用户名: 密码: 验证码:
近距离煤层群保护层开采瓦斯立体抽采防突理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
容光矿井煤层存在瓦斯含量高、煤层层数多且煤层间距小、煤层为煤与瓦斯突出煤层、煤层渗透性低、煤层透气性差、抽采有效半径小、抽采时间短、构造复杂、孔被水封导致钻孔难以发挥作用等特点,为此,在容光矿井开展了近距离煤层群保护层开采瓦斯立体抽采防突理论与实验研究,建立了近距离煤层群保护层开采瓦斯立体抽采防突理论体系,推导出了近距离煤层群保护层开采瓦斯立体抽采防突认证方程和适合容光煤矿瓦斯立体抽采防突认证方程。
     完成了瓦斯立体抽采防突和认证实验研究,通过试验得出了本煤层回采工作面平行抽采钻孔抽采、顶板高位走向钻孔抽采、回采工作面采空区“T”型网管抽采、底板穿层钻孔抽采等合理的布置方式,在立体上采取综合防突措施,由“单一平面抽采”变为“立体综合抽采”,克服单一防突措施的不足,从根本上消除突出危险。
     开发研制了PE矿用塑料导向滑轮管道瓦斯抽采护孔技术,提高了钻场瓦斯抽采率。采用UDEC模拟了近距离上保护层开采过程中覆岩垮落动态发展过程,得出了底板和覆岩破裂移动规律,及随保护层工作面推进,被保护层煤体应力和变形分布特征,进而分析了它对合理布置卸压抽采钻孔和消除被保护层突出危险性的作用。系统的将近距离煤层卸压瓦斯储集和运移规律与采动覆岩移动、裂隙演化过程有机的结合起来,科学的、完整的将瓦斯灾害治理工程与采场卸压瓦斯流动规律、瓦斯富集区统一考虑,环型裂隙圈是动态的,瓦斯运输和储集也是动态变化的。
     对垮落带破碎煤岩的渗透率进行量化研究,推导出了回采期间采空区垮落带的渗透率半理论化的表达式,并将其应用于瓦斯立体抽采系统中。采用了FLUENT软件,模拟了近距离煤层瓦斯立体抽采防突过程,发现了近距离保护层开采过程中的煤岩体裂隙动态时空演化风流流场分布规律及瓦斯分布规律;顶板高位走向钻孔配合“T”型网管抽采情况下,增加了工作面的瓦斯抽排量,减少了工作面上隅角的瓦斯涌出;抽采钻孔周围煤体中瓦斯压力分布,从钻孔中心向外呈增大扩散,钻孔周围煤体中瓦斯流动速度场分布,从钻孔中心向外呈减小扩散。
     建立了一套回采工作面瓦斯立体抽采防突综合治理措施和防突管理体系。通过C_5煤层本煤层抽采瓦斯含量降到5.83m~3/t,瓦斯压力降到0.28Mpa;通过底板穿层钻孔和高位走向钻孔抽采被保护层卸压瓦斯,C_6、C_8煤层瓦斯含量降为3.04m~3/t、3.22m~3/t,C_6、C_8煤层瓦斯压力降为0.35MPa、0.42Mpa,C_6、C_8煤层透气性系数增加250和284倍,煤层各项测定指标降到了该煤层突出危险临界值以下,采煤工作面回风流瓦斯浓度由1.5%以上下降到0.30%以下,回风流绝对瓦斯涌出量由24.33m~3/min下降到4.50m~3/min以下。在整个开采过程中,没有出现煤与瓦斯突出事故,没有出现瓦斯超限作业,日安全出煤2000t,年产值达到2.4亿元,瓦斯立体抽采防突抽排技术效果是明显的,取得了巨大的经济效益和社会效益,有广泛的推广使用价值。
The gas stereo drainage theoretical system for outburst prevention of mining of closed distance coal seam group with Protection Layer Mining was set up, based on The coal seams characteristics of Rongguang Coal Mine, such as: high gas content, many coal seams, short distance between seams, coal and gas outburst, low permeability of coal seam, small drainage radius, short time of drainage, complex structure and bad gas drainage influenced by water. The authentication equations of stereo gas drainage for outburst prevention under closed distance seam group with protection layer mining and stereo gas drainage for outburst prevention in the Rongguang Coal Mine were derived. Authentication experiment of stereo outburst prevention was established, measures for stereo outburst prevention were presented as follow: drainage in current seam with horizontal borehole, drainage with high location strike drilling hole, goaf drainage with“T”type tube, drainage with drilling holes from floor. The drainage method was changed from drainage in a single horizontal plane to multi-direction that could solve the deficiency of old method and outburst problems. The hole protection technology with PE mine plastic guiding pulley pipeline during gas drainage was developed, improving the gas drainage rate in a drilling field. The dynamic development of overlying strata collapse with short distance upper protective layers method was simulated by UDEC, the rules of strata and floor movement, coal bed stress and strain of protected seam were obtained. The significance of it for drainage drilling holes optimization. Gas reservoir of short distance coal seams, movement