用户名: 密码: 验证码:
采煤机滚筒截割性能及截割系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚筒式采煤机是机械化采煤的主要设备,具有高产高效、适应性强的优点,被广泛应用于不同地质条件下的煤炭开采,其截割性能的优劣对于整机的可靠性、运行稳定性、采煤生产率以及企业的经济效益具有重要意义。为此,本论文采用理论分析、仿真和试验相结合的方法,对滚筒采煤机滚筒截割性能及截割系统动力学特性进行了研究。
     本论文以相似理论为基础,以采煤机截煤理论为依据,通过建立煤岩性质、滚筒、截齿以及截割载荷的相似准则,研制了煤岩截割试验台、10种截齿和10种滚筒。同时,在考虑煤岩抗压强度、密度的基础上,将煤岩的节理、层理特性作为配置模拟煤壁的依据,研制了试验用模拟煤壁,并通过试验研究了其抗压强度与粉煤和水泥比值间的关系,研究表明,随着粉煤与水泥的比值增大,煤壁抗压强度成指数关系减小。以试验为研究方法,以均质模拟煤层和含有煤岩界面模拟煤层为截割对象,研究了煤岩性质、截齿结构参数、滚筒结构参数以及截割运动参数对滚筒截割扭矩、截割比能耗、块煤率的影响,并得到了相关参数间的关系表达式和变化规律。研究结果表明,滚筒截割扭矩、截割比能耗和块煤率与大部分相关参数成指数形式变化;截割扭矩增量随煤层中夹矸厚度、构成煤岩界面两种煤岩抗压强度的差值的增加成线性关系增大。
     以试验数据为依据,以小波理论为指导,对截割载荷进行了小波分析和功率谱分析,得到了载荷变化的细节波形及其随煤岩性质不同的变化趋势;同时,也获得了煤岩界面形式对系统频率的影响规律。但是,所有功率谱的变化趋势基本相同,除了滚筒旋转的基频和倍频之外,并无其它明显主频出现,发现频谱分析不能对载荷谱进行有效识别,表明截割载荷是一种非周期信号。
     利用突变理论描述滚筒截煤过程的载荷变化,在建立滚筒截割煤岩本构模型和动力学模型的基础上,建立了滚筒截割煤岩的尖点突变模型,并得到了采煤机有效截割煤岩的刚度条件和能量条件。研究表明,采煤机牵引系统的刚度必须小于煤岩的阻侵刚度,否则将引起采煤机截割部的强烈振动,导致滚筒、传动部分的损坏;同时,滚筒的能量释放率必须大于煤岩破碎所需能量,否则滚筒将出现堵转,甚至损坏。
     基于分形理论,建立了截割载荷的特征因子模型,并分析了截割载荷中所蕴含的固有特性。通过研究发现,不同截割条件下的载荷具有明显的不同截割特征因子,提供了一种对不同截割过程、不同煤岩性质的有效识别参数。并且,随着煤层夹矸厚度和构成煤岩界面的两种煤岩抗压强度差值的增大,截割特征因子减小。同时,基于分形理论建立了煤截割块度分布的分形模型,研究了块度分布规律与截齿、滚筒、煤岩性质、切削厚度的关系,得出了煤的截割块度分布具有分形特征的结论,找到了采煤机截割载荷具有分形特性的原因,并说明滚筒截割过程能量释放是层次性。
     以混沌理论为依据,探索滚筒截割煤岩系统的动力学特性,将具有不确定性的载荷外在表现看作是某一确定性动力系统的混沌现象,揭示滚筒截割载荷的无规律性、不确定性、非周期性等外在现象所蕴藏的内在本质规律。通过研究不同截割条件下载荷的Lyapunov指数谱和最大Lyapunov指数,证明采煤机滚筒的截割载荷不是随机信号,而具有混沌特性,应以确定性模型对其进行描述。在此基础上,建立了滚筒截割煤岩系统的混沌模型,并通过改变混沌因子的值,初步得到了可以模拟试验载荷变化特征的曲线,为研究滚筒截割系统的动力学特性提供了一种新的方法。
The shearer is the main equipment for mechanization coal mining, and it is widely used for coal mining under different geological conditions due to its high production, high efficiency and better suitability. And the cutting performance of the shearer has an importance significant for the reliability, the running stability, the excavating productivity and the enterprise economic efficiency. With regard to this, the theoretical analysis, simulation and experiment are combined to investigate the cutting performance of shearer drum and dynamic characteristic of the cutting system in this thesis.
