用户名: 密码: 验证码:
散体流动时空演化仿真模型的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在采矿工程中,矿岩散体流动的规律和仿真方法是矿业理论研究领域的重要研究方向,本文将随机介质理论和九块模型的思想有机的结合在一起,以矿岩散体为研究对象,分别建立了散体流动空位填充法和散体流动时空演化模型,很好的解决了不同粒径颗粒的流动问题和散体流动的时间过程因素,形成了崩落法放矿仿真系统和地表沉降仿真系统,取得了较满意的应用效果。
     论文首先通过研究九块模型流动规律,分析了矿石松散性与放出体之间关系和散体流动概率赋值模式,提出了新的概率赋值方式,即引入散体流动概率分析系数m,通过对参数m赋以不同的数值即可改变九块模型的概率分布,解决放出体的不同形态问题,这一方式大大简化了概率赋值过程,同时在此基础上研发了三维放矿仿真系统(SLS),并将该系统应用到放矿研究中,特别是对大间距理论、梅山铁矿放矿方式进行了仿真实验,取得比较满意的应用效果。
     其次,论文基于随机理论,结合力学判据,提出散体流动空位填充法,简化了散体之间的力学关系,为崩落矿岩流动规律的研究提供新的方法,该方法既考虑了散体流动的随机性,又考虑了散体之间的力学关系;所研发的二维放矿仿真系统(VFMS)的回收指标结果基本上与SLS系统相同,说明利用空位填充法模拟散体流动是可行的;
     最后,论文在研究九块模型和假定矿岩具有开尔文流变性质的前提下,建立了散体移动时空演化模型,很好的解决了冒落散体流动的时间空间关系,并给出具有时间因素α的空间散体移动的概率分布公式,给出反演估计α值的两种方法。所研发的地表沉降仿真系统应用到孟家岗铁矿采空区引起的地表沉降问题仿真实验中,仿真结果与力学软件comsol模拟的结果一致,说明了利用该系统进行地表沉降仿真实验是可行的。
     在国家开始进行数字矿山建设的趋势下,研发矿业软件是当前采矿研究工作者主要的工作内容,本文在理论研究的基础上,研发了三套仿真系统——崩落法放矿计算机仿真系统、基于空位填充法二维放矿仿真系统和地表沉降仿真系统,这些工作成果必将推动我国矿业软件的发展,为我国数字矿山建设中软件开发作出贡献。
The mechanism and simulation method of rock ore granular flow is an important research direction in mining theoretical research. by combining the stochastic medium theory with the 9-block model, the void-filling method of granular flow and time-space evolution model of granular flow are proposed in the theses. They are able to solve the flow problems with different granularities and time factors of granular flow and have been used in stope-caving and ground subsidence simulations. Two simulation systems of ore-drawing and ground subsidence by combining the computer programming and graphics techniques have been developed and reported in the theses. So far, they have been successfully used in mining practice
     First, the motion of the 9-block model and the assignment of its probability distribution are investigated. By considering the ore looseness different parameter m can be assigned to the 9-block model. Thus, the probability assignment can be greatly simplified and different recovery index can be obtained. Based on the 9-block model a 3-D ore draw simulation system(SLS) is developed. The system can be used in simulation experiment to obtain the relationships of structural parameters and recovery index as well as the ore draw mode to the recovery index with respect to ore draw step mixed rock. The simulation is in good coincidence with the practice.
     Second, considering on the drawbacks of the 9-block model a granular flow void-filling method is proposed based on the stochastic theory and mechanical criteria. This innovative method combines the merits of both the stochastic simulation and the discrete element method. A 2-D ore draw simulation system(VFMS) is developed based on the void filling method. Different structural parameters are taken in the simulation experiment. The results are in good coincidence with that obtained by the SLS simulation. It means that the void filling method can be used in granular flow simulation.
     Finally, based on the deep investigation of the 9-block model and the stochastic medium theory, by assuming that the ore rock has the Kelvin rheological property, a time space evolution model is established. This model can solve the time space problems involving caving loose body flow and also give the method determining the time factor and probability distribution. Two inversion methods of time factor evaluation are also given in the paper. Based on the time space evolution model of the granular movement, a ground subsidence simulation model is developed. This model has been used in the simulation experiment of ground subsidence caused by mine goaf in Mengjiagang iron mine. Important results have been obtained. It shows that this model is good for ground subsidence simulation.
