用户名: 密码: 验证码:
低渗透煤层高压旋转水射流割缝增透技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层瓦斯是一种优质高效的洁净能源,同时又是威胁煤矿安全生产的主要灾害源之一。有效地抽采煤层中的瓦斯是减少矿井瓦斯事故的最有效方法之一,而我国多数煤层属于低渗透煤层,解决低渗透煤层瓦斯抽采已成为确保煤矿安全生产、提高煤矿生产效率的关键问题。为了提高低渗透煤层的抽采效率,本文进行了低渗透煤层高压旋转水射流割缝增透技术及其应用的研究。
     本文研究了旋转水射流的破岩机理,分为剪切破岩,拉伸破岩,冲蚀破岩和磨削破岩;通过理论分析建立了钻孔内淹没条件下自由旋转水射流流动模型,基于自相似运动理论,推导了钻孔中旋转水射流速度解析解。
     通过数值模拟进行了煤层高压水射流割缝增透机理研究,高压旋转水射流在煤层切开对称的两条缝槽后,缝槽区域煤体发生变形,应力场重新分布,缝槽周边煤体因受力屈服发生损伤破坏,裂隙增加,渗透率增大;较远区域煤体因煤层卸压,渗透率随着应力的降低而增大,煤层的透气性得到改善。旋转水射流割缝增透效果优于普通射流割缝。建立了煤层割缝抽采瓦斯运移数学模型。
     应用FLUENT软件进行了非淹没和淹没不同喷嘴参数条件下旋转水射流规律的数值模拟,模拟结果表明:射流扩散角和射流速度随着喷嘴出口段长度的增加而减小。根据旋转水射流的动力学参数设计了高压旋转水射流喷嘴,确定叶轮最优导向角为45o、最佳出口段长度为L=1.8D。在距离喷嘴出口70D处,旋转射流环形冲击区域的动压力可达12MPa以上,能够满足破煤要求。
     进行了高压旋转水射流割缝装置的研制和技术开发。高压旋转水射流割缝装置包括高压水泵、控制系统、执行系统和辅助系统四部分,形成了一套井下移动方便、高效实用的高压水力冲割系统,该设备的最高工作压力为47MPa、最高供水流量为120L/min。
     在鸡西矿业(集团)有限责任公司城山煤矿西二采区3B#煤层右二工作面开展了井下旋转水射流煤层割缝和瓦斯抽采工业试验。试验结果表明:
     (1)割缝深度随射流压力的增加非线性增大,但逐渐变缓趋于一极限值;割缝深度随割缝速度的增加而逐渐减小;同一压力和割煤速度下旋转射流的割煤效率比直射流高,是直射流割煤效率的1.37~1.47倍。
     (2)确定旋转水射流割缝系统参数为:钻孔直径φ94mm,深度60m,钻孔间距8m,工作泵压40MPa,采用两喷嘴喷头定向割缝,喷嘴的射流方向与钻头的轴线方向垂直,喷嘴直径2mm,喷头移动速度0.1~0.2m/min。割缝双向总深度达1.1m,割缝宽度可达120mm。
     (3)对旋转水射流割缝工艺流程进行了设计,并制定了一套切实可行的安全防护措施,保证了旋转水射流割缝技术的顺利实施。
     (4)3B#煤层割缝前钻孔的自然初始瓦斯涌出量为19.452×10-3m3/min·hm,割缝后钻孔的自然初始瓦斯涌出量可达54.635×10-3m3/min·hm,百米煤层钻孔(Φ94mm)的极限瓦斯涌出量可达到186.03m3,而割缝后达到565.62m3,割缝后的自然瓦斯涌出量达到割缝前的3.04倍。
     (5)百米割缝钻孔和常规钻孔每天抽出纯瓦斯量分别为148.028m3/d.hm和66.037m3/d.hm,百米割缝钻孔瓦斯抽出速度是非割缝钻孔提高2.24倍。在2个月的抽采时间内,割缝钻孔的瓦斯抽采率可达24.42%,常规钻孔的瓦斯抽采率仅为10.48%,割缝钻孔的瓦斯抽采率为对比的常规钻孔瓦斯抽采率的2.33倍。
Coal seam methane is a sort of efficient clean energy, but as the coalbed gas which is one of the main gas disasters threatening coal mine safety in production.Extracting methane in coal seam effectively is one of the most effective methods to reduce the mine gas accident, While most coal seam belongs to low permeability coal seam in China,in order to ensure safe production of coal mine and improve coal production efficiency,solving low permeability gas extraction is a key problem. Slotting and enhancing permeability of coal by high pressure rotational jetting and its appliation in low permeability coal seam were studied in this text to enhance drainage efficiency.
