用户名: 密码: 验证码:
回采巷道锚网索支护解除的力学机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚网索支护对确保巷道围岩的稳定性、简化采面端头工序等具有重要作用。但是,由于锚网索组合支护作用,切眼和端头后方顶板不能随采面推进及时冒落,引起切眼和工作面端头后方较大范围的悬顶,从而造成一系列的安全隐患。首先,工作面端头后方较大范围的悬顶,形成通风死角和向采空区漏风等严重安全隐患;其次,在切眼处和采空区两侧煤柱中形成较大的支承压力,使煤柱的稳定性受到减弱,并影响邻近巷道围岩的稳定性,使邻近巷道维护困难。本文综合运用理论分析、数值模拟和现场观测等方法对锚网索支护解除的力学机理及方法等进行了系统研究,取得了如下主要研究成果:
     (1)探讨了锚网索支护对围岩的加固机理,研究了锚网索支护解除前后顶板围岩形态以及对通风安全的影响,从理论上分析了锚网索解除使组合梁及悬吊作用失效的力学机理及弧形三角块结构的稳定性特征,得到了锚网索支护解除对采空区两侧悬顶及时冒落的影响规律。
     (2)建立了锚网索支护解除对煤柱支承压力影响分析的Winkler弹性地基梁模型,分析了锚网索支护解除对煤柱支承压力的影响及煤柱屈服区的变化特征,得到了煤柱支承压力随巷道悬顶长度的变化规律及煤柱屈服区大小随煤柱强度、悬顶长度的变化规律。
     (3)借助于数值模拟方法,分析了锚网索支护解除对煤柱和邻近巷道围岩稳定性的影响,研究表明:煤柱支承压力随悬顶长度的减小而减小,煤柱的稳定性随锚网索支护解除而得到加强;邻近巷道顶板下沉量、两帮移近量及底鼓量随悬顶长度的减小而显著下降,巷道围岩的稳定性随锚网索支护解除而得到提高。
     (4)在对锚杆支护机理分析的基础上,考虑到后期锚杆支护解除的要求,研制设计了新型树脂式可回收锚杆的结构,并进行了井下试验。结果表明:新型可回收锚杆对软岩和煤层巷道具有良好的适应能力,且安装回收方便,为锚杆支护解除技术的应用提供了保证。
     (5)初步开发了切眼和巷道锚网索支护解除技术,并应用于煤矿开采的生产实践。经现场观测试验表明,工作面两端和切眼等锚网索支护解除后,顶板能够及时垮落,工作面顶板管理、采空区漏风等安全隐患问题得到有效解决,邻近巷道围岩的应力集中程度得到明显缓解,巷道围岩变形得到有效控制,取得了显著的经济和社会效益。
Bolt-mesh-cable support has an important role on ensuring the stability of tunnel surrounding rock, simplifying end processes of mining face, etc. However, due to combination of bolt-mesh-cable supporting role, cut hole and end backside roof can not timely collapse with the mining face advance, causing a large range of hanging roof of cut hole and end backside, resulting in a series of safety problems. First of all, the large range of hanging roof on mining face end backside form ventilation dead angle and leak air to mined-out area and other serious safety problems; Secondly, larger bearing pressure of coal pillar near cut hole and both sides of mined-out area is formed, which weakens of coal pillars stability and affect the stability of adjacent roadway surrounding rock, makes adjacent roadway maintenance problems. With comprehensive use of theoretical analysis, numerical simulation and site observation, the systematic study of the mechanism and methods of bolt-mesh-cable release was performed, the main research achievements are as follows:
     (1) Surrounding rock reinforcement mechanism of bolt-mesh-cable support was explored, the roof rock patterns before and after bolt-mesh-cable release as well as impact on ventilation safety were studied, failure mechanism of composite beam and suspension role and characteristics of curved triangular block stability of bolt-mesh-cable was theoretically analyzed, bolt-mesh-cable release impact laws to mined-out area both side hanging roof timely collapse has been gained.
     (2) Winkler elastic foundation beam model for bolt-mesh-cable release impact analysis to coal pillar bearing pressure is established, the bolt-mesh-cable release impact to coal pillar bearing pressure and changing characteristics of coal pillar yield zone are analyzed, laws of coal pillar bearing pressure change with hanging roof length as well as coal pillar yield zone size change with coal pillar strength and hanging roof length are obtained.