     Based on the similarity theory and according to the shearer cutting theory, the similarity criterions for the coal characteristic, the drum, the pick and the cutting load are built. And the cutting test-bed of coal & rock, ten types of picks and drums are developed. Simultaneously, the analogy coal wall for cutting test is developed by considering the compressive strength and density of the coal, and taking the joint and stratification of the coal as the foundation for making the coal wall. The relationship between the compressive strength of coal and the ratio of fine coal and cement is researched by testing; the result indicates that along with the increasing of the ratio, the compressive strength decreases with a exponential form.
     Utilizing the experiment as research method and making the analogy coal wall of uniform property and with coal-rock interface as cutting object, the influence of the coal characteristic, pick structure parameters and drum structure parameters on the drum cutting torque, cutting specific consumption and lump coal percentage are investigated, and the relationship expression and variation laws are acquired. The results indicate that the drum cutting torque, cutting specific consumption and lump coal percentage have a exponent relation with a majority of correlation parameters. The cutting torque increment has a linear relation with the gangue thickness and compressive strength difference value of coal, and it increases along with them.
     According to the experiment data and taking the wavelet theory as guidance, the wavelet analysis and power spectrum analysis are conducted for the cutting load, the detail wave of the load change and the change trend of load along with the coal characteristic change are obtained. And the influence laws of the coal-rock interface form on the cutting system frequency are acquired, too. But, the change trends of the power spectrums are all the same, there are not obvious main frequencies to appear, the frequency spectrum analysis can’t availably recognize for the load spectrum, indicating that the cutting process is a typical aperiodic phenomenon.
     The load variation is described by utilizing catastrophe theory, and based on the built constitutive model of catastrophe and dynamic model, the cusp catastrophic model of the drum cutting coal is established, and the rigidity and energy conditions are acquired for the shearer cutting availably. The researches indicate that the rigidity of the shearer haulage system should be smaller than the resistance cutting rigidity of coal, otherwise the cutting part of shearer will vibrate strongly, and the drum and transmission part will be damaged. Simultaneously, the energy release rate of the cutting drum should be bigger than the needed energy for coal broken, otherwise the drum stall will appear, even the drum damaged.
     Based on the fractal theory, the characteristic factor model of cutting load is established, and the inherence properties included in the cutting load are analyzed. And the phenomenon that the cutting loads have different cutting characteristic factor in different cutting conditions is discovered, providing an available parameter to distinguish different cutting process. And the cutting characteristic factor decreases along with the increase of gangue thickness and coal compressive strength. At the same time, the fractal model of cutting lump distribution is established, and the relationships between the lump distribution and the pick, the drum, the coal characteristic and the cutting depth are investigated. The conclusion that the cutting lump distribution of coal has fractal characteristic is acquired, and the reasons that there are fractal characteristics for the cutting load is found, and indicate that the energy release is stratified in the drum cutting process.
     On the bases of the chaos theory, the dynamic characteristic of cutting coal system is explored, and taking the phenomenon that cutting load has nondeterminacy which is its outward behave as a chaos phenomenon of a determinacy dynamic system, the inherence essence laws included in the external phenomenon which are disorder, nondeterminacy and nonperiodicity are revealed. The conclusion that the cutting load is not random noise, moreover has chaos characteristic, which should be described with determinacy model, is obtained by investigating the Lyapunov exponent spectrum and the maximum Lyapunov exponent under different cutting conditions. Based on this, the chaos model of the drum cutting coal system is established, and the curve for simulating the cutting load variation is acquired through changing the chaos factor value, which provides a new method for researching the dynamic characteristic of the drum cutting system.
引文
[1]李昌熙,沈立山,高荣.采煤机[M].北京:煤炭工业出版社,1988.
    [2]陶驰东.采掘机械[M].北京:煤炭工业出版社,1993.
    [3]别隆,А.И.等著,王兴祚译.煤炭切削原理[M].北京:中国工业出版社,1965.
    [4]Е.З.保晋等著,王庆康,门迎春译.采煤机破煤理论[M].北京:煤炭工业出版社,1992.
    [5]刘春生.滚筒式采煤机理论设计基础[M].徐州:中国矿业大学出版社,2003.
    [6] Evans I. The force required to cut coal with blunt wedges [J]. International Journal of Rock Mechanics and Mining Science, 1965, 2:1-12.