     Mechanism of rock breaki were studied in this text ng by shear, extruding, erosion and grind was investigated in this paper.Free rotating water jet flow model under the condition of submerging borehole was established through theoretical analysis, rotating water jet velocity analytical solution in borehole was derived based on self-similar movement theory.
     Mechanism of slotting and enhancing permeability by high pressure rotational jetting was researched by numerical simulation,after coal was cut double symmetrical slot by high pressure rotational jetting,coal distortion was caused around slot,stress field was redistributed,damage failure due to yield stress was happened on the periphery of slot. fracture was increased and permeability was enhanced;permeability of distant area coal was increased with the decrease of stress owing to pressure relief, ventilation property of coal seam was improved. Effect of slotting and enhancing permeability by high pressure rotational jetting is better than ordinary excavation cut. Mathematical model of gas extraction migration by slotting was established.
     Numerical simulation about rotational jetting rule under the condition of submerged and non-submerged nozzle parameters was done by FLUENT, Simulation results showed that jet diffusion angle and jet velocity was the decreased along with the increase of nozzle exit length. High pressure rotational jetting nozzle was designed based on the kinetic parameters of rotational jetting, The optimal guidance angle for impeller was 45 o and the best export length was L=1.8D. Dynamic pressure of rotational jetting annular impact area can reach at least 12MPa in the distance 70D from nozzle exit that can meet requirements of rock breaking.
     High pressure rotational jetting cutting equipment was developed.It was consisted of high-pressure hydraulic pump、control system、executive system and supporting system,that formed a set of downhole mobile and convenient, efficient and practical hydraulic pressure cutting system,the highest working pressure of this equipment is 47Mpa and the highest water flow is 120L/min.
     Down-hole coal seam rotational jetting slotting and gas extraction were tested on the right second surface of 3B# coal seam in the western right working area of Chengshan coal mine which belongs to Jixi mining industry (group) limited liability company. The test results show that:
     (1)The increase of slot depth was nonlinear with the increase of jet pressure, but the trend became slow gradually and the slot depth tend to be a ultimate value,the increase of slot depth was diminishing with the increase of slotting speed, Eficiency of cutting coal by rotational jetting is 1.37~1.47 times as direct jetting on the same pressure and slotting speed.
     (2)The parameters of rotational jetting slotting are shown as follow, boreholes diameter are 94mm and depth is 60m, boreholes pitch are 10m, working pump pressure is 40Mpa, diameter of nozzle is 2mm and translational speed of spray-head is 0.1~0.2m/min when using directional slotting by spray-head with two nozzles and jet direction of nozzle is perpendicular to bit's axis. slotting total depth reachs 1.1 m and ite width reachs 120mm.
     (3)Process flow of slotting by rotational jetting was designed and a set of workable safety protective measures were formulated to ensure implementation of rotational jetting.
     (4)Naturally initial drilling methane emission of was 19.452×10-3m3/min·hm before slotting in 3B# coal seam,which can reached 54.635×10-3m3/min·hm after slotting. Ultimate methane emission are 186.03m3 of hundreds meters coal seam drill,which can reach 565.62m3 after slotting, naturally initial methane emission of hundreds meters coal seam drill was 3.04 times after slotting as before slotting.
     (5)Everyday methane extraction volume of hundreds meters slotting borehole and routine borehole were 148.028m3/d.hm and 66.037m3/d.hm respectively,the speed of extracting methane of meters slotting borehole was 2.24 times as routine borehole. In the two months, methane extraction ratio of slotting borehole can reach 24.42%,which of routine borehole was only 10.48%. Methane extraction ratio of slotting borehole was 2.33 times as routine borehole.
引文
[1]朱志敏等.煤层气开发利用现状与发展方向[J].矿产综合利用,2006(6):40-51
    [2]冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].太原:太原理工大学,2005
    [3] Xianyu Huang, Eerly Diagenesis of Peat Lipids and Their Responses to the Climate Changes Over the Past 13ka:Evidence from the Dajiuhu Peat Deposit[D].South China,北京:中国地质大学,2009
    [4] ECONOMIC GEOLOGY[J].中国地质文摘(英文版),2003(1):37-83
    [5]韩斌君.我国煤矿安全事故致因研究[D].上海:同济大学,2008
    [6]孙平.煤层气成藏条件与成藏过程分析[D].重庆:重庆大学,2007
    [7] Rose,W.G., A swirling round turbulent jet, 1-Mean-flow measurements, J. of Appl. Mech., vol.Dec.,1962:615-625.
