用户名: 密码: 验证码:
瑞雷面波频散分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早在1885年,英国数学物理学家Rayleigh在求解沿自由表面传播的波动方程时,从理论证明了存在一种弹性波,它沿自由表面传播,质点运动轨迹为逆椭圆,振幅随深度指数衰减,后来被称之为瑞雷波(或R波)。此后广泛地利用天然地震记录的瑞雷波来研究地球内部的结构,工程上用面波谱分析法(SASW)来研究表土层结构。为克服面波谱分析法提取频散曲线抗干扰能力差、不能得到高阶模式频散曲线等缺点,提出了多道面波分析法(MASW)。该方法对多道记录进行波场分析提取瑞雷波频散曲线。在实际勘探过程中,基阶瑞雷波数据容易被体波及高阶模式瑞雷波干扰。
     本文对瑞雷面波的传播规律及其频散特性进行了研究,采用改进的传播矩阵法进行了典型地层的瑞雷面波频散曲线计算。对常用的面波频散分析方法进行了详细研究,并对τ?p变换法、拉东变换(LRT)法进行了改进。研究了基于频散曲线的面波合成方法,并采用反射率法对全波场地震记录进行了合成和频散分析。全面分析了采集参数对瑞雷波频散分析的影响。研究表明:排列方式、震源类型和深度、场地的激发条件、检波器的类型对瑞雷波的频率成份都有着重要影响。其中震源的能量对能否激发出足够低频的瑞雷波信号能量起着决定性的作用。
     本文所研究的频散分析方法,不对原始记录进行数字处理(时域滤波、FK滤波等),避免了数字处理效应的影响(如吉普斯效应等)。而是通过对信号的频谱分析、结合场地的地质条件,选择频散分析的频率、速度范围,来达到规避高视速度的直达波、反射波。通过对不同场地条件、不同震源激发及不同类型检波器等采集的瑞雷波记录进行频散分析,进一步验证了所研究的频散分析方法的有效性及程序的适应性,取得了较好的效果。
     煤田反射地震勘探的接收排列长度、偏移距分布范围、检波器与地震仪的性能以及时间采样率和记录长度都不妨碍面波波场的接收,虽然采用深孔激发、高频检波器等措施来压制瑞雷波,但煤田反射波勘探中较少采用检波器组合,实际资料中瑞雷波的能量仍然较强,这为利用反射波资料进行瑞雷波勘探创造了有利条件。从频散分析的结果来看,可以在煤田反射波勘探资料上进行瑞雷波分析,以提取极其重要的表层横波速分布,为转换波静校正等提供可靠资料。
As long ago as 1885, the English mathematician and physicist Lord Rayleigh theoretically proved that there was a kind of elastic waves which propagate along the free surface with an anti-clockwise elliptic particle trajectory and its amplitude with an exponential decay with depth. The wave was named as Rayleigh wave or R-wave later. Subsequently, Rayleigh waves have been widely applied to studying Earth’s internal structure by seismologists from the analysis of earthquake records, and near surface soil structures through the use of Spectral Analysis of Surface Waves (SASW) by engineers. To overcome the weakness of SASW method, such as, low precision of dispersion curves,multimode data mixture,body wave energy contamination and the difficulty to calculate the high-mode dispersion curves, the Multi-channel Analysis of Surface Waves (MASW) has been proposed. Velocity dispersion curves are extracted from multiple trace records by wave field analysis. The fundamental mode of Rayleigh waves,however, are easily contaminated by the high-modes or body wave energy in the real data.
     By studying the characteristics of the Rayleigh-wave propagation and dispersion, in this paper the modified propagation matrix method was adopted to calculate the dispersion curves of Rayleigh-wave disperse in multi-layered media. Common Rayleigh-wave velocity dispersion curves are extracted through the use ofτ?p transform or Radon transform. Additionally, the author has studied the Rayleigh-wave synthetic method based on velocity dispersion curve and adopted reflectivity method to analyze synthetic records and velocity dispersion of whole seismic wave wavefield. I have also analyzed comprehensively the influence of acquisition parameters on Rayleigh-wave velocity dispersion. The results have showed that array characteristics, source pattern and target depth, site condition, and type of the geophone play an important role on the Rayleigh-wave frequency composition. Among these, the source energy played a dominant role in exciting the low frequency Rayleigh-wave signals.
