用户名: 密码: 验证码:
非线性微分方程与超离散方程的若干求解和可积性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以数学机械化思想和AC=BD理论为指导,以构造性变换及符号计算软件为辅助工具,从代数曲线和Riemann theta函数的角度来研究非线性偏微分方程,离散方程的精确解,超椭圆函数解,拟周期解;超离散方程的Lax可积性和热带Riemann theta函数解等相关问题.
     第一章介绍数学机械化、孤立子理论、可积性与代数几何解、超离散方程的求解与可积,几种求解数学物理方程的构造性方法的历史发展和研究现状,并介绍本文的选题及主要工作.
     第二章首先介绍了张鸿庆教授提出的数学机械化中的AC=BD模式和应用,其次在C-D对的理论框架下,利用微分伪带余除法,构造性给出了求方程间的变换的方法.并通过研究一种类型的算子D,给出Dv=0更多形式的解,从而推广了一类辅助方程展开法,给出了一类非线性发展方程更多形式的精确解.
     第三章基于超椭圆函数和代数曲线的相关知识,通过亏格为2和3的超椭圆函数所满足的等式关系,利用构造性方法求解非线性方程的超椭圆函数解,得到了几类非线性发展方程的2亏格和3亏格的超椭圆函数解.
     第四章首先基于具有有理特征的Riemann theta函数,推广了双线性和Riemann theta函数相结合的方法,给出了一类具有两个或两个以上因变量非线性方程(组)的拟周期解;并将这一方法应用到一类微分差分方程中.其次,利用四类特殊的具有有理特征Riemann theta函数所满足的恒等式关系,运用直接构造性方法,给出了两个离散方程的拟周期解.
     第五章首先运用超离散化方法给出晶格修正的KdV方程的超离散方程,并通过协调条件证明了超离散方程的Lax可积.其次运用热带化方法,给出约化的非自治超离散Kadomtsev-Petviashvili方程(rndKP)的热带谱曲线,并利用热带形式下的Fay三度割线恒等式给出其热带Riemann theta函数形式的解.
In this dissertation, some topics are studied based on the mathematical mechanization and AC= BD model, including exact solutions, hyperelliptic functions solutions and quasi-period solutions of nonlinear evolution equations and discrete equations, Lax integrability and tropical Riemann theta functions solutions of ultra-discrete equations.
     In Chapter 1, we introduce the history and development of mathematical mechaniza-tion, soliton theory, integrability of nonlinear evolution equations and algebraic geometry solutions, soliton celluar automaton, solutions of the mathematical and physical equations, as well as the main work of this dissertation.
     In Chapter 2, the main content and idea are AC= BD model and C-D pair theory. According to these, the mechanized construction of the transformations of two differential equations is presented. Based on the research on a class operator of "D", we get more solutions of this "Dv=0", so we can get more exact solutions of some nonlinear evolution equations.
     In Chapter 3, based on the theory of hyperelliptic functions and algebraic curve, we extend the direct method of solving the nonlinear evolution equations. By the identities of the hyperelliptic functions of two genus and three genus, we obtain the solutions of two genus and three genus hyperelliptic functions of some classes of the nonlinear evolution equations.
     In Chapter 4, first, we extend the method of combined the bilinear with the Rie-mann theta functions to the Riemann theta functions with rational character, and give the quasi-periodic solutions of some nonlinear equation(s) which has (have) above two de- pendent variables and apply this method to the differential difference equations. Second, we give quasi-periodic solutions of two discrete equations by the direct method based on the identities of the Riemann theta functions with rational character.
     In Chapter 5, we obtain the ultradiscrete equation of the discrete mKdV equation and prove its Lax integrability by the ultradiscretization. And By the tropicalization, we give the tropical spectral curve of the ultradiscrete rndKP equation and show that its solution can be got by the tropical Riemann theta function.
引文
[1]WU W T. On the decision problem and the mechanization of theorem-proving in elementary geometry [J]. Sci. Sinica,1978,21(2):159-172.
    [2]吴文俊.几何定理机器证明的基本原理[M].北京:科学出版社,1984.
    [3]Wu W T. On zeros of algebraic equations:an application of Ritt principle [J]. Kexue Tongbao,1986,31:1-5.
    [4]RITT J F. Differential Algebra [M]. New York:American mathematical Society,1950.
    [5]WU W T. On the foundation of algebraic differential geometry [J]. Systems Sci. Math. Sci., 1989,2(4):289-312.