of mining strata and fracture evolvement were analyzed together. Quantitative research on permeability of crushing rock mass in falling zone was carried out, and then the semi-theoretical permeability equations of falling zone were described, and applied to stereo gas drainage. The every process of gas stereo outburst prevention and drainage was simulated with FLUENT. The rules of gas flow and methane contribution with short distance upper protective layers method were found; Drainage with high location strike drilling hole could enhance methane drainage and reduce methane emission of upper corner; The methane pressure of drilling holes becomes larger from the center to outer circle, and the methane flow velocity gets smaller.
     It was set up that the safety management measures of gas stereo drainage and outburst prevention for short distance coal seams. The tests with gas stereo drainage and outburst prevention method indicate that the gas content and pressure of C5 coal seam were reduced to 5.83m~3/t and 0.28Mpa, and the gas content and pressure of C_6, C_8 to 3.04m~3/t,3.22m~3/t and 0.35MPa, 0.42Mpa respectively, as the same time, the increment of permeability of C_6, C_8 achieved 250times and 284 times. The parameters of outburst prevention were below the critical value. The methane concentration of return was changed from 1.5% to 0.3% and the methane flow rate of return became below 4.50m~3/min to below 24.33m~3/min. There were no coal and gas outburst accident in the whole mining process and daily yield was 2000t, annual output value exceeding 0.24 billion. The effects of gas stereo drainage and outburst prevention was obvious, the method was proved that it was worth for extension.
引文
[1]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001:1—14.
    [2]胡殿明、林伯泉、吕有厂、翟成.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006:10—14.
    [3]林柏泉,周世宁,张仁贵.U形通风工作面采空区上隅角瓦斯治理技术[J].煤炭学报,1997,22(5):509—513.
    [4]杨震.大气痕量气体与全球温室效应[J].环境导报.1996,(1):3—6.
    [5] Carol J. Bibler,James S. Marshall,Raymond C. Pilcher.Status of worldwide coal mine methane emissions and use[J].International Journal of Coal Geology.1998(35):283—310.
    [6] Romeo M.Flores.Coal-bed methane:From hazard to resource[J].International Journal of Coal Geology.1998 (35):4—26.
    [7] Zoey Wang.Coal bed & Coal mine methane application[C].Guizhou CMM Recovery and Utilization Workshop.2008:85—101.
    [8] Shugang Li,Minggao Qian,Jialin Xu.Simultaneous extraction of coal and coal-bed methane in China[M].‘Mining Science and Technology’1999.Xuzhou:China University of Mining and Technology Press,1999:357—360.
    [9]宁成浩,刘萌,吴立新等.煤矿瓦斯综合利用的契机—清洁发展机制[J].洁净煤技术.2005,11(1):5—8.
    [10] Barbora Jemelkova.Coal mine methane recovery & Utilization overview of opportunities[C].Guizhou CMM Recovery and Utilization Workshop.2008:1—10.
    [11]胡千庭,蒋时才,苏文叔.我国煤矿瓦斯灾害防治对策[J].矿业安全与环保.2000,(1)
    [12]徐彬彬,何明德.贵州煤田地质[M].徐州:中国矿业大学出版社,2003.
    [13]陈富庆、郁钟铭.贵州煤层气不易抽放的原因探讨[J].贵州工业大学学报.2005,34(2):34—37.