     The computation of velocity dispersion method in this paper does not use any digital process such as 1-D filtering, f-k filtering, and it avoids the impacts of digital processing just like Gipps effect. However it discriminates the direct waves and reflected waves using the frequency analysis and the geological condition of the sites to choose frequency and velocity range. It is further verified that the velocity dispersion method is valid and credible through the analysis of different sites, sources, and different pattern of geophones. So it gives rise to better results.
     Receiver array length, offset distribution range, performance of geophone and seismograph, time sampling rate and length of the record have no effects on Rayleigh-waves in coal exploration. Although some measures has been taken to avoid the Rayleigh-waves such as using the deep hole to excite and the high-frequency geophone to receive, the energy of the Rayleigh-waves still appears because geophone grouping is rarely applied in coal exploration. It provides advantage to carry out Rayleigh-wave exploration in reflected waves. From the velocity dispersion analysis results, extracting the S-wave velocity distribution of near-surface using the Rayleigh-wave analysis from reflected waves can provide reliable data for converted wave statics.
引文
[1] Abbiss C.P.. Shear wave measurements of the elasticity of the ground[J]. Geotechnique, 1981, 31: 91-104.
    [2] Aki, K., Riehards, P.G. Quantitative seismology:Theory and methods[M]. W.H. Freeman and Company, 1980.
    [3] Akke S.J. Suiker, Ching S. Chang, Renéde Borst. Surface waves in a stratified half space with enhanced continuum properties, Analysis of the wave characteristics in regard to high-speed railway tracks[J]. Eur. J. Mech. A /Solids, 1999, 18: 769-784.
    [4] Al-Hunaidi M O. Diffculties with phase spectrum unwrapping in spectral analysis of surface wave nundestructive testing of pavements[J]. Canada Geotechnical Journal 1992, 29: 506-511.
    [5] Al-Shayea N A, Woods R D, Gilmore P.SASW and GPR to detect buried objects[C]. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environment Problems, EEGS, Wheat Ridge, Colo.1994:543-560
    [6] Avar B B, Luke B A. Roadside Application of Seismic Surface Waves Over Abandoned Mines[C]. Proceedings of the Symposium on the Application of Geophysics to Engineering and Envirounmental Problems-SAGEEP '99, Oakland, California, 1999.4: 31-34.
    [7] B.Bessason, G.I. Baldvinsson, O. Thorarinsson. SASW for evaluation of site-specific earthquake excitation[C]. 11th European Conference on Earthquake Engineering ?1998 Balkema, Rotterdam, 1998.
    [8] Beylkin, G. Speech and Signal Processing [J]. Discrete Radon transform: IEEE Trans. on Acoustics, 1987, 35, 162-172.
    [9] B. Garber, M. Cahay. Localization of Rayleigh waves[J]. PHYSICAL REVIEW B, 2000,11,62(19):100-110.
    [10] Bohlen T, Saenger E H. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves[J]. Geophysics, 2006,71(4): 109-115.
    [11] Choon B. Park, Richard D. Miller, Jianghai Xia. Higher mode observation by the MASW method[C]. SEG 1999 Expanded Abstracts,1999.
    [12] Choon Byong Park, Richard D. Miller, Jianghai Xia. Multi-channel analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808.
    [13] Choon Byong Park, Richard D. Miller, Jianghai Xia. Imaging dispersion curves of surface waves on multi-channel record[C]. 68th Ann. Internat. Mtg., Soc. Expl. Geophys,Expanded Abstracts, 1998: 1377-1380.
    [14] Choon Byong Park, Richard D. Miller, Jianghai Xia. Multi-channel analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808.
    [15] Dong-Soo Kim, Hyung-Choon Park. Determination of dispersive phase velocities for SASW method using harmonic wavelet transform[J]. Soil Dynamics Earthquake Engineering, 2002, 2: 2675-684.
    [16] Dong-Soo Kim, Min-Kyun Shin, Hyung-Choon Park. Evaluation of density in layer compaction using SASW method[J]. Soil Dynamics Earthquake Engineering, 2001, 21: 39-46.