     (3) By means of numerical simulation method, bolt-mesh-cable release impact to coal pillar and adjacent roadway surrounding rock stability is analyzed, studies shows that: coal pillar bearing pressure and yield zone size decreases with the length of hanging roof decreases, coal pillar stability is strengthened with bolt-mesh-cable release; adjacent roadway roof sinking amount, two side displacement and floor heave significantly decreased with the hanging roof length reduced, roadway surrounding rock stability is improved with bolt-mesh-cable release.
     (4) Based on analysis of bolting mechanism, considering the requirements of later stage bolt release, a new type of resin retrievable bolt structure was developed and designed, and underground tests was carried out. The results shows that: the new retrievable bolt has a good ability to adapt soft rock and coal seam roadway, and is convenient to install and recycling, provides a guarantee for bolt release technology application.
     (5)Cut hole and roadway bolt-mesh-cable release technology was initially developed, and applied to coal mining practices. The field observation experiments show that the roof can timely collapse, mining face roof management and mined-out area air leakage and other safety problems are effectively solved, adjacent roadway surrounding rock stress concentration has been markedly alleviated, roadway surrounding rock deformation has been effectively controlled, and achieved remarkable economic and social benefits.
引文
[1]韩朝军,梁建民,王建立,等.煤顶巷道树脂卷锚固高强锚索退锚工艺试验研究[J].煤矿开采, 1999 (2): 34-35.
    [2]刘文岗,牛铁奇.高强组合锚杆锚索补强支护技术在综放工作面切眼支护控制中的应用[J].中国矿业, 2005,14(8):62-65.
    [3]姬则柱,李德全,曹少娟.锚网索支护技术在综采切眼中应用[J].矿山压力与顶板管理, 2005, (2):81-82.
    [4]段景柱.煤巷锚杆、锚网、锚索联合支护技术的应用[J].煤炭技术,2008,27(12):154-155.
    [5]张广泉,耿明杰,张红岩,等.锚网带索联合支护在煤巷中的应用[J].中州煤炭,2009,(2):53-54.
    [6]王建立.煤巷小锚索施工工艺优化及退锚技术研究[J].河北煤炭,2008,(1):26-27.
    [7]栗成杰,李树伟.综采工作面端头大面积悬顶控顶技术[J].煤炭科学技术,2008,36(8):26-30.
    [8]齐明胜,李化敏,孙玉宁.回采巷道锚索拆除前后状态分析及锁具拆除技术[J].煤炭工程, 2003, (6): 45-47.
    [9]杨永强.新型玻璃钢锚杆在东庞矿的应用[J].煤炭工程,2008,(1):50-51.
    [10]马念杰,吴联君,刘洪艳.煤巷锚杆支护关键技术及发展趋势探讨[J].煤炭科学技术, 2006, 34(5): 77- 79.
    [11] S. S Peng. Coal Mine Ground Control[M]. John Wiley&Sons. Inc. New York 1978.
    [12]李冬.大倾角煤层回采巷道破坏机理及描杆支护分析[D].西安:西安科技大学,2005.
    [13] Bauford C.R. Australian Mining-The Role of Bolting. Colliery Guardian,1988(9).
    [14] K Hurt. New Developments in Rock Bolting[J]. Colliery Guardian,1994.7.
    [15]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭土业出版社,2001.
    [16] P. Willians.The Development of Rock Bolting in UK Coal Mines [J]. Mining Engineering, 1994, 5.
    [17]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999:1-3.
    [18]薛顺勋,聂光国.软岩巷道支护技术指南.煤炭土业出版社.2002:31-33.
    [19]庞建勇.深井煤巷锚索加固技术的应用[J].矿山压力与顶板管理,2004,(2):65-68.
    [20] P.O. Grady,P. Fuller,P. Dight. Cable Bolting in Australian Coal Mines Current Practice and Design Considerations[J]. Mining Engineer, 1994(396).
    [21]刘民东.高应力软岩硐室锚索支护实践[J].焦作矿业学院院报,1994,22(4):18-20.