    [6]GAO X S, ZHANG J Z, CHOU S C. Geometry Expert (in Chinese) [M]. Taiwan:Nine. Chapters Pub,1998.
    [7]CHOU S C, GAO X S, ZHANG J Z. Machine Proofs in Geometry [M]. Singapore:World Scientific,1994.
    [8]CHOU S C, GAO X S. Automated reasoning in differential geometry and mechanics using the characteristic set method. I. An improved version of Ritt-Wu's decomposition algorithm [J]. J. Automat. Reason.,1993,10(2):161-172.
    [9]WANG D M, GAO X S. Geometry theorems proved mechanically using Wu's method-Part on Euclidean geometry [J]. Math. Mech. Res. Preprints,1987,2:75-106.
    [10]KAPUR D, WAN H K. Refutational proofs of geometry theorems via characteristic sets[C]. Proc of ISSAC-90, Tokyo, Japan,1990:277-284.
    [11]LI H B, CHENG M T. Proving theorems in elementary geometry with Clifford algebraic method [J]. Adv. in Math. (China),1997,26(4):357-371.
    [12]LI H B, CHENG M T. Clifford algebraic reduction method for mechanical theorem proving in differential geometry [J]. J. Auto. Reasoning,1998,21:1-21.
    [13]LI Z B, WANG M L. Travelling wave solutions to the two-dimensional KdV-Burgers equation [J]. J. Phys. A,1993,26(21):6027-6031.
    [14]李志斌,张善卿.非线性波方程准确孤立波解的符号计算[J].数学物理学报,1997,17(1):81-89.
    [15]李志斌.非线性数学物理方程的行波解[M].北京:科学出版社,2007.
    [16]LI Z B, LIU Y P. RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations [J]. Comput. Phys. Comm.,2002,148(2):256-266.
    [17]FAN E G. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method [J]. J. Phys. A,2002,35:6853-6872.
    [18]FAN E G. An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations [J]. J. Phys. A.2003,36:7009-7026.
    [19]范恩贵.可积系统与计算机代数[M].北京:科学出版社,2004.
    [20]YOMABA E. The extended Fan's sub-equation method and its application to KdV-MKdV. BKK and variant Boussinesq equations [J]. Phys. Lett. A,2005,336:463-476.
    [21]BALDWIN D, HERMANN W, GOKTAS R S, et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs [J]. J. Symb. Comput. 2004,37:669-705.
    [22]闫振亚.非线性波与可积系统[D].大连:大连理工大学,2002.
    [23]郑学东.大连理工大学硕士学位论文[D].大连:大连理工大学,2002.
    [24]朝鲁.吴微分特征列法及其在PDEs对称和力学中的应用[D].大连:大连理工大学,1997.
    [25]陈勇.孤立子理论中的若干问题的研究及机械化实现[D].大连:大连理工大学,2003.
    [26]谢福鼎Wu-Ritt消元法在偏微分代数方程中的应用[D].大连:大连理工大学,2002.
    [27]李彪.孤立子理论中若干精确求解方法的研究及应用[D].大连:大连理工大学,2005.
    [28]张鸿庆.弹性力学方程组一般解的统一理论[J].大连理工大学学报,1978,18:23-47.
    [29]张鸿庆,冯红.构造弹性力学位移函数的机械化算法[J].应用数学和力学,1995,16:315-322.
    [30]张鸿庆.偏微分方程组的一般解与完备性[J].现代数学与力学.1991,Ⅳ.
    [31]ZHANG H Q. C-D integrable system and computer aided solver for differential equations [C]. Proceeding of the 5rd ACM, World Scientific Press,2001,221-226.
    [32]张鸿庆.数学机械化中的AC=BD模式[J].系统科学与数学,2008,28(8):1030-1039.
    [33]ZHANG H Q, DING Q.一类非线性偏微分方程组的解析解[J]. Analytic Solutions of a Class of Nonlinear Partial Differential Equations. Appl. Math. and Mech.,2008,29(11): 1-12..
    [34]RUSSELL J S. Report on waves, Fourteen meeting of the British association for the ad-vancement of science [C]. John Murray, London,1844:311-390.
    [35]KORTEWEG D J, DE VRIES G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves [J]. Phil. Mag.,1895,39(5): 422-433.
    [36]FERMI A, PASTA J, ULAM S. Studies of Nonlinear Problems [C]. I. Los Alamos report LA,1955.