    [17] Durney. T.E. Fine coal flotation using the flotaire column flotation cell[J]. Society of Mining Engineers of AIME, 1990 (4): 55-59.
    [18] E.A.Forchap, G.Schmid. Experimental determination of Rayleigh-wave mode velocities using the method of wave number analysis[J]. Soil Dynamics and Earthquake Engineering, 1998,17: 177-183.
    [19] Foster, D. J., Moshcr, C. C. Suppression of multiple reflections using the Radon transform[J]. Geophysics, 1992, 57: 386-395.
    [20] Foti S., Lai C.G., Lancellotta R.. Porosity of Fluid-Saturated Porous Media from Measured Seismic Wave Velocities[J]. Geotechnique, 2002, 52: 359-373.
    [21] Gabriels, P., Snieder, R., Nolet, G.. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves[J]. Geophysical Prospecting, 1987, 35: 187-196.
    [22] Ganji V., Gucunski N., Nazarian S.. Automated Inversion Procedure for spectral Analysis of Surface Waves[J]. J. Geot. G?eo. Eng., 1998, 123 (3): 212-219.
    [23] Gelis C, Leparoux D, Virieux J, Bitri A, Operto S, Grandjean G. Numerical modeling of surface waves over shallow cavities[J]. Journal of Environmental & Engineering Geophysics, 2005, 10(2): 111-121
    [24] Gucunski, N., and Wood, R.D.. Instrumentation for SASW testing, in Bhatia, S. K., and Blaney, G.W., Eds., Recent advances in instrumentation,data acquisition and testing in dynamics[J]. Am. Soc. Of Civil Engin., Geotechnical special publication no.29, 1991: l-16.
    [25] Hebeler G.L. Site characterization in Shelby County, Tennessee using advanced surface wave methods[D]. Master’s Thesis, Georgia Inst. Technology, 2001.
    [26] Heisey, J.S., Stokoe, K.H., II, Hudson, W.R., Meyer, A.H. Determination of in situ shear wave velocities from Spectral Analysis of Surface Waves[R]. Research Report 256-2, Center for Transportation Research, Univ. of Texas at Austin, 1982: 277.
    [27] Hiltunen, Hampson, D…The discrete Radon transform:A new tool for image enhancement and noise suppression[C]. 57th Ann.. Internat. M.tg., Soc. Expl. Geophys, Expanded Abstracts, 1987: 141-143.
    [28] Hisada Y. An effcient method for computing Green’s function for a layered half space with sources and receivers at close depth[J]. Bulletin of the Seismological Society of America, 1994, 84: 1456-1472.
    [29] Hisada Y. An effcient method for computing Green’s function for a layered half space with sources and receivers at close depth (part2) [J]. Bulletin of the Seismological Society of America, 1995, 85: 1080-1093.
    [30] Hyung-Choon Park, Sung-Eun Joh. Determination of phase spectrum using harmonic wavelet transform[J]. NDT& E International, 2009, 42: 534-542.
    [31] Janssen A. Optimality property of the Gaussian window spectrogram. IEEE Transactions on Acoustics[J]. Speech and Signal Processing, 1991, 39(1): 258-369.
    [32] Joh, S.H. Advances in the Data Interpretation Technique for Spectral Analysis of Surface Waves (SASW) Measurements[D]. Ph.D. Dissertation, The University of Texas at Austin, 1996.
    [33] Jongmans D., Demanet D. The importance of surface vibration study and the use of Rayleigh waves for estimating the dynbamic chacteristics of siols[J]. Eng.Geol., 1993, 34: 105-113.
    [34] Kennet B.L.N.. Reflections, Rays and Reverberation[J]. Bulletin of the Seismological Society of America, 1974, 64: 1685-1696.
    [35] L. Knopoff. A matrix method for elastic wave problems[J]. Bull. Seism Soc Am, 1964, 54: 431-438.
    [36] Lai, C.G.. Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near-Surface Site Characterization[D]. Ph.D. Dissertation, Georgia Institute of Technology, 1998: 370.
    [37] Lai, C. G. and Rix, G. J.. Solution of the Rayleigh eigenproblem in viscoelastic media[J]. Bulletin of the Seismological Society of America, 2002, 92(6): 2297-2309.