    [14]汪东生,杨胜强,张光辉,徐全.工作面风流流场及瓦斯分布规律计算机模拟[J].煤矿安全.2008(9):45—47.
    [15]汪东生,杨胜强,石坚胜.近距离保护层开采瓦斯涌出规律及治理研究[J].中国煤炭.2009(2):56—58.
    [16]汪东生,石坚胜,杨胜强.近距离煤层开采煤与瓦斯突出防治研究[J].煤炭技术.2009(3):76—78.
    [17]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:103—104.
    [18]国家安全生产监督管理总局.煤矿安全规程[S].北京:煤炭工业出版社,2007:113—114.
    [19]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[S].北京:煤炭工业出版社,1995:29—35.
    [20]于不凡.煤和瓦斯突出机理[M],北京:煤炭工业出版社,1985.8.
    [21]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J],煤炭学报.1996,21(2).
    [22]于不凡主编.煤矿瓦斯灾害防治及利用技术手册[M],北京:煤炭工业出版社,2000.
    [23]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J],中国矿业大学学报.No.3.
    [24]赵保太,林柏泉,林传兵.三软不稳定煤层覆岩裂隙演化规律实验[J].采矿与安全工程学报.2007.No.2.
    [25]郭玉森,林柏泉,吴传始.围岩裂隙演化与采动卸压瓦斯储运的耦合关系[J].采矿与安全工程学报.2007.No.4.
    [26](苏)A.T.艾鲁尼.煤矿瓦斯动力现象的预测和预报[M].唐修义等译.北京:煤炭工业出版社,1992.
    [27]俞启香著.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:225—249.
    [28]杨大明.下保护层开采作用分析[D].[硕士学位论文].徐州,中国矿业大学,1992,8—11.
    [29]钱鸣高、石平五编.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [30]钱鸣高、许家林.覆岩采动裂隙分布的"O"形圈特征研究[J].煤炭学报. 1998, 23(5): 466—469.
    [31]许家林,钱鸣高,金宏伟.基于岩层移动的"煤与煤层气共采"技术研究[J].煤炭学报.2004,No.2.
    [32]石必明.远距离下保护层开采上覆岩层变形及透气性变化规律的研究[D].[博士学位论文].徐州,中国矿业大学,2004,4.
    [33]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报.No.3.
    [34]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [35]钱鸣高.采场矿山压力与控制[M].北京:煤炭工业出版社,1983.
    [36]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [37]于不凡.谈煤和瓦斯突出机理[J].煤炭科学技术.1979,(8).
    [38]李中成.煤巷掘进工作面煤与瓦斯突出机理探讨[J].煤炭学报,1987, 12(1):17—27.
    [39]李萍丰.对煤与瓦斯突出机理的探讨[J].煤炭科学技术.1988,(3):18—19.
    [40]周世宁,何学秋.煤与瓦斯突出机理的流变假说[J].中国矿业大学学报.1990,19(2):1—7.
    [41]周世宁.瓦斯在煤层中的流动机理[J].煤炭学报.1990,15(1):14—24.
    [42]梁冰,章梦涛,潘一山,王来贵.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报.1995, (5):492—496.
    [43]蒋承林,俞启香.煤与瓦斯突出的球壳稳定机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [44]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[M].北京:北京大学出版社,1982.
    [45]丁晓良.煤在瓦斯渗流作用下持续破坏的机制[C].中国科学A辑.1989,(6).
    [46]中国矿业学院瓦斯组.煤和瓦斯突出的防治[M].北京:煤炭工业出版社,1979.
    [47]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:21—23.
    [48]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全. 1981, 11.
    [49]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性的关系[J].煤矿安全.1982,(7).
    [50]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报.1986,11(3):62—70.
    [51]杨其銮.关于煤屑瓦斯扩散规律的试验研究[J].煤矿安全.1987(2):9—16.
    [52]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保.2000,27(5):14—16.
    [53]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报.2000,(12):24—28.
    [54]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报.2001,30(1):1—3.
    [55]郭勇义,吴世跃,王跃明.煤粒瓦斯扩散及扩散系数测定方法的研究[J].山西矿业学院学报.1997,15(1):15—19.