    [22]彭书林,周营昌,冯学工.无粘结预应力锚索土艺施土方法[J].河北地质矿产信息, 2004, (2): 25-26.
    [23]衰和生.煤矿巷道锚杆支护技术[M].北京:煤炭土业出版社,1997.
    [24]何炳银.锚杆与锚索联合支护的协调性讨论[J].江苏煤炭,2003, (4):48-50.
    [25]肖长根.谈推广煤巷树脂螺纹钢锚杆[J].江西煤炭科技,1997,(3):38-39.
    [26]韩洪亮.玻璃钢锚杆杆体主要性能的试验分析[J].煤炭科学技术,2005,33(4):67-69.
    [27]曲光,李新元.新型玻璃钢锚杆力学性能试验研究[J].煤炭科学技术,2007,35(4):63-68.
    [28] MA Nian-jie, LIU She-yu.The new structure of fibre glass reinforced plastics bolt[J]. Journal of Coal Science&Engineering,2003,9(1):8-11.
    [29]王连国,缪协兴,贺安民,等.新型机械锚杆在综采面巷道中的应用研究[J].采矿与安全工程学报, 2007,24(1):13-16.
    [30]董国庆,方小伟,王振刚,等.新型胀套式可回收锚杆的试验与应用[J].中国矿业, 2006, 15(9): 98-99.
    [31]贾新,袁勇,李焯芬.新型玻璃纤维增强塑料砂浆锚杆的黏结性能试验研究[J].岩石力学与工程学报, 2006,25(10):2108-2114.
    [32]郭晋文.全长膨胀塑料锚杆锚固机理研究初探[J].山西焦煤科技,2004,(S1):35-36.
    [33]武蕴馥,刘金庄.可回收塑料锚杆及应用研究[J].煤矿机械,2008,29(6):183-185.
    [34]柏建彪.沿空掘巷围岩控制[M].徐州:中国矿业大学出版社,2006.
    [35]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报,2001,26(1):1-6.
    [36] Salamon MDG and A.H.Munro.A study of the strength of coal pillars.J S Afr Inst Min Metalt. 1967
    [37]刘洋.长壁留煤柱支撑法开采煤柱优化设计及破坏的可监测性研究[D].西安:西安科技大学, 2005.
    [38] W.A. Hustrulid. A Review of Coal Piller Strength Formulas[J].Rock Mechanics,vol.8.1976 (2):115-145.
    [39] Wilson A.H Ashin D.P. Research into the determination off pillar size.The Miming Engineer. 1972 (131): 409-417.
    [40]白予,刘天泉.条带开采中条带尺寸研究[J].煤炭学报,1995 ,(3 ): 257-259.
    [41]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报, 1989, 14(4): 21-29.
    [42]寇卫锋.倾抖煤层巷道预应力描杆(索)支护技术研究[D].西安:西安科技大学,2008:7-8.
    [43]沈明荣.岩体力学[M].上海:同济大学出版社,1999:131-132.
    [44] W. J. Gale, R. L. Blackwood. Stress Distribution and Rock Failure Around Coal Mine Roadways. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr. 1987, Vo1.24, No.3,pp.165-173.
    [45]侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002,(1):2-5.
    [46]陈玉祥,王霞,刘少伟,锚杆支护理论现状及发展趋势探讨,西部探矿工程,2004年第10期,155-157.
    [47] A.哈依斯,等.岩层控制技术的发展现状[C].国外锚杆支护技术译文集,煤炭科学研究总院北京开采所, 1997, 6.
    [48]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [49]贺德胜.浅谈锚杆支护理论及设计方法的应用与发展[J].科技情报开发与经济, 2006, 16(21): 184-186.
    [50]李世平.岩石力学简明教程[M].徐州:中国矿业大学出版社,1986.
    [51]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理, 2002, (1): 12-15.
    [52]何满潮,衰和生,靖洪文,等.中国煤矿锚杆支护理论与实践[M].科学出版社,2004.
    [53] Rajiendra Singh. Cable-bolting-based semi-mechanised depillaring of thick coal seam. IntJ. Rock Mech. Min. Science. 2001(2): 245-257.