    [37]PERKING J K, SKYRME T H R. A model unified field equation [J]. Nuclear Phys.,1962, 31:550-555.
    [38]郭柏灵,庞小峰.孤立子[M].北京:科学出版社,1987.
    [39]李翊神.孤子与可积系统[M].上海:上海科技出版社,1999.
    [40]陈登远.孤子引论[M].北京:科学出版社,2006.
    [41]LAX P D. Integrals of nonlinear equations of evolution and solitary waves [J]. Comm. Pur. Appi. Math.,1968,21:467-490.
    [42]ABLOWITZ M J, RAMANI A, SEGUR H. Nonlinear evolution equations and ordinary differential equations of Painleve type [J]. Lett. Nuovo Cimento,1978,23:333-7.
    [43]MUSETTE M, CONTE R. The two-singular-manifold method:I. Modified Korteweg-de Vries and sine-Gordon equations [J]. J. Phys. A:Math. Gen.,1994,27:3895-3914.
    [44]WEISS J, TABOR M, CAMEVALE G. The Painleve property for partial differential equa-tions [J]. J. Math. Phys.,1983,24:522-526.
    [45]LOU S Y, TANG X Y, LIU Q P et al. Second order Lax pairs of nonlinear partial differential equations with Schwarzian forms [J]. Z. Naturforsch a,2002,57:737.
    [46]ARNOLD V 1. Mathematieal Methods of Classical Mechanics [M], Springer, Berlin,1978.
    [47]ABLOWITZ M J, SEGUR H. Solitons and the Inverse Scattering Transform [M]. SIAM, PhiladelPhia,1981.
    [48]FLASEHKA H. Proe. Of RIMS Symp. On Nonlinear integrable system-Classical Theory and Quantum Theoey [C]. Singapore:World Science Publishing Co,1983:219-240.
    [49]MOSER J. Itegrable Hamiltonian systems and special theory [C]. Beijing:Science,1986, 157-229.
    [50]CAO C W. A Cubic System which Generates Bargnmnn Potential and N-gap Potential [J]. Chinese Quarterly J Math.,1988,3(1):90-96.
    [51]CAO C W, GENG X G. Research Reports in Physics [M]. Berlin:Sprlnger-Verlag,1990.
    [52]CAO C W, GENG X G. A nonconfocal generator of involutive systenls and three associated soliton hierarchies [J]. J. Math Phys.,1991,32(9):2323-2328.
    [53]ANTONOWIES M, RAUCH W S. Constrained flows of integrable PDEs and bi-Hamiltonian structure of the Gamier system [J]. Phys. Lett. A,1990,147(8-9):455-462.
    [54]RAGNISCO O, RAUCH W S. Integrable mechanical systems related to the Harry-Dym hierarchy [J]. J. Math. Phys.,1994,35(2):834-847.
    [55]ZENG Y B, LI Y S. The constraints of potentials and the finite-dimensional integrable systens [J]. J. Math. Phys.,1989,30(8):1679-1689.
    [56]ZENG Y B. An approach to the deduction of the finite-dimensional integrability from the infinitedimensional integrability [J]. Phys. Lett. A,1991,160(6):541-547.
    [57]MA W X. New finite-dimensional integrablesystems by symmetry constraint ofthe KdV equations [J]. J. Pbys. Soc. Jpn.,1995,64(4):1085-1091.
    [58]LI Y S, MA W X. Hamilton structures of binary highorder oonstrained flows ascoelated with two 3×3 spectral problems [J]. Phys. Lett. A,2000,272(4):245-256.
    [59]MA W X, LI Y S. Do symmetry constraints nonlinearize spectral problems into Hamilton systems [J]. Phys. Lett. A,2000,268(4-6):352-359.
    [60]BABELON O, TALON M, BERNARD. Introduction to classical integrable systems [M]. Cambridge University Press,2003.
    [61]NOVIKOV S P. A periodic problem for the KdV equation [J]. Funct. Anal. Appl.,1974,8: 236-246.
    [62]DUBROVIN B A. Periodic problem for the Kortweg-de Vries equation in the class of finite-band potentials [J]. Funct. Anal. Appl.,1975,9:265-273.
    [63]ITS A, MATVEEV V. Hill operators with finitely many gaps [J]. Funct. Anal. Appl.,1975, 9:65-66.
    [64]LAX P D. Periodic solutions of the KdV equation [J]. Commun. Pure Appl. Math..1975, 28:141-188.