    [56]吴世跃,郭勇义.煤粒瓦斯扩散规律与突出预测指标的研究[J].太原理工大学学报.1998,29(2):138—141.
    [57]聂百胜,郭勇义,吴世跃.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报.2001,30(1):19—22.
    [58]王晓亮,郭勇义,吴世跃.煤层中瓦斯流动的计算机模拟[J].太原理工大学学报.2003,34(4):402—405.
    [59]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报.1965,2(1):24—36.
    [60]周世宁.用电子计算机对两种测定煤层透气系数方法的检验[J].中国矿业学院学报.1984,2(3):46—51.
    [61]余新楚.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报.1989,12(5):1—9.
    [62]余新楚,鲜学福.煤层瓦斯渗流有限元分析中的几个问题[J].重庆大学学报.1997,17(4):58—63.
    [63]孙培德.煤层瓦斯流动理论及其应用[C].中国煤炭学会1988年学术年会论文集.北京:煤炭工业出版社,1988.
    [64]孙培德.煤层瓦斯动力学及其应用的研究[J].山西矿业学院学报.1989,7(2):126—135.
    [65]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探.1993,21(1):32—40.
    [66]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探.1993,21(5):6—62.
    [67] Sun Peide.Coal gas dynamics and its applications[J].Scientia Geologica Sinica.1994, 3 (1): 66—72.
    [68]彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社,1983.
    [69]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报.1987,12(4):74—82.
    [70]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报.1991,20(3):36—42.
    [71]姚宇平.煤层瓦斯流动的达西定律与幂定律[J].山西矿业学院学报,1992,10(1):32—37.
    [72]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报.1987,12(4):74—82.
    [73] Sun Peide.Modeling and numerical simulation for gas seepage in the leaky system for a couple of coal seam[M].Proceedings of 30th Int. Geol. Cong.Beijing:Press of geology.August,1996.
    [74]段三明,聂百胜.煤层瓦斯扩散-渗流规律的初步研究[J].太原理工大学学报.1998,29(4):14—18.
    [75]吴世跃.煤层瓦斯扩散渗流规律的初步探讨[J].山西矿业学院学报.1994,(3):259—26.
    [76]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报.1999,24(1):65—70.
    [77]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [78] Saghafi, A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[C].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [79] Somerton W.H.Effect of stress on permeability of coal[M].Int. J. Rock Meck. Mech. Min. Sci. & Geomech. Abstr. 1975, 12(2):151—158.
    [80] Harpalain, S.Gas flow through stressed coal[D].Univ. of California Berkeley,Ph. D. thesis,1985.
    [81] Gawuga J. Folw of gas through stressed carboniferous strata[D].Univ. of Nottingham,Ph. D. t hesis,1979.
    [82]张代钧.煤结构与煤孔隙性、弹性、强度和吸附特征关系的研究[M].重庆:重庆大学,1990.
    [83]鲜学福.地电场对煤层中瓦斯渗流影响的研究[R].国家自然科学基金资助项目研究总结报告,1993.
    [84]余楚新.煤层中瓦斯富集、运移的基础与应用研究[D].[博士学位论文].重庆:重庆大学,1993.
    [85]杜云贵.地物场中煤层瓦斯渗流特性及瓦斯涌出的研究[D].[博士学位论文].重庆:重庆大学,1993.
    [86]张广洋.煤结构与煤的瓦斯吸附—渗流特性研究[D].[博士学位论文].重庆:重庆大学,1995.
    [87]程瑞端.煤层瓦斯涌出规律及其深部开采预测的研究[D].[博士学位论文].重庆:重庆大学,1995.
    [88]梁冰,章梦涛.可压缩瓦斯气体在煤层中渗流规律的数值模拟[C].中国北方岩石力学与工程应用学术会议论文集.北京:科学出版社,1991.
    [89]赵阳升.煤体、瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229—239
    [90]赵阳升,胡耀青,杨栋等.气液二相流体裂缝渗流规律的模拟实验研究[J].岩石力学与工程学.1999,18(3):354—356.
    [91]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报.2001,20(1):36—39.