     In the state calling of construction of numerical mines the research and development of the mining engineering software is the main task of mining researchers. Based on the theoretical research, three simulation systems, namely the computerized simulation system for caving ore drawing, the 2-D ore drawing simulation system based on the void filling method and the simulation system for ground subsidence prediction have been developed in the theses. It is believed that the research efforts reported in the theses will push forward the development of mining engineering software and will lay a fundament in the construction of numerical mines in our country.
引文
1.吴爱祥.振动场中矿岩散体特性与动力学理论研究[D].长沙,中南工业大学,1991:1~10
    2.刘兴国.放矿理论基础[M],北京:冶金工业出版社,1995:13~40
    3. David J. Computer simulation of the movement of ore and waste in an underground mining pillar[J].The Canadian Mining and Metallurgical,1968,67(2):854~859..
    4.杨洋,唐寿高.颗粒流的离散元法模拟及其进展[J],中国粉体技术,2006.5:38~42
    5. Cundall P A.A. computer model for simulating progressive large scale movements in blocky system[J]. In:Muller Led, ed.Proc Symp Int Soc Rock Mechanics. Rotterdam: Balkama AA,1971,(1):8~12
    6. Strack O D L, Cundall P A. The distinct element method as a tool for research in granular media[J], Part Ⅰ. Report to the National Science Foundation, Minnesota: University of Minnesota,1978
    7. Cundall P A, Strack O D L. The distinct element method as a tool for research in granular media[J], Part Ⅱ. Report to the National Science Foundation, Minnesota: University of Minnesota,1979
    8. Cundall P A, Strack O D L. A discrete numerical model for granular assembles[J]. Geotechnique,1979,29(1):47~65
    9. Walton O R. Particle dynamics modeling of geological materials[J].1980, Lawrence Livermore Mathional Lab. Report UCRL-52915
    10. Campbell C S, Brennen C E. Computer simulation of granular shear flows[J]. J Fluid Mech,1985.151:167~188
    11. Campbell C S, Brennen C E. Chute flows of granular materials:some computer simulations[J], J Appl Mech,1985.52:172~178
    12. Radjai F, Jean M, Moreau J J, Roux S. Force distributions in dense two-dimensional granular systems[J]. Physical Review Letters,1996,77(2):247~277
    13. Moreau J J, Jean Michel. Numerical treatment of contact and friction:the contact dynamics method[J]. Asme. Petroleum Division,1996,76(4):201~208
    14. Oda M. Mechanics of Granular Materials[J], An introduction. Rotterdam:Balkema A A, 1999.147~223
    15. Biarrez J, Gourves R, eds.Powders and Grains, Proc. of an Int Conf on Micromechanics of Granular Media[J]. Rotterdam:Balkema AA,1989
    16. Thornton C, eds. Powders & Grains'93, Proc of 2nd Int Conf on Micromechanics of Granular Media[J]. Rotterdam:Balkema AA,1993
    17. Behringer R P, Jenkins J T, eds. Powers & Grains'97, Proc of 3th Int Conf on Micromechanics of Granular Media[J]. Rotterdam:Balkema AA,1997
    18. Kishino Y, eds. Powders and Grains 2001, Proc of 4th Int conf on Micromethanics of Granular Media[J]. Rotterdam:Balkema AA,2001