    [8] Raju,S.P.,Ramulu,M., Predicting hydro-abrasive erosive wear during abrasive waterjet cutting - part 2: an experimental study and model verification. PED-Vo.l, 1994, 68-1:381-396.
    [9] Chigier,N.A. and Chervinsky,A., Experimental investigations of swirling vortex motion in jets, J. of Appl. Mech.,vol.34,1967:443-451.
    [10] Farokhi,S.,Taghavi R. and Rice,E.J., Effects of initial swirl distribution on the evolution of a turbulent jet, AIAA Journal, Vo.l27(6),1989:700-706.
    [11] Carvalho,I.S. and Heitor, M.V., Visualization of vortex breakdown in turbulent unconfined jet flows, Optical Diagnostics in Engineering Vol. 1,No 2,1996:22-30.
    [12] Leibovich,S., The structure of vortex breakdown. Ann. Rev. Fluid Mech., vol.10, 1978:221-246.
    [13] Mehta,R.D. et. Al., Some effects of swirl on turbulent mixing layer development, Phys. Fluids A,1991,3(11):2716-2724.
    [14] Morton,B,R,. Similarity and breakdown in the swirling turbulent jets, Mech.& Chem. Engng. Trans, Nov. 1968:241-246.
    [15] Ribeiro,M.M.and Whitelaw,J.H., Coaxial jets with and without swirl, Journal of Fluid Mech., 1980,96:769-795.
    [16] Sarpkaya,T., Turbulent vortex breakdown, Phys. Of Fluids, Vol.7, 1995:2301-2303.
    [17] Squire,H.B., Analysis of the vortex breakdown phenomena. Part I, Imperial College of Science andTechnology, Aeronautics Department, Report No. 102, 1960.
    [18] Shtern,V., Hussain,F. and Herrada,M., New features of swirling jets, Physics of Fluids, Vol.12(11),2000:2868-2877.
    [19] Dickinson,W. and Dickinsion, R.W., Horizontal radial drilling system, SPE paper No.13949, SPE 1985 California Regional Meeting,Bakersfield Californi,March27-29,1985.
    [20] Dickinson W., Wilkes R.D., and Dickinson R.W. ,Conical water jet drilling, Proc 4th US Water Jet Conference, Berkeley CA, August 1987,ASME: 89 - 96.
    [21] Dickinson,W. et al, Data acquisition, analysis and control while drilling with horizontal water jet drilling system, CIM/SPE,1990:90-127.
    [22]王瑞和.旋转水射流破岩钻孔技术研究[D],北京:石油大学,1995.
    [23]沈忠厚著.水射流理论与技术[M],石油大学出版社,1998.
    [24]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965(1):24-37
    [25]杨其奎,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986(3):20-24
    [26]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报,1987 (1):21-28
    [27]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探.1993 (1):32-40
    [28]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993 (5):26-32
    [29]赵阳升.煤体一瓦斯祸合数学模型及数值解法[J].岩石力学与工程学报,1994 (3):229-239
    [30]胡耀青,赵阳升,魏锦平等.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安矿业学院学报,1996 (4):308-311
    [31]姜集辉.低透气性煤层提高瓦斯抽放率的新途径[J].煤,2002(2):9-12
    [32]何勇.本煤层瓦斯抽放技术[J].煤矿安全,1997(6):19-21
    [33]原钦领,付建洲,肖建生.采用钻孔抽放采区瓦斯的尝试[J].1998(8):7-8.