    [92]孙可明,梁冰,朱月明.考虑解吸扩散过程的煤层气流固耦合渗流研究[J].辽宁工程技术大学学报.2001,20(4):548—549.
    [93]林良俊,马凤山.煤层气产出过程中气-水两相流与煤岩变形耦合数学模型研究[J].水文地质工程地质.2001,(1):1—3.
    [94]骆祖江,陈艺南等.水、气二相渗流耦合模型的全隐式联立求解[J].煤田地质与勘探.2001,(6):36—39.
    [95]刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报.2002,(2):91—94.
    [96]许家林,孟广石.应用上覆岩层采动裂隙“O”形圈特征抽放采空区瓦斯[J].煤矿安全.1995,26(7):2—4.
    [97]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[J].徐州:中国矿业大学出版社,2003.
    [98]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报.2000,29(1):78—81.
    [99]叶建设,刘泽功.顶板巷道抽放采空区瓦斯的应用研究[J].淮南工业学院学报.1999,19(2): 32—36.
    [100]刘泽功.开采煤层顶板抽放瓦斯流场分析[J].矿业安全与环保.2000,27(3):4—6.
    [101]李树刚,钱鸣高,石平五.煤层采动后甲烷运移与聚集形态分析[J].煤田地质与勘探.2000,28(4):31—33.
    [102]李树刚,石平五,钱鸣高.覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理.1999,(3- 4):44—46.
    [103]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [104]陈炎光,钱鸣高.中国煤炭采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [105]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1998.
    [106] Jing Jinquan,Ban Jisheng.Probability Distribution Characteristic Parameters and Method to Predict the Deformation of surrounding Rocks of Extraction Openings[J].A.A.BALKEMA ROTTERDAMBROOKFIELD.1997(10).
    [107] Tu min,Fen M M,Liu Z G.Dynamic Pricipal of Development of strata separation Fracture of the roof in the coal seam mining[J].2004(10).
    [108]何国清,杨伦等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [109]钱鸣高等.采场“砌体梁”结构的关键块分析[J].煤炭学报.1994(6).
    [110]缪协兴.砌体梁结构分析与应用[R].中国矿业大学博士后研究工作报告,1994,4.
    [111]煤炭科学院北京开采所.煤矿地表移动与覆岩破断规律及应用[M].煤炭工业出版社,1981.
    [112] W.Park and D.DEB.Interactive lone wall mining-strata control and maintenance system .
    [113] Edward,D.T,Fred.N.K.Diffusion of methane through coal[J].Fuel.1973,52(10) :274—280.
    [114] Gray,I.Reservoir engineering in coal seams:Part 1–The physical process of gasstorage and movement in coal seams[J].SPE Reservoir engineering.1987 (9) :28—34.
    [115] Gray,I.Reservoir engineering in coal seams:Part 2–Observations of gas movement in coal seams[J].SPE Reservoir engineering.1987 (9) :28—34.
    [116] Young,GB.C.,Mcelhiney, J.E. Paul,GW.An analysis of Fruitland coalbed methane production,Cedar Hill field,Northern San Juan basin[C].SPE22913,Presented at the 66th SPE Annual Technical Conference and Exhibition.Dallas.1991 (10) :263—276.
    [117]李成武.煤与瓦斯突出危险性灰色分类方法试验研究[J].煤矿安全.2007(6):1—4.
    [118]严涛.开采下解放层的瓦斯处理[J].煤矿安全.2002(10):13—14.
    [119]周德永.回采面顶板覆岩卸压抽放瓦斯机理及合理参数研究[J].矿业安全与环保.2003,30(4):3—7.
    [120]马雷舍夫,艾鲁尼,胡金,博利申斯基等.煤与瓦斯突出预测方法和防治措施[M].魏风清,张建国译.北京:煤炭工业出版社,2003.
    [121] Kayper, R.A. etal. Simulation of underground gasification of thin coal seams[J]. Fuel and Energy Abstracts. 1997(38): 154—160.
    [122] Schmidt, Hans etal. Process for liquefaction of natural gas[J]. Applied Thermal Engineering. 1997(17): XI—IIX.