    [65]MCKEAN H P, MOERBEKE P. The spectrum of Hill's equation [J]. Invent. Math.,1975, 30:217-274.
    [66]ZHOU R G. The finite-band solution of the Jaulent-Miodek equation [J]. J. Math. Phys., 1997,38:2535-2546.
    [67]QIAO Z J. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold [J]. Commun. Math. Phys.,2003,239:309-341.
    [68]GENG X G, WU Y T, CAO C W. Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation [J]. J. Phys. A,1999,32:3733.
    [69]GENG X G, CAO C W. Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions Nonlinearity [J]. Nonlinearity,2001,14:1433-1452.
    [70]GENG X G, DAI H H, ZHU J Y. Decomposition of the discrete Ablowitz-Ladik hierarchy [J]. Stud. Appl. Math.,2007,118:281-312.
    [71]HON Y C, FAN E G. An algebro-geometric solution for a Hamiltonian system with appli-cation to dispersive long wave equation [J]. J. Math. Phys.,2005,46:032701.
    [72]ROGERS C, SHADWICK W R. Backlund transformations and their application [M]. New York:Academic Press,1982.
    [73]KONNO K, WADATI M. Simple derivation of Backlund transformation from Riccati form of inverse method [J]. Prog. Theor. Phys.,1975,53(6):1652-1656.
    [74]GU C H, ZHOU Z X. On the Darboux matrices of Backlund transformationsfor AKNS systems [J]. Lett. Math. Phys.,1987,13:179-187.
    [75]ZENG Y B, ZHU Y, XIAO T. Canonical explicit Backlund transformations with spectrality for constrained flows of soliton hierarchies [J]. Physica A,2002,303:321-338.
    [76]胡星标,李勇DJKM方程的Backlund变换及非线性叠加公式[J].数学物理学报,1991,11:164-172.
    [77]谷超豪等.孤立子理论中的Darboux变换及其几何应用[M].上海:上海科技出版社,1999.
    [78]ROGERS C, SCHIEF W K. Backlund and Darboux Transformations:Geometry and Mod-ern Applications in Soliton Theory [M]. Cambridge:Cambridge University Press,2002.
    [79]GARDNER C S, GREENE C S, KRUSKAL M D. Method for solving the Korteweg-deVries equation [J]. Phys. Rev. Lett.,1967,19:1095-1097.
    [80]LAX P D. Integrals of nonlinear equations of evolution and solitary waves [J]. Commun. Pure Appl. Math.,1968,21:467-490.
    [81]ZABUSKY N J, KRUSKAL M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states [J]. Phys. Rev. Lett.,1965,15:240-243.
    [82]ABLOWITZ M J, KAUP Z J, NEWELL A C, et al. Nonlinear-evolution equations of physical significance [J]. Phys. Rev. Lett.,1973,31:125-127.
    [83]WAHLQUIST H D, ESTABROOK F B. Prolongation structures of nonlinear evolution equa-tions [J]. J. Math. Phys.,1975,16:1-7.
    [84]曹策问.孤立子与反散射[M].郑州:郑州大学出版社,1983.
    [85]LIE S. On integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals [M]. In:CRC Handbook of Lie Group Analysis of Differential Equations:473-508.
    [86]LIE S. Classification und Integration von gewohnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten:Die nachstehende Arbeit erschien zum ersten Male im Friihling 1883 im norwegischen Archiv [J]. Math. Ann.,1908,32:213-281.
    [87]HEREMAN W. Review of symbolic software for Lie symmetry analysis [J]. Math. Comput. Modelling,1997,25:115-132.
    [88]NOETHER E. Invariant variations problem [J]. Transport Theory Statist. Phys.,1971,1(3): 186-207.
    [89]BLUMAN G, COLE J. The general similarity solution of the heat equation [J]. J. Math. Mech.,1969,18:1025-1042.
    [90]BLUMAN G, KUMEI S. On invariance properties of the wave equation [J]. J. Math. Phys., 1987,28:307-318.
    [91]GANDARIAS M L. New symmetries for a model of fast diffusion [J]. Phys. Lett. A,2001, 286:153-160.
    [92]李翊神.可积方程新的对称、李代数及谱可变演化方程[J].中国科学A,1987,30:235-241.
    [93]田畴Burgers方程的新的强对称、对称和李代数[J].中国科学A,1987,30:1009.
    [94]LOU S Y. Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation [J]. Phys. Lett. A,1993,175:23-26.
