用户名: 密码: 验证码:
牛鼻鲼泳动动力学分析与仿生机器鱼研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋资源的大量开发和海洋战略的日益凸显,水下推进技术正成为国内外研究的热点。作为一种新型的鱼类仿生推进模式,牛鼻鲼胸鳍升力模式相比于传统的螺旋桨推进模式,具有摆动频率低、升力大、机动性能优良、水扰动噪声低等优点,这对于研究新型的水下机器人具有重要的意义。
     本文以牛鼻鲼为研究对象,从牛鼻鲼的形态学、解剖学、胸鳍扇动仿生的角度,通过有限元仿真和机器鱼实验两种技术手段对牛鼻鲼泳动时的运动学、水动力变化和涡结构演化进行研究,分析了牛鼻鲼胸鳍升力模式的形态适应性,重点研究和讨论了牛鼻鲼游动的三个特点,即自主游动、展向柔性以及胸鳍的非对称摆动。主要研究内容与创新点如下:
     1.结合牛鼻鲼外形、运动和受力分析,揭示了牛鼻鲼对生存环境的形态适应性,从生物力学的角度阐述了牛鼻鲼的外形具有减小阻力和增加推力的作用,而这正是牛鼻鲼长期在水中形态适应性的结果。
     2.通过建立三维有限元仿真模型,利用鳍条的多点激励模仿肌肉的内力作用、多鳍条组合模仿胸鳍扇动的方式,考虑流固耦合进行了模型的自主游动仿真,并结合胸鳍扇动和模型的运动结果、水动力结果和涡结构演化揭示了牛鼻鲼胸鳍升力模式推进的特征:
     (1)由于胸鳍通过胸鳍上的鳍条按一定相序依次摆动,自主产生由前往后的推进波,从而推动模型前进,这说明牛鼻鲼依靠胸鳍扇动过程形成的推进波实现推进或机动;
     (2)净推力在一个周期内呈现双峰特征,这种在胸鳍的上挥和下拍冲程中能够连续做正功的特性表明牛鼻鲼胸鳍升力模式的推进效率较高,而这一特性也与Heine的活体观测结果和Clark的模型实验结果相吻合;
     (3)结合水动力和涡结构的分析,牛鼻鲼通过控制胸鳍摆动,形成有利的反卡门涡街,从而诱导射流获得需要的推力和升力。
     3.利用观测和仿真结果设计并研制出自主游动的仿牛鼻鲼胸鳍模式机器鱼,分析揭示了胸鳍的摆动参数即鳍条摆动频率、鳍条摆幅和相邻鳍条相位差对机器鱼平均前游速度的影响规律:
     (1)当机器鱼鳍条摆动频率低于0.8Hz时,机器鱼平均前游速度与鳍条摆动频率、鳍条最大摆幅和相邻鳍条相位差成正比关系;
     (2)当机器鱼鳍条摆动频率在0.8Hz~1Hz范围时,机器鱼平均前游速度与鳍条摆动频率基本没有关系;
     (3)当机器鱼鳍条摆动频率在1Hz~2Hz范围时,机器鱼平均前游速度只决定于相邻鳍条相位差。
     4.通过测量并定量比较刚性鳍条机器鱼和柔性鳍条机器鱼的水动力和涡结构,讨论了胸鳍的展向柔性对机器鱼游动性能的影响;结果表明,鳍条的展向柔性不仅提高了前进时和后退时的推力性能,还大大改善了游动平稳性能。
     5.牛鼻鲼胸鳍的摆动主要表现为时间非对称摆动,即在实际游动过程中常以上挥急回的方式摆动。通过从模型仿真、运动测试和水动力测量方面定量比较柔性鳍条机器鱼的非对称摆动,发现胸鳍升力模式推进存在着较佳不对称范围和最佳不对称系数:和对称摆动相比,非对称摆动的机器鱼在较佳范围内的推进性能不仅得到增强,且游动更趋于平稳;机器鱼在不对称系数0.56工况下拍动,速度和推力均在较佳范围内表现最大。
     本文针对牛鼻鲼的泳动完成了从“形似”到“神似”的有益探索,它在自主游动仿真方面的尝试将对粘性流体中的胸鳍升力模式推进及机动的机理研究提供新思路,而在机器鱼的胸鳍摆动参数、胸鳍展向柔性和胸鳍的非定常运动方面的研究,将有助于胸鳍升力模式机器鱼的研制和开发,并具有重要的理论和工程应用价值。
With the development of ocean resources exploring and marine sovereignty safeguarding, underwater propulsion has been becoming a hot research field concerned by more and more scientists and engineers all over the world. Under such circumstances, some biologically inspired propulsors are suggested and designed to mimic fish swimming modes. One typical case is pectoral lift-based mode inspired by Cownose Ray. Compared to the traditional propellers, this bionic propulsion mode presents some obvious advantages with lower oscillation frequency, higher lift force, greater maneuverability and lower noise. Thus, it is of great significance to improve performance of underwater autonomous vehicles.