    [38] Lines, L. R., Treitel, S.. Tatoriah A review of least-squares inversion and its application to geophysical problems[J]. Geophys. Prosp., 1984, 32: 159-186.
    [39] Longzhu Chen, Jinying Zhu, Xishui Yan, etc. On arrangement of source and receivers in SASW testing[J]. Soil Dynamics and Earthquake Engineering, 2004, 24: 389-396.
    [40] Luco, J.E. and Apsel, R.J. On the Green's Function for a layered Half-Space (Part1)[J]. Bulletin of the Seismological. Society of America, 1983, 73: 909-929.
    [41] Matthews M.C., Hope V.S., Clayton C.R.I. The use of surface waves in the determination of ground stiffness profiles[J]. Geotechnical Eng., Proc.Inst.Civ.Eng, pp. 1996,119: 84-95.
    [42] McMechan, G.A, Yedlin, M.J. Analysis of dispersive waves by wave field transformation[J]. Geophysics, 1981, 46: 869-874.
    [43] Mittet R. Free-surface boundary conditions for elastic staggered-grid modeling schemes[J]. Geophysics, 2002, 67(5): 1616-1623.
    [44] MouradKarray, GuyLefebvre. Techniques for mode separation in Rayleigh wave testing[J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 607-619.
    [45] N A Haskell. The dispersion of surface waves on multilayered media[J]. Bull.Seism. Soc, 1953, 43: 17-34.
    [46] Nazarian S., Stokoe II K.H., Hudson W R. Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems[J]. Transport Research Record, 1983, 930: 38-45
    [47] Park C B. Characterization of geotechnical sites by multichannel analysis of surface waves[C]. Seoul,Korea: Proceedings of the Korean Ground Society,95th annual meeting, 1995
    [48] Park.C.B., Miller, Xi, R.D.J.Multichannel.analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808.
    [49] Park, C.B.. MASW horizontal resolution in 2D shear velocity(Vs) mapping[R]. Kansas Geological Survey Open-file Report, 2005, 4.
    [50] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T.. Numerical Recipes: The Art of Scientific Computing[M]. Cambridge University Press, 1986.
    [51] Kennett, B.L.N. Seismic waves in laterally inhomogeneous media[J]. Geophysical Journal of the Royal Astronomical Society, 1972, 27: 301-325
    [52] Kennett, B.L.N. Seismic waves in stratified half[J]. Geophysical J.Royal Astron. SOC., 1979, 57: 557-583.
    [53] Rix G.J. Experimental study of factors affetting the Spectral-Analysis-of-Surface-Waves method[D]. Un. of Texas at Austin,1988.
    [54] Rix G J, Lai C G, Spang Jr. A W. In situ measurement of damping ratio using surface waves. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 472~480.
    [55] Sanchez-Salinero I, Rosset JM, Shao KY, Stokoe II KH, etc. Analytical evaluation of variables affecting surface wave testing of pavements[J]. Transport Res Rec, 1987, 1136: 86-95.
    [56] Schwab, F.A., and Knopoff, L.. Fast surface wave and free mode computations: in Methodsin computational Physics[M]. New York: B.A. Bolt: Academic Press, 1972: 87-180.
    [57] Sebastiano Foti. Multistation Methods for Geotechnical Characterization using Surface Waves[D]. Universitàdegli studi di Padova, 2000.
    [58] Shtivelman V.. Using surface waves for estimating the shear-wave velocities in the shallow subsurface onshore and onshore Israel[J]. European journal of environmental and engineering geophysics, 1999, 4: 17-36.
    [59] Song X H, Gu H M. Utilization of multimode surface wave dispersion for characterizing roadbed structure[J]. Journal of Applied Geophysics, 2007, 63(2):59-67.
    [60] Spang A.W. In situ measurements of damping ratio using surface waves[D] PhD Diss., Georgia Inst. of Techn., Atlanta(Georgia,USA), 1995.
    [61] Stockwell R. G.. A basis for efficient representation of the S-transform[J]. Digital Signal Processing, 2007, 17(1): 371-393.
    [62] Sungsoo Yoon. Array-Based Measurements of Surface Wave Dispersion and Attenuation Using Frequency-Wavenumber Analysis[D]. Georgia Institute of Technology, 2005.