    [95]MAHOMED F M, QU C. Approximate conditional symmetries for partial differential equa.-tions [J]. J. Phys. A:Math. Gen.,2000,33:343-356.
    [96]CLARKSON P A, KRUSKAL M D. New similarity reductions of the Boussinesq equation [J]. J. Math. Phys.,1989,30:2201.
    [97]LOU S Y. A note on the new similarity reductions of the Boussinesq equation [J]. Phys. lett. A,1990,151(3-4):133-135.
    [98]PUCCI E. Similarity reductions of partial differential equations [J]. J. Phys. A:Math. Gen., 1992,25:2631-2640.
    [99]范恩贵.齐次平衡法、Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间关系[J].物理学报,2000,49(8):1409-1412.
    [100]LOU S Y, TANG X Y, LIN J. Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method [J]. J. Math. Phys.,2000,41(12):8286-8303.
    [101]REID G J. Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating Its Taylor sires solution [J]. Eum. J. Appl. Math.,1991,2: 293-318.
    [102]SCHWARZ F. Algorithmic Lie Theory for Solving Ordinary Differential Equations [M]. Chapman & Hall/CRC,2007.
    [103]GERDT V P, BLINKOV Y A. Involutive Bases of Polynomial Ideals [J]. Math. Comp. Simul.,1998,45: 519-541.
    [104]张善卿.微分方程精确解及李对称符号计算研究[D].上海:华东师范大学,2004.
    [105]HIROTA R. Direct Methods in Soliton Theory [M]. Berlin:Springer,2004.
    [106]HU X B. Rational solutions of integrable equations via nonlinear superposition formulae [J]. J. Phys. A:Math. Gen.,1997,30:8225-8240.
    [107]HU X B, ZHU Z N. Some new results on the Blaszak-Marciniak lattice:Backlund transfor-mation and nonlinear superposition formula [J]. J. Math. Phys.,1998,39:4766-4772.
    [108]BOITI M, LEON J J P, MANNA M, et al. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions [J]. Inv. Probl.,1986,2:271-280.
    [109]LIU Q P, HU X B, ZHANG M X. Supersymmetric modified Korteweg-de Vries equation: bilinear approach [J]. Nonlinearity,2005,18:1597-1603.
    [110]LIU Q P, HU X B. Bilinearization of N= 1 supersymmetric Korteweg-de Vries equation revisited [J]. J. Phys. A:Math. Gen., 2005,38:6371-6378.
    [111]CHEN D Y, ZHANG D J, DENG S F. The novel multisoliton solutions of the mKdV sine-Gordon equation [J]. J. Phys. Soc. Japan,2002,71:658-659.
    [112]NING T K, ZHANG D J, CHEN D Y, DENG S F. Exact solutions and conservation laws for a nonisospectral sine-Gordon equation [J]. Chaos, Solitons and Fractals,2005,25:611-620.
    [113]ZHANG D J, CHEN D Y. Negatons, positons, rational-like solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terms [J]. J. Phys. A:Math. Gen.,2003,36:1-15.
    [114]CHOW K W. Lattice solitons directly by the bilinear method [J]. J. Math. Phys.1994,35(8): 4057-4066.
    [115]CHOW K W. Periodic solutions for a system of four coupled nonlinear Schroinger equations [J]. Phys. Lett. A,2001,285:319-326.
    [116]CHOW K W, MAKA C C, ROGERS C. Doubly periodic and multiple pole solutions of the sinh-Poisson equation:Application of reciprocal transformations in subsonic gas dynamics [J]. J. Comput. Appl. Math.,2006,190:114-126.
    [117]WOLFAM S. Theory and applications of cellular automata [M]. Singapore:World scientific, 1986.
    [118]PARK K, STEIGLITZ K, THURSTON W P. Soliton-like behavior in automata [J]. Physica. D,1986,19D:423-432.
    [119]PAPATHEODROU T S, ABLOWITZ M J, SARIDAKIS Y G. A Note on Resonance and Nonlinear Dispersive Waves [J]. Stud. Appl. Math.,1988,79:173.
    [120]BRUSCHI M, SANTINI P M, RAGNISCO O. Integrable cellular automata [J]. Phys. Lett. A,1992,169:151-160.
    [121]TOKIHIRO T, TAKAHASHI D, MATSUKIDAIRA J et al. From Soliton Equations to Integrable Cellular Automata through a Limiting Procedure [J]. Phys. Rev. Lett.,1996,76: 3247-3250.