     In this dissertation, kinematics, hydrodynamics and vortex structure of Cownose Ray in swimming are explored by taking advantages of the finite element simulation and experimental validation with the robotic fish. Furthermore, it is ascertained how morphology of Cownose Ray with pectoral lift-based mode is adapted to the complex environment. In particular, three characteristics, in terms of autonomous swimming, spanwise flexibility and asymmetric oscillation, are respectively studied. The main contributions in this work can be summarized as follows:
     1. Morphology of Cownose Ray adapting to the living circumstance is at first introduced. By observing the swimming kinematics and analyzing the force of Cownose Ray, morphology of Cownose Ray does reduce drag force and increase propulsive force, which is naturally selected during a long period adapting to water surroundings.
     2. A three-dimensional finite element model is established. Under this computational model, the autonomous swimming mode is simulated and analyzed with the coupling of fluid-structure, by using fin-ray animations to imitate the muscle internal force and using fin-surface combination to mimic the pectoral fins oscillation. Swimming behaviors of Cownose Ray are illustrated by kinematic results, hydrodynamic results and vortex structures. Moreover, swimming performance of pectoral lift-based mode is discussed at length.
     (1) As all the pectoral fin rays oscillate in specified orders, an autonomous propulsive wave appears from the leading edge to the trailing edge. In a result, the Cownose Ray computational model is propelled, to validate that the propulsive waves of pectoral oscillation can generate effective propulsion and maneuvering as well;
     (2) The propulsive net force presents double crests in one period. It shows both the upstroke and the downstroke of pectoral fins can produce positive power. This feature of the continuous power indicates high propulsive efficiency of pectoral lift-based mode;
     (3) Cownose Ray can skillfully control the oscillation of pectoral fins to form the useful con-Karman gait, and therefore induce shed fluid to attain the required propulsive force and lift force.
     3. An autonomous robotic fish with pectoral lift-based mode is designed and developed, based on the observation of fish swimming and corresponding simulations. The relative contribution of the fin beat frequency, the largest amplitude of fin rays and the phase difference between the adjacent fin rays to the forward velocity is originally investigated:
     (1) When the pectoral fins flap in frequencies lower than 0.8Hz, the forward velocity of the robotic fish keeps direct ratio to these three variables;
     (2) When the pectoral fins flap in frequencies between 0.8Hz and 1Hz, the forward velocity has no remarkable relationship with fin beat frequency;
     (3) When the pectoral fins flap in frequencies between 1Hz and 2Hz, the forward velocity is only dependent on the phase difference between the adjacent fin rays.
     4. Affection of spanwise flexibility of the pectoral fins on the swimming of the robotic fish is also explored, by measuring and quantitatively comparing the hydrodynamic force and vortex structure of the robotic fish. This prototype can be equipped with both rigid and flexible fin rays. Experimental results show that spanwise flexibility not only increases the forward and backward propulsive force, but also greatly improves the swimming stability.
     5. Pectoral flapping of Cownose Ray exhibits asymmetric oscillation, which means a slower downstroke following a quicker upstroke in one flapping circle. Asymmetric oscillation with flexible fin rays is quantitatively investigated through comparisons among mathematical model, kinematics and hydrodynamics of the robotic fish. A better asymmetric range and optimum factor are also studied and discovered. In detail, compared to the symmetric oscillation, asymmetric oscillation with a better asymmetric range can improve propulsive performance, and meanwhile swimming becomes more stable; as for the experimental range,, the velocity and the propulsive force of the robotic fish is optimum in the case of 0.56 of asymmetric factor.