    19.王泳嘉.离散元法—一种适用于节理岩石力学分析的数值方法[J].第一届全国岩石力学数值计算及模型试验讨论会文集,1986.32-37
    20.王泳嘉,邢纪波.离散元法及其在岩土力学中的应用[M].辽宁:东北工学院出版社,1991.60~89
    21.邢纪波,王泳嘉.离散元法的改进及其在颗粒介质研究中的应用[J].岩土工程学报,1990,12(5):51~57
    22.邢纪波,王泳嘉.崩落采矿法放矿的离散元仿真[J].东北工学院学报.1988.2:148~153
    23.王泳嘉,刘兴国,邢纪波.离散元法在崩落法放矿中应用的研究[J].有色金属,1987.5:20~26
    24.张向东,常春,王泳嘉.连续开采下上覆岩层移动的离散元模拟[J].山西矿业学院学报,1997.3:20~26
    25.李一帆,张建明.某铜矿采空区稳定性的离散元数值模拟[J].铜业工程,2006.1:23~26
    26.刁心宏,刘峰,习小华.采空区对公路路基稳定性影响的离散元法分析[J].路基工程,2006.6:91~93
    27.郑榕明,陈文胜,葛修润,冯夏庭.金山店铁矿地下开采引起地表变形规律的离散元模拟研究[J].岩石力学与工程学报,2002.8:1130~1135
    28.黄晚清,陆阳.散粒体重力堆积的三维离散元模拟[J].岩土工程学报,2006.12:2139~2143
    29.李艳洁,徐泳.用离散元模拟颗粒堆积问题[J].农机化研究,2005.3:57~59
    30.刘军,于刚,赵长兵,胡文,仇海亮.不同尺度分布散粒材料砂堆形成过程的二维离散元模拟[J].计算机学学报,2008.8:568~573
    31. LANGSTONG P A, TUZUN U, HEYES D M. Discrete simulations of granular flow in 2D and 3D hoppers:dependence of discharge rate and wall stress on particle interactions[J]. Chem Engng Sci,1995,50:967~987
    32. LANGSTONG P A, TUZUN U, HEYES D M. Discrete simulations of internal stress and flow fields in funnel flow hoppers[J]. Powder Technology,1995,85:153~169
    33. KAPUI K D, THORNTON C. Some observations of granular fow in hoppers and silos[M]. BEHRINGER R P, JENKINS T J. Powders & Grains 97. Rotterdam: Balkema,1997:511~514
    34. MASSON S, MARTINEZ J. Effect of mechanical properties on silo flow and stress from distinct element simulations[J]. Powder Technology,2000,109(1-3):164~178
    35. MATUTTIS H G, LUDING S, Herrmann H J, Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles[J]. Powder Technology,2000,109(1-3):278~292
    36. ZHOU Y C, XU A B, ZULLI P. An experimental and numerical study of the angle of repose of coase spheres[J]. Powder Technology,2002,125(1):45~54
    37.任凤玉,随机介质放矿理论及其应用[M],冶金工业出版社,1994
    38.王泳嘉,吕爱钟.放旷的随机介质理论[J].中国矿业,1993.1:53~57
    39.王泳嘉.放矿理论研究的新方向——随机介质理论[J],东工活页论文选,1962
    40.王泳嘉,刘兴国.放矿的数值模拟[J].(有色金属)(季刊)No.1,1981
    41. Kvapil. R, The Mechanics and Design of Sublevel Caving Systems[J]. Sec 4.1-2 in Underground Mining Methods Handbook W.a. Hustrulid, ed. Soc. Mng. Engr—AIME, New York,1982:880~897
    42.任凤玉,刘兴国.随机介质放矿理论及其应用专题讲座——第一讲三类边界条件的崩落矿岩移动规律方程[J].中国矿业,1995.7:80~84
    43.任凤玉,刘兴国.随机介质放矿理论及其应用专题讲座——第二讲.崩落矿岩移动规律方程及其应用[J].中国矿业,1995.9:81~84
    44.乔登攀,孙亚宁,任凤玉.放矿随机介质理论移动概率密度方程研究[J].煤炭学报,2003.8:361~365
    45.刘宝琛.随机介质理论及其在开挖引起的地表下沉问题中的应用[J].中国有色金属学报,1992.7:8~14
    46.刘宝琛,颜荣贵.开采引起的矿山岩体移动的基本规律[J].煤炭学报,1981.3:39~53
    47.贺跃光,刘宝琛.开挖边坡岩土体位移及变形分析中的随机介质理论[J].长沙交通 学院学报,2006.9:1~5
    48.刘宝琛,杜维吾,张成孝.望儿山金矿地表移动与建筑物保护[J].矿冶工程,1995.9:17~20
    49. Christopher Grant Alford B.Eng. (Hons.). Computer Simulation Models For The Gravity Flow of Ore In Sublevel Caving [D], Department of Mining University of Melbourne February,1978。
    50.李昌宁.非均匀矿岩散体放矿的计算机模拟[J].有色金属,2002.5:98~103
    51. Wittke W, Pierau B. Foundations fox the design and construction of tunnel in swelling rock[A].Proceedings of the 4th International Congress on Rock Mechanics[C].Montxeux:Al ME,1979.216-219