    [122]陈陆君,梁昌洪.双参量孤子细胞自动机[J].物理学报1993,42:1895-1900.
    [123]TAKAHASHI D, MATSUKIDAIRA J. Box and ball system with a carrier and ultradiscrete modified KdV equation [J]. J. Phys. A:Math. Gen.,1997,30:L733-9.
    [124]IWAO S, TOKIHIRO T. Ultradiscretization of the theta function solution of pd Toda [J]. J. Phys. A:Math. Theor.,2007,40:12987-13021.
    [125]TOKIHIRO T, TAKAHASHI D and MATSUKIDAIRA J. Box and ball system as a real-ization of ultradiscrete nonautonomous KP equation [J]. J. Phys. A:Math. Gen.,2000,33: 607-19.
    [126]NISHINARI K, TAKAHASHI D. Analytical properties of ultradiscrete Burgers equation and rule-184 cellular automaton [J]. J. Phys. A:Math. Gen.,1998,31:5439-50.
    [127]NISHINARI K, TAKAHASHI D. A new deterministic CA model for traffic flow with multiple states [J]. J. Phys. A:Math. Gen.,1999,32:93-104.
    [128]NAGAI A, TAKAHASHI D, TOKIHIRO T. Soliton cellular automaton. Toda molecule equation and sorting algorithm [J]. Phys. Lett. A,1999,255:265-71.
    [129]TAKAHASHI D, SATSUMA J. A soliton cellular automaton [J]. J. Phys. Soc. Japan,1990, 59:3514-19.
    [130]MATSUKIDAIRA J, SATSUMA J, TAKAHASHI D, TOKIHIRO T. Toda-type cellular automaton and its n-soliton solution [J]. Phys. Lett. A,1997,225:287-95.
    [131]TAKAHASHI D, HIROTA R. Ultradiscrete soliton solution of permanent type [J]. J. Phys. Soc. Japan,2007,76:104007-12.
    [132]HIDETOMO NAGI. A new expression of a soliton solution to the ultradiscrete Toda equation [J]. J. Phys. A:Math Theor.,2008,41:235204.
    [133]TAKAHASHI D, MATSUKIDAIRA J. Constructing solutions to the ultradiscrete Painleve equations [J]. J. Phys. A:Math. Gen.,1997,30:7953-66.
    [134]NOBE A. Periodic multiwa,ve solutions to the Toda-type cellular automaton [J]. J. Phys. A: Math. Gen.,2005,38:L715-L723.
    [135]NOBE A. Ultradiscretization of elliptic functions and its applications to integrable systems [J]. J. Phys. A:Math. Gen.,2006,39:L335-L342.
    [136]KONNO N, KUNIMATSU T, MA X. From stochastic partial difference equations to scochas-tic cellular automata through the ultra-discretization [J]. Appl. Math. Comp.,2004,155: 727-725.
    [137]MIKHALKIN, G. Enumerative tropical algebraic geometry in R2 [J]. J. Amer. Math. Soc. 2005,18(2):313-377.
    [138]MIKHALKIN G, ZHARKOV I. Tropical curves, their Jacobians and Theta functions [J]. arXiv:math/0612267v2.
    [139]SPEYER D, STRUMFELS B. Tropical Mathematics [J]. arXiv/math.CO/0408099.
    [140]张鸿庆,杨光.变系数偏微分方程组一般解的构造[J].应用数学和力学,1991,12:135-139.
    [141]张鸿庆.线性算子方程组一般解的代数构造[J].大连工学院学报,1979,3:1-16.
    [142]ZHANG H Q, FAN E G. Applications of Mechanical Methods to Partial Differential Equa-tions in Mathematics Mechanization and Applications [M]. London:Academic Press,2000: 409-432.
    [143]吕卓生.计算微分方程对称与精确解的机械化算法及实现[D].大连:大连理工大学,2003.
    [144]HUANG D J, ZHANG H Q. The extended first kind elliptic sub-equation method and its application to the generalized reaction Duffing model [J]. Phys. Lett. A.,2005,344:229-237.
    [145]XU G Q. An elliptic equation method and its applications in nonlinear evolution equations [J]. Chaos, Solitons Fractals,2006,29(4):942-947.
    [146]EL-WAKILA S A, ABDOU M A. The extended mapping method and its applications for nonlinear evolution equations [J]. Phys. Lett. A.,2006,358(4):275-282.