     All the above achievements make a beneficial exploration for the imitation on Cownose Ray swimming from "imitation in shape" to "resemblance in function". In this work, the simulation of autonomous swimming will give a new alternative to the mechanics of pectoral lift-based swimming mode in the viscous fluid. Discussion on the oscillation variables, spanwise flexibility of the pectoral fins and the pectoral asymmetric oscillation should have potential for the design and exploration of underwater autonomous vehicles, theoretically and applicably.
引文
[1]各类船舶之最佳推进系数[EB/OL].http://www.tongji.edu.cn/-yanadv/ ship/paper8.htm.2000.12.4/2009.10.1.
    [2]童秉纲.鱼类波状游动的推进机制[J].力学与实践.2000,22(3):69-74.
    [3]陈政宏.鲤鱼如何跃龙门—水生物的推进法[J].科学发展.2002,360:48-51.
    [4]Williams S B, Newman P M, Rosenblatt J et al. Autonomous Underwater Navigation and Control[J].Robotica.2001,19(5):481-496.
    [5]Blidberg D R. Autonomous Underwater Vehicles:A Tool for the Ocean[J]. Unmanned Systems.1991,9(2):10-15.
    [6]Clark R P, Smits A J. Visualization of the Unsteady Wake of a Manta Ray Model[C].44th AIAA Aerospace Sciences Metting and Exhibit, Reno,Nevada, USA, 2006.
    [7]Yamamoto I. Research on Bio-maneuvering Type Underwater Vehicle: Development of Life-like Swimming Robotic Fish[C]. Proceedings of 18th Ocean Engineering Symposium, Japan,2005.
    [8]Mark Hewish. Submarines to Cast off their Shackles, Take on New Roles[J]. International Defense Review.2002,3.
    [9]林一平.美国海军装备研制新招数[J].现代舰船.1997,11:4-6.
    [10]蔡立勇,韩恩权,肖滨.无人水下平台对潜艇网络中心战能力的影响[J].舰船电子工程.2004,2(24):15-18.
    [11]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用[J].自然杂志.1998,20(1):1-7.
    [12]Breder C M. The Locomotion of Fishes[J]. Zoologica.1926,4:159-297.
    [13]Lindsey C C., Form, Function and Locomotory Habits in Fish[M]. in Fish Physiology Vol. Ⅶ Locomotion, edited by Hoar W S and Randall D J. New York: Academic Press.1978,1-100.
    [14]Webb P W. Form and Function in Fish Swimming[J]. Scientific American. 1984,251:58-68.
    [15]Sfakiotakis M, Lane D M, Davies J B C. Review of Fish Swimming Modes for Aquatic Locomotion [J]. IEEE J. Oceanic Eng.1999,24(2):237-252.
    [16]Blake R W. Fish Functional Design and Swimming Performance [J]. Journal of Fish Biology.2004,65(5):1193-1222.
    [17]Webb P W. The Biology of Fish Swimming[A]. The Mechanics and Physiology of Animal Swimming[M]. Cambridge, U K:Cambridge University Press. 1994,45-62.
    [18]Rosenberger L J. Pectoral Fin Locomotion in Batoid Fishes:Undulation versus Oscillation [J]. Journal of Experimental Biology.2001,204(2):379-394.
    [19]Blake R W. The Mechanics of Labriform Locomotion I. Labriform Locomotion in the Angelfish (Pterophyllum Eimekei):An Analysis of the Power Stroke[J]. Journal of Exp. Biol.1979(82):255-271.
    [20]Blake R W. The Mechanics of Labriform Locomotion Ⅱ. An Analysis of the Recovery Stroke and the Overall Fin-beat Cycle Propulsive Efficiency in the Angelfish[J]. Journal of Exp. Biol.1980(85):337-342.
    [21]Blake R W. Influence of Pectoral Fin Shape on Thrust and Drag in Labriform Locomotion[J]. J. Zool. Lond.1981,194:53-66.
    [22]Blake R W. Median and Paired Fin Propulsion. in Fish Biomechanics[M], Webb P W & Weihs D Eds.New York:Praeger.1983,214-247.