    [7] Evans I. A theory of the cutting force for point-attack picks [J]. International Journal of Rock Mechanics and Mining Science, 1984, 2 (1):67-71.
    [8] Y.Nishimatsu. The mechanics of rock cutting [J]. International Journal of Rock Mechanics and Mining Science, 1972, 9:261-270.
    [9]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [10]牛东民.刀具切削破煤机理研究[J].煤炭学报,1993,18(5):49-54.
    [11]牛东民.煤炭切削力学模型的研究[J].煤炭学报,1994,19(5): 526-529.
    [12] Evans I. Line spacing of picks for effective cutting [J]. International Journal of Rock Mechanics and Mining Science, 1972, 9:355-361.
    [13] Hurt, K. G., MacAndrew, K. M. Cutting efficiency and life of rock-cutting picks [J]. Mining Science & Technology, 1985, 2(2):139-151.
    [14] Hou-Lun Warren Shen. Acoustic emission potential for monitoring cutting and breakage characteristics of coal [D]. USA: Pennsylvania State University, 1996.
    [15] T. Muro, Y.Takegaki, K.Yoshikawa. Impact cutting property of rock material using a point attack bit [J]. Journal of Terramechanics, 1997, 34 (2):83-108.
    [16] T. Muro, D.T. Tran. Regression analysis of the characteristics of vibro-cutting blade for tuffaceous rock [J]. Journal of Terramechanics, 2004, 40 (1):191-219.
    [17]V.B.Achanti, A.W.Khair. Cutting efficiency through optimized bit configuration—an experimental study using a simulated continuous miner [J]. Mineral Resources Engineering, 2001, 4:427-434.
    [18] John P. Loui, U.M. Rao Karanam. Heat transfer simulation in drag–pick cutting of rocks [J]. Tunnelling and Underground Space Technology, 2005, 20:263-270.
    [19] B.Tiryaki, A.Cagatay Dikmen. Effects of rock properties on specific cutting energy in linear cutting of sandstones by picks [J]. Rock Mechanics and Rock Engineering, 2006, 39(2):89-120.
    [20] N.Bilgin, M.A.Demircm, H.Copur, et.al. Dominant rock properties affecting the performance ofconical picks and the comparison of some experimental and theoretical results [J]. International Journal of Rock Mechanics & Mining Sciences.2006, 43:139-156.
    [21] C. Balci, N. Bilgin. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines [J]. International Journal of Rock Mechanics & Mining Sciences.2007, 44:468-476.
    [22] N.Gunes Yilmaz, M.Yurdakul, R.M.Goktan. Prediction of radial bit cutting force in high-strength rocks using multiple linear regression analysis [J].International Journal of Rock Mechanics & Mining Sciences.2007, 44:962-970.
    [23] Brijes Mishra. Analysis of cutting parameters and heat generation on bits of a continuous miner–using numerical and experimental approach [D]. USA: College of Engineering and Mineral Resources at West Virginia University, 2007.
    [24]陈渠,高天林.楔形截齿最佳截槽间距的研究[J].重庆大学学报,1989,12(4):100-105.
    [25]刘本立,江涛.铣削式扁截齿运动学分析[J].淮南矿业学院学报,1990,10(1):80-86.
    [26]李晓豁.镐型截齿的截割试验研究[J].辽宁工程技术大学学报, 1999,18(6):649-652.
    [27]李晓豁.刀形截齿的截割性能研究[J].辽宁工程技术大学学报, 2000,19(5):526-529.
    [28]王春华,李贵轩,姚宝恒.刀型截齿截割煤岩的实验研究[J].辽宁工程技术大学学报, 2001,20(4):487-488.
    [29]王春华,李贵轩,王琦.截齿截割的能耗与块度问题实验研究[J].辽宁工程技术大学学报, 2002,21(2):238-239.
    [30]姚宝恒,李贵轩,丁飞.镐形截齿破煤截割力的计算及影响因素分析[J].煤炭科学技术,2002,30(3):35-37.
    [31]刘春生.采煤机镐型截齿安装角的研究[J].辽宁工程技术大学学报, 2002,21(5):661-663.
    [32]刘春生.采煤机截齿截割阻力曲线分形特征研究[J].煤炭学报,2004,29(1):115-118.
    [33]宁仲良,朱华双.镐形截齿应力分布规律研究[J].西安科技学院学报,2003,23(3):325-327.
