鲁海峰.2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造 控矿模型.矿床地质,27(02):123-144.
    侯增谦,杨志明.2009.中国大陆环境斑岩型矿床:基本地质特征,岩浆热液系统和成矿概念模型.地质学报,83(012):1779-1817.
    侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,赵志丹,江思宏,孟祥金,李振清,秦克章,杨志明.2006d.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质,25(04):337-358.
    侯增谦,钟大赉,邓万明.2004.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质,31(01):1-14.
    侯增谦.2010.大陆碰撞成矿论.地质学报,84(001):30-58.
    胡健民,孟庆任,石玉若,渠洪杰.2005.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报,21(03):867-880.
    黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化.北京:地质出版社.
    姜勇彪,侯增谦,严兆彬,杜后发,郭福生,刘燕学.2009.青海玉树地区第三纪盆地原型及其演化.大地构造与成矿学,33(004):520-528.
    李建威,李先福.1997.液压致裂作用及其研究意义.地质科技情报,16(004):29-34.
    李善平,马海州,陈有顺,王生祖,魏海成,李五福.2009.青藏高原北羌塘盆地治多地区松赛弄一带火山岩的特征及构造意义.中国地质,26(1):85-92.
    李善平,马海州,沈存祥,魏海成.2008.青藏高原北羌塘盆地结扎乡一带二叠系尕笛考组火山岩的特征及构造环境.西北地质,41(2):31-40.
    李亚林,王成善,伊海生,刘志飞,李勇.2006.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起.地质学报,80(008):1118-1130.
    李政.2008.青海省沱沱河地区茶曲帕查铅锌矿床的成因研究(硕士论文).导师:谢玉玲.北京科技大学.1-77.
    刘亮明.2001.断层带中超压流体及其在地震和成矿中的作用.地球科学进展,16(002):238-243.
    刘顺,王成善,伊海生,刘志飞.2001.青藏高原中部风火山地区第三纪地壳南北缩短量研究.地震地质,23(001):122-125.
    刘英超,杨竹森,侯增谦,田世洪,王召林,宋玉财,薛万文,鲁海峰,王富春,张玉宝,朱田,俞长捷,苏媛娜,李真真,于玉帅.2009.青海玉树东莫扎抓铅锌矿床地质特征及碳氢氧同位素地球化学研究.矿床地质,28(6):770-784.
    刘英超.2009.青海杂多东莫扎抓一莫海拉亨铅锌成矿作用(硕士论文).导师:杨竹森.中国地质科 学院.1-114.
    刘志飞,王成善,金玮,伊海生,郑洪波,赵西西,李亚林.2005.青藏高原沱沱河盆地渐新一中新世沉积环境分析.沉积学报,23(002):210-217.
    莫宣学,赵志丹,邓晋福,喻学惠,罗照华,董国臣.2007.青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡:壳幔深部物质流的暗示.现代地质,21(002):255-264.
    莫宣学,赵志丹,邓晋福.2003.印度-亚洲大陆主碰撞过程与火山作用响应.地学前缘,10(3):135-148.
    倪培,蒋少涌,凌洪飞,范建国.2001.流体包裹体面的研究背景,现状及发展前景.地质论评,47(004):398-404.
    牛志军,段其发,王建雄,白云山,涂兵,卜建军,赵小明.2005.青海南部治多—杂多一带下石炭统杂多群.地层学杂志,29(S1):490-499.
    牛志军,段其发,王建雄,白云山,涂兵,卜建军.2006a.青海南部杂多—治多一带发现早石炭世Eostaffella动物群.地质通报,25(1-2):163-167.
    牛志军,段其发,王建雄,白云山,曾波夫,涂兵,卜建军.2006b.青海南部治多—杂多一带二叠系尕笛考组.地层学杂志,30(02):109-115.
    牛志军,徐安武,王建雄,段其发,赵小明,姚华舟.2008.青海南部二叠纪罗甸期火山岛沉积相模式及对蜒类动物群分布的制约.中国科学(D辑:地球科学),38(02):145-156.
    潘桂棠,丁俊 2004.1:150万青藏高原及邻区地质图.成都地图出版社.
    潘桂棠,李兴振,王立全,丁俊,陈智粱.2002.青藏高原及邻区大地构造单元初步划分.地质通报,21(11):701-707.
    青海地质调查院.2005.1:25万沱沱河幅区域地质调查报告.
    青海地质调查院.2006a.1:25万杂多幅区域地质调查报告.
    青海地质调查院.2006b.1:25万治多幅区域地质调查报告.
    青海地质调查院.2009a.青海杂多然者涌—东莫扎抓铜多金属矿评价报告
    青海地质调查院.2009b.青海省杂多县莫海拉亨—叶龙达铅锌矿普查报告
    青海省地质矿产局.1997.青海省岩石地层.武汉:中国地质大学出版社.