    [23]Webb P W. Kinematics of Pectoral Fin Propulsion in Cymalogaster Aggregate[J]. Journal of Exp. Biol.1973(59):697-710.
    [24]Vogel S. Life in Moving Fluids[M]. Princeton, NJ:Princeton Univ.1994.
    [25]Taylor G I. Analysis of the Swimming of Microscopic Organisims [J]. Proc. R. Soc. Lond. A,1951,209:447-461.
    [26]Taylor G I. The Action of Waving Cylindrical Tails in Propelling Microscopic Organisms[J]. Proc. R. Soc. Lund. A,1952,211:255-239.
    [27]Taylor G I. Analysis of the Swimming of Long Narrow Animals [J]. Proc. R. Scotland. A,1952,214:158-183.
    [28]Light hill M J. Note on the Swimming of Slender Fish [J]. J. Fluid. Mech. 1960,9:305-317.
    [29]Lighthill M J. Aquatic Animal Propulsion of High Hydromechanical Efficiency [J]. J. Fluid. Mech.1970,44:265-301.
    [30]Lighthill M J. Large-amplitude Elongated-body Theory of Fish Locomotion[J]. Proc. R. Soc. Lond. B.1971,179:125-138.
    [31]Weighs D. A Hydromechanical Analysis of Fish Turning Maneuvers[J].Proc. R. Soc. Lond. B.1972,182:59-72.
    [32]Weighs D. The Mechanism of Rapid Starting of Slender Fish[J]. Biorheology.1973,10:343-350.
    [33]Lighthill M J. Hydromechanics of Aquatic Animal Propulsion[J]. Annual Review of Fluid Mechanics.1969,1:413-446.
    [34]陶祖莱编著.生物流体力学[M].科学出版社,北京.1984.
    [35]Wu T Y. Swimming of a Waving Plate[J]. J. Fluid. Mech.1961,10:321-344.
    [36]Wu T Y. Hydrodynamics of Swimming Propulsion. Part 1.Swimming of a Two Dimensional Flexible Plate at Variable Forward Speeds in an Inviscid Fluid[J]. J. Fluid Mech.1971,46:337-355.
    [37]Wu T Y. Hydrodynamics of Swimming Propulsion. Part 2. Some Optimum Shape Problems[J]. J. Fluid. Mech.1971,46:521-544.
    [38]Chopra M G. Large-Amplitude Lunate-tail Theory of Fish Locomotion [J]. J. Fluid. Mech.1976,74:161-182.
    [39]Chopra M G. Hydrodynamics of Lunate-tail Swimming Propulsion[J]. J. Fluid. Mech.1974,64:375-391.
    [40]Chopra M G, Kambe T. Hydrodynamics of Lunate-tail Swimming Propulsion. Part Ⅱ[J]. J. Fluid. Mech.1977,79:49-60.
    [41]Lan C E. The Unsteady Quasivortex-lattice Method with Applications to Animal Propulsion[J]. J. Fluid. Mech.1979,93:747-765.
    [42]Katz J, Weihs D. Hydrodynamic Propulsion by Large Amplitude Oscillation of an Airfoil with Chordwise Flexibility [J]. J. Fluid. Mech.1978,88:485-497.
    [43]Daniel T L. Forward Flapping Flight From Flexible Fins[J]. Can. J. Zool. 1987,66:630-638
    [44]Blake R W. The Swimming of the Mandarin Fish Synchropus picturatus (Callionyiidae:Teleostei)[J]. J. Marine Biol. Assoc.1979,59:421-428.
    [45]程键宇.水生动物游动的流体力学研究[D].中国科技大学博士论文.1988.
    [46]Triantafyllou M S, Triantafyllou G S, Yue D K P. Hydrodynamics of Fishlike Swimming[J]. Annu. Rev. Fluid Mech.2000,32:33-53.
    [47]Heine C E. Mechanics of Flapping Fin Locomotion in the Cownose Ray, Rhinoptera Bonasus (Elasmobranchii:Myliobatidae)[D]. North Carolina, USA, Duke University.1992.
    [48]Gibb A.C., Jayne B.C., et al. Kinematics of Pectoral Fin Locomotion in the Bluegill Sunfish Lepomis Macrochirus[J]. J. Exp. Biol.1994,189:133-161.