    [147]BAKER H F. Abelian Functions-Abel's Theorem and the Allied Theory Including the The-ory of the Theta Functions [M]. Cambridge University Press.1897
    [148]BAKER H F. On the hyperelliptic sigma functions [J]. Am. J. Math.,1898,20:301-84.
    [149]BAKER H F. On a system of differential equations leading to periodic functions [J]. Acta Math.,1903,27:135-56.
    [150]BUCHSTABER V M, ENOLSKII V Z, LEYKIN D V. Hyperelliptic Kleinian functions and application [J]. Am. Math. Soc. Transl.,1997,179:1-33.
    [151]BUCHSTABER V M, ENOLSKII V Z, LEYKIN D V. Kleinian functions, hyperelliptic Jacobians and applications [C]. Reviews in Mathematics and Mathematical Physics London 1997,1-125.
    [152]BUCHSTABER V M, ENOLSKII V Z, LEYKIN D V. Uniformization of the Jacobi varieties of trigonal curves and nonlinear differential equations [J]. Funct. Anal. Appl.,2000,34:1-15.
    [153]EILBECK J C, ENOLSKII V Z, LEYKIN D V. On the Kleinian construction of Abelian functions of canonical algebraic curves [C]. CRM Proceedings and Lecture Notes,2000: 121-38..
    [154]ROGERS C, SCHIEF W K. Backlund and Darboux transformations, Geometry and morden applications in soliton theory [C]. Cambridge University Press,2002.
    [155]EILBECK J C, ENOLSKII V Z, PERVIATO E. Varieties of elliptic solitons [J]. J. Phys. A:Math. Gen.,2001,34:2215-27.
    [156]MATSUTANI S. Hyperelliptic Solutions of KdV and KP equations:Re-evaluation of Baker's Study on Hyperelliptic Sigma Functions [J]. J. Phys. A:Math. Gen.,2001,34:4721-4732.
    [157]BRUGARINO T, SCIACCA M. A direct method to find solutions of some type of coupled Korteweg-de Vries equations using hyperelliptic functions of genus two [J]. Phys. Lett. A, 2008,372:1836-40.
    [158]Y. ONISHI. Complex multiplication formulae for hyperelliptic curves of genus three [J]. Tokyo J. Math.,1998,21:381-431.
    [159]XU C Z, HE B G. Study on (2+1)-Dimensional Nizhnik Novikov Veselov Equation by Using Extended Mapping Approach [J]. Commun. Theor. Phys.,2006,46:10-14.
    [160]KADOMTSEV B B, PETVIASHVILI V I. On the stability of solitary waves in weakly dispersive media [J]. Sov. Phys. Dokl.,1970,15:539-541.
    [161]SWNATORSKI A, INFELD E. Simulations of Two-Dimensional Kadomtsev-Petviashvili Soliton Dynamics in Three-Dimensional Space [J]. Phys. Rev. Lett.,1996,77:2855-2858.
    [162]BELOKOLOS E, BOBENKO A, ITS A et al. Algebro-Geometrical Approach to Nonlinear Integrable Equations [M]. Berlin:Springer,1994.
    [163]GESZTESY F, HOLDEN H. Soliton Equations and Their Algebro-Geometric Solutions [M]. Cambridge University Press,2003.
    [164]GESZTESY F, HOLDEN H. Real-valued algebro-geometric solutions of the Camassa-Holm hierarchy [J]. Philos. Trans. R. Soc. London, Ser. A 2008,366:1025-1054.
    [165]NAKANURA A. A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. I. Exact Two-Periodic Wave Solution [J]. J. Phys. Soc. Jpn.,1979, 47:1701-1705.
    [166]NAKANURA A. A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. Ⅱ. Exact One and Two Periodic Wave Solution of the. Coupled Bilinear Equations [J]. J. Phys. Soc. Jpn.,1980,48:1365-1370.
    [167]HON Y C, FAN E G. A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation [J]. Mod. Phys. Lett. B,2008,22:547-553.
    [168]FAN E G, HON Y C. Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions [J]. Phys. Rev. E.2008,78:036607.
    [169]FAN E G. Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation [J]. J. Phys. A:Math. Theor.,2009,42:095206.
    [170]HU X B, YU G F. Integrable discretizations of the (2+1)-dimensional sinh-Gordon equation [J]. J. Phys. A:Math. Theor.,2007,40:12645.