    [63] Thorson, J. R., Claerbout, J. F. Velocity-stack and slant-stack stochastic inversion[J]. Geophysics, 1985, 50: 2727-2741.
    [64] Tian, G., Steeples, D.W., Xia, J., etc. Useful resorting in surface wave method with the autojuggie[J]. Geophysics, 2003, 68(6):1906-1908.
    [65] Tian, G., Steeples, D.W., Xia, J., Miller, R.D., etc. Multochannel analysis of surface wave method with the autojuggie: Soil Dynamics and Earthquake Engineering, 2003b, v.23, no.3, 68(6):3,243-247.
    [66] Tokimatsu K.. Geotechnical Site characterisation using surface waves[J]. Proc. 1st Int.Conf. on Eartq. Geotechn. Eng., IS-Tokio, Balkema, 1995: 1333-1368.
    [67] Tselentis G.A, Delis G. Rapid assesment of S-wave profiles from the inversion of multichannel surface wave dispersion data [J]. annali di Geofisica, 1998.4,41: 1-15.
    [68] Wilson R, Calway A D and Pearson E.R.S. A generalized wavelet transform for Fourier analysis: the multiresolution Fourier transform and its application to image and audio signal analysis[J]. IEEE Trans. Info. Theory, 1992, 38(2): 674-690.
    [69] Xia, J.H., Miller.R.D.Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 691-700.
    [70] Xia, J., Nyquist, J.E., Xu, Y., Roth, M.J.S., and Miller, R.D. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction[J]. Journal of Applied Geophsics, 2007,62(3): 244-253.
    [71] Xia, J., Xu, Y., and Miller, R.D. Generating image of diepersive energy by frequencyDecomposition and slant stacking[J]. Pure and Applied Geophysics, 2007,164(5): 941-956.
    [72] Xu Y, Xia J, Miller R D. Finite-difference modeling of high frequency Rayleigh waves[D]. Technical Program with Biographies, SEG, 75th Annual Meeting, Houston, TX, 2005: 1057-1060
    [73] Xu, Y., Xia, J., and Miller, R.D. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J]. Journal of Applied Geophysics, 2006, 59(2): 117-125
    [74] Yilmaz, O. Velocity-stack processing[J]. Geophys. Prosp., 1989, 37:357-382.
    [75] Zerwer A, Polak M A, Santamarina J C. Rayleigh wave propagation for the detection of near surface discontinuities: Finite element modeling[J]. Journal of Nondestructive Evaluation, 2003, 22(2): 39-52
    [76] Zhang SX, Chan LS, Xia J. The selection of field acquisition parameters for dispersion images from multichannel Surface-wave data[J]. Pure Appl Geophys, 2004, 161:185–201.
    [77] Zywicki, D.J. Advanced Signal Processing Methods Applied to Engineering Analysis of Seismic Surface Waves[D]. Ph.D. Dissertation, Georgia Institute of Technology, 1999.
    [78]陈华,尹建民,肖国强等.瞬态瑞雷波法检测堆石体地基的强夯效果[J].岩石力学与工程学报, 2001.10,20,1897–1899.
    [79]陈龙珠,严细水,赵永倩.关于面波法检测地基波速中的测点布置问题[J].岩土工程学报, 2003.1, 25(1):63–66.
    [80]陈奕柏.瑞雷波法检测复合地基承载力[J].土工基础, 1997.12, 11:9-12.
    [81]柴华友.表面波谱分析影响因素研究[J].岩土力学, 2004(03): 347-353.
    [82]柴华友,汪江波,周一勤等.瑞利波分析方法及应用进展[J].岩石力学与工程学报2000.1, 21(1):119-125.
    [83]崔占荣,张世洪,张俊喻.瞬态瑞雷波勘探中一些问题讨论[J].物探与化探,1995, 19(5):369-376.
    [84]凡友华,肖柏勋,刘家琦.计算层状介质中轴对称柱面瑞利面波频散函数的δ矩阵法[J].物探与化探,2001.4 , 25(2):109-116.
    [85]凡友华,刘家琦,肖柏勋.计算瑞利波频散曲线的快速矢量传递算法[J].湖南大学学报(自然科学版), 2002.10 , 29(5):25-30.