    [54] Li C,Stillborg B.Analytical models for rock bolts.Int J. Rock Mech.Min.Science.1999(6): 1013-1029.
    [55]邢龙龙.大跨度切眼巷道猫杆(索)支护技术研究[D].西安:西安科技大学,2008:17-18.
    [56]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998:88-91.
    [57]代进,李洪,蒋金泉.放顶煤工作面端头“弧三角形悬板”的弹性分析[J].岩石力学与工程学报. 2004, 23(增2): 4757-4760.
    [58]朱德仁.长壁工作面老顶的破断规律及其应用[D].徐州:中国矿业大学.1987.
    [59]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [60]蒋金泉.采场围岩应力与运动[M].北京:煤炭工业出版社,1993.
    [61]郭育光,柏建彪,侯朝炯.沿空留巷巷旁充填体主要参数研究[J].中国矿业大学学报, 1992, 21(4): 1-11.
    [62]李学华.综放沿空掘巷围岩大、小结构稳定性的研究[D].徐州:中国矿业大学,2000.
    [63]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1992.
    [64]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [65] Salamon, M.D.G, A.H.Munro. A study of the strength of coal pillar[J]. S.Afr.Inst.Min.Metall, 1967.
    [66]吴立新,王金庄,郭增长.煤柱设计与监测基础[M].徐州:中国矿业大学出版社,2000:3-5.
    [67]吴立新,王金庄.建(构)筑物下条带开采覆岩移动机理与实践[J].煤矿开采,1998,(6):6-7.
    [68]胡炳南.条带煤柱稳定性理论与分析方法研究进展[J].煤炭学报,1995,20 (2):205-210.
    [69] Badr, S. A. Numerical Analysis of coal yield pillars at deep longwall mines. Ph.D. Thesis in preparation. Department of Mining Engineering, Colorado School of Mines, Golden, Colorado, 2003.
    [70] O'Regen G J, Mikula P A. Evaluation of a two lift thick seam mining method based on partial extraction of 6 m high square pillars with relatively small width. In: Ground, Movement and Control Related to Coal Mining. Australia: The Australia Institute of Mining and Tech.,1986:125-133.
    [71]陈庆敏.张农等.岩石的残余强度与变形特性的试验研究[J].中国矿业大学学报, 1997, (26)3: 42-45.
    [72] Xie Wenbing,Lu Shiliang.Qi Taiyue.Suitability Analysis of Bolt-Reinforcing Large Deformation Roadway in Soft Rocks[J]. Journale of China University of Mining & Technology. 2000, (10)1: 54-57.
    [73]吴立新,王金庄,刘延安,等.建(构)物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社, 1994:99-111.
    [74]张华兴,赵有星.条带开采研究现状及发展趋势[J].煤矿开采,2000,40(3):5-7.
    [75]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981:359-365.
    [76]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].北京:中国矿业大学出版社,1991:294-301.
    [77]张玉卓,徐乃忠.地表沉陷控制新技术[M].北京:中国矿业大学出版社,1998:164-174.
    [78]白矛,刘天泉.条带法开采中条带尺寸的研究[J].煤炭学报,1983,(4):19-26.
    [79]吴立新,王金庄.煤柱屈服区宽度计算及其影响因素分析[J].煤炭学报,1996,(6):625-631.
    [80]吴立新,王金庄.煤柱宽度的计算公式及其影响因素分析[J].矿山测量,1997,(1):12-16.
    [81]王旭春,黄福昌,张怀新,等. A. H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6): 604-60 7 .
    [82]贾光胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[ J ].煤炭学报, 2002,27(1) :6-10.
    [83]杨科,王颂华,王树全.综放回采巷道护巷煤柱合理宽度分析[J].辽宁工程技术大学学报,2006, 25(增):30-33.
    [84]王勖成.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [85]朱伯芳.有限单元原理和数值方法[M].北京:清华大学出版社,2001.
    [86] Cundall P.A, Strack O L.A. discrete numerical model for granular assembles[J].Geotechnique, 1979.29 (1):47-65.
    [87]刘凯欣,高凌天.离散元法研究的评述[J].力学发展,2003,33(4):483-490.
    [88]肖跃军.有限差分法在采动区深梁应力分析中的应用及计算程序[D].徐州:中国矿业大学, 1987.