    [34]姬国强,廉自生,卢绰.基于LS-DYNA的镐型截齿截割力模拟[J].科学之友,2008, 4:131-132.
    [35] O.Z. Hekimoglu.The radial line concept for cutting head pick lacing arrangements. International Journal of Rock Mechanics and Mining Science [J]. 1995, 32 (4):301-311.
    [36] H.Warren Shen, H.Reginald Hardy Jr. A.Wahab Khair. Laboratory study of acoustic emission and particle size distribution during rotary cutting [J]. International Journal of Rock Mechanics & Mining Sciences.1997, 34:121-136.
    [37] Venkata Babu Achanti. Parametric study of dust generation with rock ridge breakage analysis using a simulated continuous miner [D]. USA: College of Engineering and Mineral Resources at West Virginia University, 1998.
    [38] D.Mazurkiewicz. Empirical and analytical models of cutting process of rock [J]. Journal of MiningScience.2000, 36(5):481-486.
    [39] Muralidharan Venkataraman. Effect of rate of sumping on fragmentation process in laboratory rotary cutting simulator [D].USA: College of Mineral and Energy Resources at West Virginia University, 2003.
    [40] Rizwan A. Qayyum. Effects of bit geometry in multiple bit rock interaction[D]. USA: College of Engineering and Mineral Resources at West Virginia University,2003.
    [41] O.Z. Hekimoglu, L.Ozdemir. Effect of angle of wrap on cutting performance of drum shearers and continuous miners [J]. Mining Technology, 2004, 113:118-122.
    [42] E.Mustafa Eyyuboglu, Naci Bolukbasi. Effects of circumferential pick spacing on boom type roadheader cutting head performance [J].Tunnelling and Underground space Technology.2005, 20:418-425.
    [43] Bo Yu. Numerical simulation of continuous miner rock cutting process [D]. USA:College of Engineering and Mineral Resources at West Virginia University,2005.
    [44]李贵轩.对螺旋截煤滚筒端盘截齿排列的探讨[J].辽宁工程技术大学学报,1979,0:59-66.
    [45]陈翀.采煤机滚筒模型试验研究[D].徐州:中国矿业大学机电学院, 1987.
    [46]陶驰东,陈翀.采煤机滚筒模化实验研究[J].中国矿业大学学报,1989,18(1):51-58.
    [47]牛东民.螺旋滚筒切削载荷特性的分析[J].煤炭科学技术,1988,5:13-17.
    [48]王子牛.采煤机螺旋滚筒参数的优化设计[J].贵州工业大学学报(自然科学版),1993,2:57-65.
    [49]张守柱,吕剑梅.采煤机滚筒截齿排列的研究[J].西安矿业学院学报,1998,18(2):170-172.
    [50]郭迎福,罗善明.采煤机滚筒的计算机辅助设计[J].辽宁工程技术大学学报,1999,18(6):653-656.
    [51]胡应曦,陈启梅.采煤机滚筒截齿配置及滚筒转速与牵引速度匹配关系的分析[J].贵州工业大学学报(自然科学版),2001,30(6):15-18.
    [52]李晓豁.采煤机截齿排列参数对粉尘爆炸率的影响[J].辽宁工程技术大学学报, 2007,26(5):748-750.
    [53]刘春生,荆凯,杨秋.采煤机滚筒调高截割记忆程控的控制策略[J].辽宁工程技术大学学报,2007,26(5):751-753.
    [54]刘春生,吴卫东,宋胜伟等.采煤机滚筒灭尘喷嘴特性实验与理论模型[J].机床与液压,2009,37(3):68-70.
    [55] Bernardino Chiaia. Fracture Mechanisms induced in a brittle material by a hard cutting indenter[J].International Journal of Solids and Structures, 2001,38:7747-7768.
    [56] Dan B.Marghitu, Bogdan O.Ciocirlan, Nicolae Craciunoiu. Nonlinear dynamics in orthogonal turning process[J]. Chaos, Solitions and Fractals, 2001,12:2343-2352.
    [57] Shu Karube, Wataru Hoshino, Tatsuo Soutome, et.al.The non-linear pheonomena in vibration cutting system the establishment of dynamic model[J]. International Journal of Non-Linear Mechanics,2002,37:541-564.
    [58] Primoz Potocnik, Igor Grabec. Nonlinear model predictive control of a cutting process[J]. Neurocomputing, 2002,43:07–126.