    青海省地质矿产局第二区域地质调查队.1982.中华人民共和国区域地质调查报告杂多县幅 (1:20万)
    青海省地质矿产局第二区域地质调查队.1983.中华人民共和国区域地质调查报告囊谦县幅(1:20万)
    宋玉财.2009.“三江”沉积岩容矿贱金属矿床:发育特点与成矿模型(博士后出站报告).合作导师:侯增谦.中国地质科学院.1-118.
    汤朝阳,姚华舟,牛志军,段其发,赵小明,王建雄.2007.长江源各拉丹冬地区上三叠统巴贡组双壳类组合与环境初探.古地理学报,9(1):59-68.
    田世洪,杨竹森,侯增谦,刘英超,高延光,王召林,宋玉财,薛万文,鲁海峰,王富春,苏媛娜,李真真,王银喜,张玉宝,朱田,俞长捷,于玉帅.2009.玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义.矿床地质,28(6):747-758.
    汪劲草,夏斌,嵇少丞.2003.论构造透镜体控矿.中国科学:D辑,33(008):745-750.
    汪洋,张开均.2006.青藏高原新生代构造研究最新进展和构造发展的阶段性3.南京大学学报:自然科学版,42(2):199-219.
    王成善,戴紧根,刘志飞,朱利东,李亚林,贾国东.2009.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展.地学前缘,16(003):1-30.
    王成善,朱利东,刘志飞.2004.青藏高原北部盆地构造沉积演化与高原向北生长过程.地球科学进展,19(003):373-381.
    王江海,周江羽,张玉泉,解广轰,尹安,T.M.Harrison, M.Grove.2002.青藏东缘新生代两类高钾岩浆活动的热年代学研究.中国科学:D辑,32(007):529-537.
    王召林,侯增谦,杨竹森,田世洪,刘英超,杨志明,宋玉财,刘焰,张洪瑞,王猛.2009.青海杂多地区新生代构造特征与两种类型矿床的关系.矿床地质,28(002):157-169.
    王召林.2009.三江北段玉树地区复合造山与成矿作用研究(博士论文).导师:侯增谦.中国地质科学院.1-114.
    魏启荣,李德威,王国灿,郑建平.2007.青藏高原北部查保马组火山岩的锆石SHRIMP U-Pb定年和地球化学特点及其成因意义.岩石学报,23(11):2727-2736.
    西安地质矿产研究所.2005.1:25万玉树幅区域地质调查报告.
    西藏自治区地质调查院.2006.1:25万囊谦幅区域地质调查报告.
    许志琴,侯立玮,王宗秀.1992.中国松潘-甘孜造山带的造山过程.地质出版社.
    许志琴,杨经绥,李海兵,张建新,吴才来.2007.造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社.458页.
    杨果岳,张家生.2006.流体参与下的岩石破裂机制及其分形特征.地质与勘探,42(003):107-110.
    杨志明,侯增谦,杨竹森,王淑贤,王贵仁,田世洪,温德银,王召林,刘英超.2008.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制.岩石学报,24(3):489-502.
    翟裕生.2001.矿床学的百年回顾与发展趋势.地球科学进展,16(005):719-725.
    翟裕生.2002.成矿构造研究的回顾和展望.地质论评,48(002):140-146.
    张洪瑞,侯增谦,杨天南,宋玉财,李政,王召林,王晓虎,汪元奎,刘群.2010.青藏高原北羌塘南缘俯冲型石英正长斑岩的发现:来自地球化学分析证据.地质论评,56(3).
    张文权,王昌勇,王生林,范长安.2007.东募扎抓矿区物探方法的综合应用效果.青海国土经略(004):44-46.
    赵政璋,李永铁,叶和飞,2001.青藏高原地层.北京:科学出版社.
    郑度,姚檀栋.2004.’青藏高原形成演化及其环境资源效应研究进展.中国基础科学,6(002):15-21.
    中国地质调查局宜昌地质矿产研究所.2005a.1:25万曲柔尕卡幅区域地质调查报告.
    中国地质调查局宜昌地质矿产研究所.2005b.1:25万直根尕卡幅区域地质调查报告.
    周江羽,王江海,尹安,Spurlin, M., Horton, B. K.2002.青藏东北缘早第三纪盆地充填的沉积型式及构造背景—以囊谦和下拉秀盆地为例.沉积学报,20(001):85-91.
    周利敏,张德会,席斌斌.2008.岩石中的渗透率,流体流动及热液成矿作用.地学前缘,15(003):299-310.
    朱同兴,董瀚,李才,冯心涛,李宗亮,于远山,金灿海,周帮国.2005.青藏高原北羌塘地区晚三叠世地层展布和沉积型式.沉积与特提斯地质,25(03):18-23.
    祝向平,莫宣学,White, N. C.,张波,孙明祥,王淑贤,赵思礼,杨勇.2009.云南哈播斑岩型铜(-钼-金)矿床地质与成矿背景研究.地质学报,83(012):1915-1928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700