    52. Singh S P. Burst energy release index[J].Rock Mechanics and Rock Engineering,1988, 21(1):149-155
    53.柳小波、孙豁然、赵德孝等·崩落法放矿计算机仿真系统的软件设计与开发[J],金属矿山;2002,No.12:49~52
    54.王仲奇.二维随机摆放过程的计算机模拟[J].全国蒙特卡罗方法学术交流会资料,1980:86~87
    55.王仲奇.二维随机几何模型的蒙特卡罗研究[J].全国蒙特卡罗方法学术交流会资料,1980:18~20
    56. MCNP3B, Monte Carlo Neutron And Photo Transport Code System[J]. CCC-200,1989
    57. J.M. Hammersley, Conditional Monte Carlo[J]. J. Assoc. Comp. Mach.3,73,1956.
    58.王泳嘉.岩层和地表移动过程的时间因素[J].东北工学院学报,1963.5:1-11
    59.刘瑞殉,张秉良,张臣.描述岩石粘弹性固体性质的开尔文模型[J].地学前缘,2008.5:221~225
    60.刘瑞珣.流变学基础模型的地质应用及启示[J].地学前缘,2007,14(4):61-65
    61. K. Wardell. Some observations on the relationship between time and mining substrans[J]. I.M.E,1953~1954:471~483
    62.复旦大学数学系.概率论与数理统计[M],上海科学技术出版社,1960
    63.唐曙光.基于Excel的实验数据最小二乘法计算探讨[J].大学物理实验,2003.12:43~45
    64. http://www.chemshow.cn/BBs/File/UserFiles/UpLoad/200809090309082m.doc
    65.赵斌.开采沉陷动态预计中的流变模型及应用[J].科技情报开发与经济,2005.5: 195~196
    66. http://math.dhu.edu.cn/teacher/math/%D3%C8%CB%D5%C8%D8/teaching/mathmod el/07xia/lecture%204.pdf
    67.李德海.近水平层状岩层移动规律的探讨[J].矿山压力与顶板管理,1996(2):39~42
    68.刘文涛.采场覆岩移动流变模型及开采沉陷预计研究[D].太原理工大学学位论文,2004
    69.江见鲸,贺小岗.工程结构计算机仿真分析[M].清华大学出版社,1996:1-2
    70.王运森.过程自动控制系统及遗传算法在PID参数整定中的应用研究[D],东北大学学位论文,2002。
    71.郑小平.Visual C#.NET开发实践[M],人民邮电出版社,2001
    72. http://www.alixixi.com/Dev/Web/ASPNET/aspnet3/2007/2007050734445.html
    73.王运森,邱景平,孙豁然.OpenGL在放矿仿真系统开发中的应用[J],矿业研究与开发,2003(10):23-25
    74. http://net.stuun.com/program/ASP/shili/37451.html
    75.孙豁然,余晨阳.实用计算机绘图[M],冶金工业出版社,1996
    76.傅德胜,李慧颖.交互式计算机模拟画像系统设计[J],计算机应用,2000
    77.柳小波,李启轩,孙豁然.基于SLS系统的无底柱分段崩落法矿石损失贫化的研究[J],金属矿山:2005,No.12:17-18
    78. Li I Y. Analysis of bulk flow of materials under gravity caving process[J].Colorado School of Mines Quarterly,1984,75(4):121-129
    79. Mullins W W. Stochastic theory of particle flow under gravity[J]. Appl Phys, 1972,43(3):665-678
    80.董振民,范庆霞,金闯.大间距无底柱分段崩落采矿法的研究与应用[J].宝钢技术:2005年增刊:19~23
    81.范庆霞.大间距集中化无底柱采矿新工艺研究[J].矿业快报:2005.10:7~9,49
    82.刘兴国,张国联.论无底柱分段崩落法放矿方式[J],金属矿山,2004,No.2:5~7,10
    83.梅山铁矿铁矿大间距无底柱采矿新工艺放矿模拟实验研究报告,马鞍山矿山研究院、上海梅山集团(南京)矿业有限公司,2001
    84.金闯,董振民,范庆霞.梅山铁矿大间距结构参数的研究与应用[J],金属矿山, 2002,No.307:7~9
    85.何国清.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1989
    86.梁明,肖天和.巨厚松散层下开采地表下沉速度预计初探[J].西安矿业学院学报,1997,17(1):32~35
    87.王金庄,邢安仕,伍立新等.矿山开采沉陷及其损害防治[M].徐州:中国矿业大学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700