    [34]刘建荣,付建华,王震宇.用井下定向钻孔工艺抽放瓦斯可行性探讨[J].煤矿安全,1996(2):28-31
    [35]林海燕,袁修干,彭根明.抽放钻孔瓦斯流动模型及解算软件设计[J].煤炭技术,1999(2):26-28
    [36]赵旭生,邹银辉.岩石水平长钻抽放邻近瓦斯的试验研究[J].矿业安全与环保,2006.27(S):13-15
    [37]赵旭生,孙东玲.定向长钻孔综合抽放瓦斯方法[J].煤炭科学技术,2001.29(3):13-15
    [38]张永,徐坤,李元章.张连福.高位钻孔抽放瓦斯技术[J].煤矿安全,2002. 33(3):30-31
    [39]余长林.提高低透气行煤层钻孔抽放瓦斯量的途径[J],煤矿安全,1999.5(5):35-36
    [40]赵旭生.水力扩孔技术在瓦斯防治中的应用[J].山西煤炭,1998.18(3):60-62
    [41]邱贤德,阎宗岭,鲍安红.提高矿井瓦斯抽放率的一种新技术[J].煤炭科学技术,1999. 27(7):1-4
    [42]邹忠有,白铁刚,姜文忠.水力冲割煤层卸压抽放瓦斯技术的研究[J].煤矿安全,2000.1(1):34-36
    [43]赵岚,冯增朝,杨栋,赵阳升.水力割缝提高低渗透煤层渗透性实验研究[J].太原理工大学学报,2001. 32(2):109-111
    [44] Kayper,R.A.,Simulation of underground gasification of thin coal seams,Fuel and Energy Abstracts,Volume:38,Issue:3,May,1997,pp,154-160
    [45] Schmidt,Hans,Process for liquefaction of natural gas,Applied Thermal Engineering Volume:17,Issue:4,April,1997,pp.XI-IIX.
    [46] Flores,Romeo M.,Coalbed methane:From hazard to resource,Internation Journal of Coal Geology,Volume:35,Issue:1-4,February,1998,pp.3-26
    [47]赵阳升等.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报,1995.27(1):13-18
    [48]冯增朝,吴海,赵阳升.裂隙岩体有效应力规律数值试验研究[J].理工大学学报,2003.34(6):713-715
    [49]孙培德,鲜学福.煤体有效应力规律的实验研究[J].矿业安全与环保,1999.2:16-18
    [50]李川亮,孔祥言,徐献芝等.多孔介质的双重有效应力[J].自然杂志,1999.21(5):288-297
    [51]徐献芝,李培超,李川亮.多孔介质有效应力原理研究[J].力学与实践,2001.23(4):42-45
    [52]吴财芳,曾勇,秦勇,煤与瓦斯共采技术的研究现状及其应用发展[J].中国矿业大学学报,2004.33(2):137-140.
    [53]俞启香,王凯,杨胜强.中国采煤工作面瓦斯涌出规律及其控制研究[J].中国矿业大学学报,2000.29(1):9-14
    [54]王固态,刘振华,李云珍等.提高煤层瓦斯抽放率的高能气体致裂技术研究[J].火炸药学报,2000.4:67-68
    [55] Farmer I.W.,Attewell P.B.,Rock Penetration by High Velocity Water Jets,International Journal of Rock Mechanics and Mining Science,Vol.2,No.2,July,1965,135-153.
    [56]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [57] Yen C.,Huang F,.G. Hammitt,Mathematical Modeling of Normal Impact Between a Finite Cylindrical Liquid Jet and Non-slip Flat Rigid Surface.Proceedings of First International Symposium On Jet Cutting Tech.,1972,57-68
    [58] Heymann F.J.,On the Shock Wave Velocity and Impact Pressure in High-speed Liquid-solid Impact.Trans.ASME-Journal of Basic Engineering,1968,Vol.90,400-402
    [59] Heymann F.J.,High-speed Impact between a Liquid Drop and a Solid Surface,Journal of Applied Physics,1969,40(3):5113-5122
    [60]王靖清.裁剪脉冲加载法研究[J].中国科学A辑,1987.(10).
    [61] Thomas J.B.,A Numerical Procedure for Simulation of Hydraulically Riven Fracture Propagation in Prelatic Media, Int.J.Numer.& Analy,metho ds in geomechanics Vol.14 P27-47(1990).
    [62] TakaHashi etc.,Fracture Mechanics Applied to Hot Dry Rock Geothermal Energy,Fracture Mechanic of Rock,1987 Academic Press Inc(London)P241-276.
    [63] Rummel F.,Fracture Mechanics Approach of Hydraulic Fracturing Stress Measurements,Fracture Mechanics of Rock.Academic Press Inc(London),1987:217-240
    [64]秦发动.聚能效应机理及其在高能气体压裂中的应用[J].岩石破碎理论与实践,陕西科技出版社,19924
    [65] Morita N.,Black A.D.,Fuh G.F.,Borehole Breakdown Pressure with Drilling Fluids(I).Empirical Results,International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,Vol.33,Issue:1,January,1996,39-51
    [66]瞿涛宝.试论水力冲刷技术处理煤层瓦斯的有效性[J].湖南煤炭科技,1997.1:38-46
    [67]严涛.开采下解放层的瓦斯处理[J].煤矿安全,2002.33(10):13-14
    [68]周德永.回采面顶板覆岩卸压抽放瓦斯机理及合理参数研究[J].矿业安全与环保,2003.30(4):3-7
    [69] Crow S.C,Lade P.V.,Hurlburt G.H.,The Mechanics of Hydraulic Rock Cutting, Second International Symposium on Jet Cuttiong Technology,Cambridge,England,April,1974,1-14.