    [59]段雄.自控水力截齿破岩机理的非线性动力学研究[D].徐州:中国矿业大学机电学院,1991.
    [60]段雄,余力,程大中.自控水力截齿破岩机理的混沌动力学特征[J].岩石力学与工程学报,1993,12(3):222-231.
    [61]段雄.岩石截割破碎载荷谱的混沌识别与模拟[M].徐州:中国矿业大学出版社,1994.
    [62]李晓豁,刘春生,李萍.滚筒式采煤机的动力学模型[J].黑龙江矿业学院学报,2000,10(2):1-4.
    [63]李晓豁,赵岐刚.连续采煤机截割部的动力学建模[J].矿山机械,2005,33(8):14-15.
    [64]夏毅敏,卜英勇,罗柏文等.基于螺旋切削法破碎钴结壳分形行为研究[J].矿冶工程,2005,25(1):9-11.
    [65] XIA Yi-min, BU Ying-yong, TANG Pu-hua,et.al.Modeling and simulation of crushing process of spiral mining head[J].Journal of the Center South University Technology.2006,13(2):171-174.
    [66]朱才朝,冯代辉,陆波等.钻柱结构与井壁岩石互作用下系统耦合非线性动力学研究[J].机械工程学报,2007,43(5):145-149.
    [67]刘清友,孟庆华,庞东晓等.基于复杂环境多自由度牙轮钻头动力学模型建立与分析[J].应用力学学报,2008,25(4):566-571.
    [68] LI Xiao-hong, SI Hu, WANG Dan-dan. Analysis and numerical simulation of dynamic effect on rock under high pressure water jet[J]. Journal of Coal Science & Engineering, 2008, 14(2):209-212.
    [69]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):74-82.
    [70]杨军,王树仁.岩石爆破分形损伤模型研究[J].爆炸与冲击,1996,16(1):5-10.
    [71]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):503-506.
    [72]李提建.高块煤率采煤机参数优化[D].徐州:中国矿业大学机电学院,2007.
    [73]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [74]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [75]张培忠,黄彦昌,何永.火炮相似模型设计与试验技术研究[J].兵工学报,2003,24(4):447-450.
    [76]金永军,杨维好,蒋武军.直线形冻土墙用于深基坑支护的试验研究[J].中国矿业大学学报,2002,31(2):124-128.
    [77]丁毅,黄向华,张天宏.基于相似理论的燃气轮机建模技术研究[J].航空动力学报,2004,19(5):689-694
    [78]冯雅丽,徐妍,冯福璋,张文明.1km铰接式扬矿子系统横向运动仿真与实验研究[J].中国矿业大学学报,2007,36(2):246-250.
    [79] T.D.Boyce. Loading efficiency of shearer drums [J].Colliery Guardian, 1978, 7:37-44.
    [80]韩振铎.滚筒式露天采矿机模型试验及载荷谱的研究[D].徐州:中国矿业大学机电学院,1994.
    [81]王启广,谢锡纯,陈飞等.露天采煤机工作装置的模拟截割试验[J].中国矿业大学学报,1996,25(4):12-16.
    [82]杜计平,苏景春.煤矿深井开采的矿压显现及控制[M].徐州:中国矿业大学出版社,20004.
    [83]张晓春,胡彩雯.电动机负载功率的小波分析[J].仪器仪表学报,2006,27(6):991-992.
    [84]葛哲学,沙威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [85] Jaideva C. Goswami, Andrew K. Chan著,许天周,黄春光,译.小波分析理论、算法及其应用[M].北京:国防工业出版社,2007.
    [86]王启广.滚筒截齿配置对采煤机载荷的影响研究[J].煤矿机械,2001,8:11-12.
    [87] Donald Baack, John B. Cullen. A catastrophe theory model of technological and structural change[J]. The Journal of High Technology Management Research, 1992,3(1):125-145.
    [88] B. Yu. Scobelev, E. V. Vorozhtsov. Stability analysis of difference schemes by catastrophe theory methods[J]. Journal of Computational and Applied Mathematics, 1992,44(1):1-20.
    [89] András Lengyel, Zhong You. Bifurcations of SDOF mechanisms using catastrophe theory[J]. International Journal of Solids and Structures, 2004, 41(2):559-568.
    [90] Kenneth T.W. Yiu, Sai On Cheung. A catastrophe model of construction conflict behavior[J]. Building and Environment, 2006, 41(4):438-447.