    [86]凡友华. Rayleigh波的频散方程高频近似分解和多模式激发数目[J].地球物理学报, 2007(1):233-239.
    [87]凡友华.层状介质中瑞利面波频散曲线的正反演研究[D].哈尔滨:哈尔滨工业大学,2001.
    [88]范跃武,李宏志,袁冻雷,等.瑞雷波法在商开高速成公路路基检测中的应用[J],中外公路. 2001.12, 21(6):53-57.
    [89]方谦光,李志华,潘瑞林.利用瑞利波进行铁路路基稳定性检测的理论基础及应用[J].铁道学, 1999.8, 21(4):55-59.
    [90]关小平,黄嘉正,周鸿秋.工程勘察中稳态瑞利面波法解释理论的探讨[J].地球物理学报, 1993, 36(1):96-105.
    [91]郭良辉.地震瑞雷面波速度反演及其在P-SV波静校正中的应用研究[D].北京:中国地质大学(北京), 2006.
    [92]黄嘉正,张学强,关小平. RSM-16H动测仪在面波法岩土体检测中应用[J].岩土地力学, 1995, 16(2):83-89.
    [93]何耀峰.利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题[J].地球物理学报, 2006(06):1074-1081.
    [94]姜建国,曹建中,高玉明.信号与系统分析基础[M].北京:清华大学出版社, 1994:85-91.
    [95]孔令伟,袁建新. R波在强夯加固软弱地基中的作用探讨[J].工程勘察,1996,5:1-12 .
    [96]李晶.面波在地震波场中的特性研究及其应用[D].成都:成都理工大学,2006.
    [97]李玮,杜彦军,王皓.物探新技术在山地采空洞穴探查中的应用于[J].勘查科学技术,1998,2:59-62 .
    [98]刘杰,刘顽强,潘昭湘.瑞利波检测在珠海航展坪软基处理中的应用[J].土工基础, 2000.3 , 14(1):39-43.
    [99]刘松玉,朱志铎,方磊,等.高速公路液化地基处理原则与方法[J].岩土工程学报2001.3, 23(2):135-138 .
    [100]刘云祯,王振东.瞬态面波法的数据采集处理系统及应用实例[J].物探与化探,1996,20(1):28-33.
    [101]鲁来玉.分层介质半空间瑞利波模式分析和介质参数反演[D].中国科学院声学研究所博士学位论文,2004.
    [102]罗银河.横向高分辨率瑞雷波数据处理技术研究[D].中国地质大学博士学位文,2008.
    [103]牛滨华,何继善.半空间非水平层状介质瑞雷面波的频散方程[J].物探与化探, 1996,20(5):345-350.
    [104]牛建军,苏亚志,郑作栋.瑞雷波勘探在地下洞穴探测中的应用[J].世界地质,1997.6,16(2):79-82.
    [105]裴江云,陈树民,刘振宽,等.近地表低速带参数反演[J],地球物理学进展, 2001,l:89-92.
    [106]彭寿清.浮选柱的发展和应用[J].湖南有色金属, 1998, 14(2):14-19.
    [107]彭文.利用石油勘探面波信息调查表层结构的方法研究[D].成都:成都理工大学,2007.
    [108]任青文. Rayleigh表面波理论频散曲线的特征方程解法[J],河海大学学报:1995(05): 32-38.
    [109]彭文.瑞雷面波频散特征的时频分析方法及应用[J].物探化探计算技术:2006,28(3):233-239.
    [110]祁生文,孙进忠,万志清.瞬态瑞雷波勘探方法的一点改进[J].辽宁工程技术大学学报(自然科学版), 2001.8,20(4):466-468.
    [111]祁生文,孙进忠,何华.瑞雷波勘探的研究现状及展望[J].地球物理学进展, 2002.12, 17(4):630-635.
    [112]单娜琳,程志平.高阶模态面波在软弱薄层探测中的应用[J].桂林工学院学报, 2004, 24(2):155-157.
    [113]石玉成,蔡红卫.瑞利波测试技术用于剪切波速勘探之研究[J].高原地震,1995.9, 7(3):15-25.