    [89] Itasca Consulting Group Inc FLAC2D(Fast Lagrangian Analysis of Continua)version4.0 user's guide[R].Minnesota: Itasca Consulting Group Inc,2002.
    [90] Richard Brummer.Flac and numerical modeling in geomechanics[C].International FLSC Sympoaium, 2003.
    [91] ANSYS技术报告.美国ANSYS公司北京办事处, 2000.
    [92]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社, 2000.
    [93]李肖音.损伤顶板破断的力学分析与数值模拟[D].徐州:中国矿业大学,2006.
    [94] Ma Nianjie, Liu Hongtao, SHI Hao-yu, ctal. Numerical simulation research of coal pillar safety in shangwan mine. Asia Pacific Symposium on safety, 2005.
    [95] ANSYS, Inc. ANSYS Elements Reference. Ninth Edition. SAS, IP Inc,1997.
    [96]孙玉宁,宋维宾,齐明圣.可回收水泥金属锚杆的改进研究[J].煤矿机械,2004,(6):97-98.
    [97]康全玉,孙玉宁,常玉林.粘结式全长可回收树脂金属锚杆研究[J].煤炭工程,2003,21(9): 35-36.
    [98]张吉雄,李青锋,欧阳昶.新型机械式可回收端锚锚杆试验研究[J].矿山压力与顶板管理,2005, 14(4): 7-8.
    [99]曹谋亮.可回收锚杆技术的应用[J].煤,2001,10(6):56-57.
    [100]王永生.机械式可回收锚杆及支护机理分析[J].煤炭科学技术,2003,31(12):48-50.
    [101]李乐珍,周奎,孙和平.薄煤层采准巷道可回收锚杆支护效果分析[J].煤矿开采, 1999, 9(2): 36-37.
    [102]冯梅梅,茅献彪.机械式可回收锚杆支护效果分析[J].矿山压力与顶板管理, 2005, 14(4): 14-16.
    [103]胡云江,王忠勇,郑培虎.可回收树脂锚杆的应用[J].煤炭科学技术,2002,30(6):29-30.
    [104]张永吉,田瑞云,段克信,等.杆体可回收锚杆锚固性能分析[J].辽宁工程技术大学学报, 1999, 18(2): 113-116.
    [105]王连国,缪协兴,董健涛,等.深部软岩巷道锚注支护数值模拟研究[J].岩土力学, 2005, 26(6): 983-985.
    [106]伍永平,杨永刚,来兴平,等.巷道锚杆支护参数的数值模拟分析与确定[J].采矿与安全工程学报, 2006, 23(4):398-401.
    [107]周恒,漆泰岳,于加云.深部极软岩巷道补充锚注加固机理及应用[J].现代隧道技术, 2006, 43(5): 55-59.
    [108]顾铁凤.贯通裂隙控制岩体巷道稳定规律的数值模拟[J].采矿与安全工程学报, 2007, 24(4): 432-438.
    [109]冯光明,高泉,赵卫华,周华强.郭二庄矿1245切眼锚梁支护数值模拟与应用研究[J].煤炭科学技术, 2001, (11).
    [110]陶干强,宋丽霞,孙冰,等.某地下矿山充填采矿过程的ABAQUS数值模拟分析[J].金属矿山, 2007,(10):42-46.
    [111]杨百顺,张农,李桂臣,等.深部煤巷锚杆支护的数值模拟及应用[J].煤矿安全, 2007, (11): 30-32.
    [112]何满潮,杨军,杨生彬,等.济宁二矿深部回采巷道锚网索耦合支护技术[J].煤炭科学技术, 2007,35(3):23-30.
    [113]陈金宇,谢文兵,赵晨光,等.软弱围岩锚网索支护数值模拟分析与应用[J].中国矿业, 2007, 16(3): 92-94.
    [114]陈稼轩.深井复杂条件下底板岩巷预应力锚杆支护技术[J].煤炭科学技术, 2006, 34(10): 22-24.
    [115]刘波,郭德勇,杨玉生.软厚煤层综放回采巷道支护优化数值模拟[J].矿山压力与顶板管理, 2001, (3): 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700