    [70] Hammitt F.G.,Cavitation and Multiphase Flow Phenomena.Mc Grow Hill Book Corporation,1980
    [71]赵阳升,杨栋,胡耀青等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001.26(5):455-458
    [72]常宗旭,赵阳升.三维应力作用下单一裂缝渗流规律的理论与实验研究[J].岩石力学与工程学报,2004.23(4)
    [73]王瑞和,周卫东,沈忠厚,杨永印.旋转射流破岩钻孔机理研究[J].中国安全科学学报,1999. 9(w):1-5
    [74]王瑞和,倪红坚.高压水射流破岩钻孔过程的理论研究[J].石油大学学报(自然科学版),2003. 27(4):44-47
    [75]杨林,李晓红.高压水射流在煤层中钻长孔技术的发展[J].江苏煤炭,2000(3):42-45
    [76] Barker C.R.,Timmerman K.M.,Water Jet Drilling of Long Horizontal Holes in Coal Beds, the First U.S. Water Jet Conference,Golden,Colorado,U.S.A.,April,1981,103-111
    [77] Bonge N.J.,Wang F.D.,Advanced Application of Water Jets to Small Hole Drilling,the First U.S.Water Jet Conference, Golden,Colorado,U.S.A.,April,1981,112-128
    [78] Becker B.H.,Schmidt B.H.,Drilling Bore Holes in Coal Mines Using H.P. Water, the Second U.S.Water Jet Conference,Rolla ,Missouri,U.S.A.,May,1983.208-212
    [79]倪红坚,王瑞和.高压水射流射孔过程及机理研究[J].岩土力学.2004. 25(S):29-32
    [80]瞿涛宝.试论水力割缝技术处理煤层瓦斯的效果[J].West-China Engineering,1996. 8(3):51-53
    [81] Hinze,J.O., Turbulence, McGraw-Hill,Inc.,New York,1975.
    [82] Albertson,M.L.et al, Diffusion of submerged jets, Trans. of Soci. of Civi. Engnrs., vol.115, Paper No.2409:639-697.
    [83] List,E.J., Imberger,J., Turbulent entrainment in buoyant jets and plumes, J. of the hydraulicas division, Sept.1973:1461-1474.
    [84]杨永印等.利用PIV技术对淹没冲击水射流动力学特性的研究[J].石油钻探技术,2001.29(4):19-21.
    [85] Shtern,V., Hussain,F. and Herrada,M., New features of swirling jets, Physics of Fluids, Vol.12(11),2000:2868-2877.
    [86] Albertson,M.L.et al, Diffusion of submerged jets, Trans. of Soci. of Civi. Engnrs., vol.115, Paper No.2409:639-697.
    [87]吴介之等.涡动力学引论[D].高等教育出版社,1993.
    [88] Morton,B,R,. Similarity and breakdown in the swirling turbulent jets, Mech.& Chem. Engng. Trans, Nov. 1968:241-246.
    [89] Prandtl,L., The mechanics of viscous fluids, Aerodynamics theory,Ⅲ,1935.
    [90] Ribeiro,M.M.and Whitelaw,J.H., Coaxial jets with and without swirl, Journal of Fluid Mech.,1980,96:769-795.
    [91] Gibson,M.M., Hydrodynamics of confined coaxial jets, In: Encyclopedia of fluid Mechanics, N.P. Cheremisinoff (Ed), Dynamics of Single-Fluid Fluids and Mixing,1986,2:376-390.
    [92]谢象春.湍流射流与计算[D].科学出版社,1975.
    [93] Shtern,V., Hussain,F. and Herrada,M., New features of swirling jets, Physics of Fluids, Vol.12(11),2000:2868-2877.
    [94] Rose,W.G., A swirling round turbulent jet, 1-Mean-flow measurements, J. of Appl. Mech., vol.Dec.,1962:615-625.
    [95]杨本洛著.理论流体力学的逻辑自洽化分析[D].上海交通大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700