    [91]王文广,王心飞.隧道围岩失稳的突变理论分析[J].公路隧道,2008,3:1-5.
    [92]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [93]阿诺尔德著,陈军译.突变理论[M].北京:商务印书馆,1992.
    [94]潘岳,王志强,张勇.突变理论在岩石系统动力失稳中的应用[M].北京:科学出版社,2008.
    [95]左宇军,李夕兵,张义平.动静组合加载下的岩石破坏特性[M].北京:冶金工业出版社,2008.
    [96]鲜明,庄钊文,肖顺平等.雷达目标回波信号的混沌、多重分形分析与识别[J].国防科技大学学报,1998,20(2):60-64.
    [97]曾开华,陆兆溱.边坡变形破坏预测的混沌与分形研究[J].河海大学学报,1999,27(3):9-13.
    [98]崔玉红,聂永安,严宗达,等.工程结构系统中地震损耗能量的分形混沌动力学模型[J].天津大学学报,1999,32(3):337-340.
    [99]杨振,王三民,范叶森.转矩分流式齿轮传动系统的非线性动力学特性[J].机械工程学报.2008, 44(7):52-57.
    [100]朱艳平,张小红.CNN超混沌同步保密通信系统的研究[J].计算机应用与软件,2009, 26(2):83-88.
    [101]李雷,甘凌霞,周力行,等.基于混沌—分形理论的XLPE电缆老化特征性研究[J].电力系统自动化,2009,33(3):76-79.
    [102]王威,李瑰贤,宋玉玲.四轮激励含相位差的汽车高维非线性超混沌动力学特性研究[J].振动与冲击,2009,28(3):102-115.
    [103]张景绘.动力学系统建模[M].北京:国防工业出版社,2000.
    [104]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2003.
    [105] Genad Y P.Cherepanov, Alexander S.Balankin, Vera S.Ivanova. Fractal fracture mechanics--a review[J]. Engineering Fracture Mechanics, 1995, 51(6):997-1033.
    [106]徐玉秀,张剑,侯荣涛.机械系统动力学分形特征及故障诊断方法[M].北京:国防工业出版社,2006.
    [107]赵健,雷蕾,蒲小勤.分形理论及其在信号处理中的应用[M].北京:清华大学出版社,2008.
    [108] Arif A. Suleymanov, Askar A.Abbasov, Aydin J.Ismaylov. Fractal analysis of time series in oil and gas production[J]. Chaos, Solitons and Fractals,2009, 41:2474–2483.
    [109]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005.
    [110] Yury Kolokolov, Anna Monovskaya. Fractal principles of multidimensional data structurization for real-time pulse system dynamics forecasting and identification[J]. Chaos, Solitons and Fractals,2005,25:991–1006.
    [111] XIE He-ping, SUN Hong-quan, JU Yang, et.al. Study on generation of rock fracture surfaces by using fractal interpolation[J].International Journal of Solids and Strucrures, 2001,38:5765-5787.
    [112]谢和平.分形—岩石力学导论[M].北京:科学出版社,1996:112-116.
    [113]李嘉,周鲁,李克锋.泥沙粒径分布函数的分形特征与吸附性能[J].泥沙研究,2003,6(3):17-20.
    [114]刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1994.
    [115]黄润生.混沌及其应用[M].武汉:武汉大学出版社,2000.
    [116]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [117]海因茨·奥托·佩特根,哈特穆特·于尔根斯,迪特马尔·绍柏.田逢春译.混沌与分形[M].北京:国防工业出版社,2008.
    [118]陈关荣,汪小帆.动力系统的混沌化[M].上海:上海交通大学出版社,2006.
    [119] Luca Dieci, Erik S. Van Vleck. Computation of a few Lyapunov exponents for continuous and discrete dynamical systems[J]. Applied Numerical Mathematics, 1995,17(3): 275-291.
    [120] F. Carbonell, J. C. Jimenez, R. Biscay. A numerical method for the computation of the Lyapunov exponents of nonlinear ordinary differential equations[J]. Applied Mathematics and Computation, 2002,131(1): 21-37.
    [121]罗利军,李银山,李彤等.李雅普诺夫指数谱的研究与仿真[J].计算机仿真,2005,22(12):285-288.
    [122] Bong Jo Kim,Geon Ho Choe. High precision numerical estimation of the largest Lyapunov exponent [J]. Commun Nonlinear Sci Numer Simulat, 2009, 8:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700