    [123] Flores, Romeo M etal. Coalbed methane:From hazard to resource[J]. International Journal of Coal Geology. 1998(35): 3—26.
    [124]赵阳升.孔隙瓦斯作用下媒体有效应力规律的试验研究[J].岩土工程学报,1995,27(1):13—18.
    [125]冯增朝,吴海,赵阳升.裂隙岩体有效应力规律数值试验研究[J].理工大学学报,2003,34(6):713—715.
    [126]孙培德,鲜学福.煤体有效应力规律的试验研究[J].矿业安全与环保,1999,2:16—18.
    [127]李川亮,孔祥言,徐献芝等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288—297.
    [128]徐献芝,李培超,李川亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42—45.
    [129]吴财芳,曾勇,秦勇.煤与瓦斯共采技术的研究现状及其应用发展[J].中国矿业大学学报,2004,33(2):137—140.
    [130]俞启香,王凯,杨胜强.中国采煤工作面瓦斯涌出规律及其控制研究[J].中国矿业大学学报,2000,29(1):9—14.
    [131]王固态,刘振华,李云珍等.提高煤层瓦斯抽放率的高能气体致裂技术研究[J].火炸药学报,2000,4:67—68.
    [132]张连成,张建民.超前钻释放瓦斯防治严重突出危险煤层煤与瓦斯突出[J].煤矿安全.2007(6):58—60.
    [133]李成武,徐延超.煤与瓦斯突出主影响因素主成分分析[J].煤矿安全.2007(7):14—18.
    [134]马丕梁.我国煤矿抽放瓦斯现状及发展前景[J].煤矿安全.2007(3):48—51.
    [135]于峰,张建营,黄玉玺.瓦斯综合抽放技术在下沟煤矿的应用[J].煤矿安全.2007(7):24—26.
    [136]张宝春.保护层工作面瓦斯综合治理技术[J].煤矿安全.2007(12):16—19.
    [137]王全龙.保德煤矿8#煤层采用顺层平行钻孔预抽瓦斯效果考察[J].煤矿安全.2007(9):9—11.
    [138]汪东生.利用均压调节技术抑制邻近层采空区瓦斯渗透[J].煤矿安全.2005(10):9—11.
    [139]仇海生,张宝泉.利用煤钻屑瓦斯解析指标法测定煤层瓦斯含量[J].煤矿安全.2007(7):18—20.
    [140] Marek Kwasniewski. Numerical analysis of methane migration from floor strata to a longwall face[C]. Internationnal Symposium on Prevention and Control of Gas Disaster in Coal Mine 2009. 2009: 221—227.
    [141] Fluent Inc.,FLUENT User’s Guide[Z].Flent Inc.,2003
    [142] Fluent Inc.,GAMBIT Modeling Guide[Z].Flent Inc.,2003
    [143]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报. 1995, 14(2): 97-106.
    [144]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报. 2004, 26(5): 632-636.
    [145]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出影响的研究[J].岩石力学与工程学报. 2007, 26(7): 1478-1784.
    [146] Shi Su, Hongwei Chen, Philip Teakle etal. Characteristics of coal mine ventilation air flows[J]. Journal of environmental management. 2006(11): 1—19.
    [147] M.T. Parra, J.M. Villafruela, F Castro etal. Castro etal. Numerical and experimental analysis of different ventilation systems in deep mines[J]. Building and Environment. 2006 (41): 87—93.
    [148] Klaus Noack. Control of gas emissions in underground coal mines[J]. International Journal of Coal Geology, 1998(35):.369—379.
    [149] Leszek_Les.W. Lunarzewski. Gas emission prediction and recovery in underground coal mines[J]. International Journal of Coal Geology, 1998(35):.117—145.
    [150] D.N. Whittles, I.S. Lowndes, S.W. Kingman etal. The stability of methane capture boreholes around a long wall coal panel[J]. International Journal of Coal Geology, 2006(11):1—16.
    [151]林柏泉,周世宁,张仁贵.U形通风工作面采空区上隅角瓦斯治理技术[J].煤炭学报,1997,22(5):509—513.
    [152]汪东生.回采工作面瓦斯涌出及治理技术[J].矿业安全与环保.2006(5):24—28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700