    [114]石中明.瑞利波法评价地基土特性的应用[D].浙江:浙江大学,2003.
    [115]宋先海,肖柏勋,黄荣荣等.用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线[J] .物探与化探, 2003.6 ,27(3):212-216.
    [116]宋先海,肖柏勋,顾汉明等.反演瞬态瑞雷波频散曲线映射二维横波速度剖面[J].物化探计算技术,2003.5,25(4):105–109.
    [117]宋先海,肖柏勋,顾汉明等.用瞬态瑞雷反演波横波速度映射二维压实度剖面[J].工程勘察,2003, 4:62-64.
    [118]宋先海,肖柏勋,顾汉明等.用改进的τ?p变换算法提取瞬态瑞雷波频散曲线[J].物探与化探,2003.8,27(4):292-295.
    [119]宋先海.基于模式识别算法的高频瑞雷波频散曲线非线性反演研究[D].中国地质大学博士学位论文,2008.
    [120]唐向宏,李齐良.时频分析与小波变换[M].北京:科学出版社, 2008:118-125.
    [121]王超凡,高海伟,刘志强,刘金光.利用瑞雷波法评价既有铁路路基[J].工程地质学报, 2002, 10(3):313-316.
    [122]王士恩,刘超常,郭伯强.用瑞利波检验高喷防渗墙的施工质量及地层分布特征[J].工程勘察, 1998, (6):62-64.
    [123]王振国.利用瑞雷面波进行表层调查的研究[D].成都:成都理工大学,2005.
    [124]吴福良,耿光旭,仲伟周.瑞雷波在地基强夯检测中的应用[J].西安交通大学学报2003.4, 37(4):432-434.
    [125]吴世明.土介质中的波[M].北京:科学出版社,1997.
    [126]夏唐代,胡永生,杨顺群等.道路结构瑞利波特性及动力响应分析[J].郑州工业大学学报, 2000.3, 21(1):19-22.
    [127]夏宇靖.稳态瑞利波实测洞穴D-VR曲线的类型[J].煤田地质与勘探, 1996, 2(1): 50-55.
    [128]肖柏勋.高模式瑞雷面波及其正反演研究[D].中南大学博士学位论文2001.
    [129]肖柏勋,柴亚萍,石波.基于扩充Prony法的瞬态瑞利面波的相速度提取[J].水利水电快报, 1999, 20:73-77.
    [130]熊章强.复杂介质中瑞类面波的正演模拟及传播特性研究[J].武汉:中国地质大学,2006.
    [131]严寿民.瞬态瑞雷波勘探方法[J].物探与化探, 1992, 16(2):113-119.
    [132]杨成林.瑞雷波勘探原理及其应用[J].物探与化探,1989,13(6):465-468.
    [133]杨成林,时福荣,李从信等.应用瑞雷波等方法对公路质量进行无损检测[J].物探与化探, 1996, 20(2):104-113.
    [134]杨成林.瑞雷波勘探[J].北京:地质出版社, 1993.
    [135]杨建国.物探检测公路地质的综合方法研究及其工程应用[D].重庆大学,2005.
    [136]张碧星,鲁来玉,鲍光淑.瑞利波勘探中“之”形频散曲线研究[J].地球物理学报,2002.3 45(2):263-274.
    [137]张碧星,肖柏勋,杨文采等.瑞利波勘探中“之”形频散曲线的形成机理及反演研究[J].地球物理学报, 2000.7, 43(4):557-567.
    [138]张碧星,喻明,熊伟等.层状介质中的声波场及面波研究[J].声学学报,1997, 22(3):230-241.
    [139]张继令,董晨.瑞雷波法在南昆线路基基床膨胀土病害检测中的应用[J].勘察科学技术, 2000,2:56-60.
    [140]张晔.信号时频分析及应用[M].哈尔滨:哈尔滨工业大学出版社, 2006:14-140.
    [141]赵建三,李亭.瑞雷波法应用于高速公路路基工程质量无损检测试验研究[J].湖南大学学报(自然科学版), 2003.2:107-112.
    [142]赵明.物探在码头基础调查中的应用[J].勘察科学校术, 1997,6:60-62.
    [143]朱介寿等编著.地震学中的计算方法[M].北京:地震出版社,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700