    [171]MA W X, ZHOU R G, GAO L. Exact one-peridoic and two-peridoic wave solutions to Hirota bilinear equations in (2+1) dimensions [J]. Modern Phys. Lett. A,2009,24:1677-1688.
    [172]WU H, ZHANG D J. Mixed rational soliton solutions of two differential-difference equations in Casorati determinant form [J]. J. Phys. A,2003,36:4867-4873.
    [173]MUMFORD D. Tata Lecture On Theta I [M]. Progress in mathematica,1983,28.
    [174]ABRAMOWITZ M, STEGUN I. Handbook of Mathematical Functions [M]. New York: Dover,1965.
    [175]LAWDEN D F. Elliptic Functions and Applications [M]. New York:Springer,1989.
    [176]ISOJIMA S, MURATAA M, NOBEO A, SATSUMA J. Soliton antisoliton collision in the ultradiscrete modified KdV equation [J]. Phys. Lett. A,2006,357:31-35.
    [177]HIROTA R. Discrete analogue of a generalized Toda equation [J]. J Phys Soc Japan,1981, 50:3785-91.
    [178]JOSHI N, NIJHOFF F W, ORMEROD C. Lax pairs for ultra-discrete Painleve equations [J]. J. Phys. A:Math. Gen.,2004,37:L559-L565.
    [179]QUISPEL G R W, CAPEL H W, SCULLY J. Piecewise-linear soliton equations and piecewise-linear integrable maps [J]. J. Phys. A:Math. Gen.,2001,34:2491-503.
    [180]KIMIJIMA T, TOKIHIRO T. Initial-value problem of the discrete periodic Toda equation and its ultradiscretization [J]. Inverse Problems,2002,18:1705-1732.
    [181]NIJHOFF F W, CAPEL H W. The discrete Korteweg-de Vries equation [J]. Acta Applican-dae Mathematicae,1995,39:133-158.
    [182]ABLOWITZ M J, LADIK J F. On the solution of a class of nonlinear partial difference equations [J]. Stud. Appl. Math..1976,57:1-12.
    [183]OCHIAI T. NACHER J C. Inversible Max-Plus algebras and integrable systems [J]. J. math. Phys.,2005,46:063507.
    [184]SURIS Y B. Generalized Toda chains in discrete time [J]. Leningrad Math. J.,1991,2:339-352.
    [185]KAZAKOVA T G. Finite-Dimensional Reductions of the Discrete Toda Chain [J]. J. Phys. A:Math. Gen.,2004,37(33):8089.
    [186]WARD R. Discrete Toda field equations [J]. Phys. Lett. A,1995,199:45-48.
    [187]KRICHEVER I, LIPAN O, WIEGMANN P, ZABRODIN A. Quantum Integrable Models and Discrete. Classical Hirota Equations [J]. Comm. Math. Phys,1997,188:267-304.
    [188]INOUE R, TAKENAWA T. Tropical geometry and integrable cellular automata [J]. Int. Math. Res. Not.2008,19:19.
    [189]KAJIWARA K, NOBE A, TSUDA T. Ultradiscretization of solvable onedimensional chaotic maps [J]. J.Phys. A Math. Theor.,2008,41:395202.
    [190]IWAO S. Integration over tropical plane curves and ultradiscretization [J]. arXiv:0812.1873v3.
    [191]WILLOX R, TOKIHIRO T, SATSUMA J. Darboux and binary Darboux transformations for the nonautonomous discrete KP equation. J. Math. Phys.,1997,38:6455-6469.
    [192]INOUE R. Tropical geometry and integrable cellular automata I Tropical spectral curve and isolevel set [C]. Programme Satellite Conference. University of Glasgow,2009
    [193]FAY J D. Theta Functions on Riemann Surfaces [M]. Lecture notes in Math.352. Berlin-New York:Springer-Verlag,1973
    [194]MUMFORD D. Tata Lectures on Theta II [M]. Boston:Birkhaser,1984.
    [195]HIROTA R. Discrete analogue of a generalized Toda equation [J]. J. Phys. Soc. Japan,1981, 50(11):3785-3791.
    [196]INOUE R, TAKENAWA T. A Tropical Analogue of Fay's Trisecant Identity and the Ultra-Discrete Periodic Toda Lattice [J]. Commun. Math. Phys.,2009,289:995-1021.
    [197]INOUE R, IWAO S. Tropical spectral curves, Fay's trisecant identity, and generalized ul-tradiscrete Toda lattice [J]. arXiv:1003.0057v1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700