    [49]Westneat M.W., Walker J.A.. Applied Aspects of Mechanical Design, Behavior, and Performance of Pectoral Fin Swimming in Fishes[C]. Proc. Special Session on Bio-Engineering Research Related to Autonomous Underwater Vehicles,10th Int. Symp. Unmanned Untethered Submersible Technology.1997, 153-165.
    [50]Arreola V. I., Westneat M.W.. Mechanics of Propulsion by Multiple Fins: Kinematics of Aquatic Locomotion in the Burrfish(Chilornycterus Schoepfi)[J]. Proc.R.Soc. London B.1996,263:1689-1696.
    [51]Drunker E.G., Lauder G. V.. Experimental Hydrodynamics of Fish Locomotion:Functional Insights from Wake Visualization[J].Integ. and Comp. Biol. 2002,42:243-257.
    [52]Drunker E.G., Lauder G. V.. Function of Pectoral Fins in Rainbow Trout: Behavioral Repertoire and Hydrodynamics Forces[J]. The Journal of Experimental Biology.2003,206:813-826.
    [53]Lauder G. V., Madden P. GA, Mittal R.,Dong Hb, Bozkurttas M..Locomotion with Flexible Propulsors:I. Experimental Analysis of Pectoral Fin Swimming in Sunfish. In Bioinspiration & Biomimetics[M].2006,1:25-34. Institute of Physics Publishing.
    [54]Dean M N, Motta P J. Feeding Behavior and Kinematics of the Lesser Electric ray, Narcine Brasiliensis [J]. Zoology.2004,107:171-189.
    [55]Dean M. N., Huber D. R. and Nance H. A.. Functional Morphology of Jaw Trabeculation in the Lesser Electric Ray Narcine Brasiliensis, With Comments on the Evolution of Structural Support in the Batoidea[J]. Journal of morphology.2005.
    [56]Schaefer J. T. and Summers A. P.. Batoid Wing Skeletal Structure:Novel Morphologies, Mechanical Implications, and Phylogenetic Patterns[J]. Journal of Morphology.2005,264:298-313.
    [57]Sasko D. E., Dean M. N., Motta P. J., Hueter R. E.. Prey Capture Behavior and Kinematics of the Atlantic Cownose Ray Rhinoptera bonasus[J]. Zoology.2006, 109:171-181.
    [58]Wolfgang M.J., Anderson J.M.,Grosenbaugh M.A., Yue D.K.P., Triantafyllou M.S..Near-body Flow Dynamics in Swimming Fish[J].Journal of Experimental Biology.1999,202:2303-2327.
    [59]童秉纲,陆夕云.关于飞行和游动的生物力学研究[J].力学进展.2004,34(1):1-8.
    [60]Schultz W W, Zhou Q N, Webb PW. A Two-dimensional Model of Fish Swimming[C].Mechanics and Physiology of Animal Swimming Meeting, Marine Biological Association,Plymouth,U.K. April,1991.
    [61]Liu H.,Wassersug R., Kawachi K.A Computational Fluid Dynamics Study of Tadpole Swimming[J]. Journal of Experimental Biology.1996,199:1245-1260.
    [62]Liu H, Wassersug R., Kawachi K.The Three-dimensional Hydrodynamincs of Tadpole Locomotion[J]. Journal of Experimental Biology.1997,200:2807-2819.
    [63]Liu H, Ellington C P, Kawachi K, et al. A Computational Fluid Dynamics Study of Hawkmoth Hovering[J]. Journal of Experimental Biology.1998, 201:461-477.
    [64]Liu H, Kawachi K. A Numerical Study of Undulatory Swimming[J].Journal of Computational Physics.1999,155:223-247.
    [65]Fauci L J. A Computational Model of the Fluid Dynamics of Undulatory and Flagellar Swimming[J].American Zoologist.1996,36:599-607.
    [66]Dillon R, Fauci L J.An Integrative Model Internal Axoneme Mechanics and External Fluid Dynamics in Ciliary Beating[J].Journal of Theoretical Biology.2000, 207:415-430,
    [67]Carling J, Willianms T L, Bowtell G. Self-propelled Angulliform Swimming: Simultaneous Solution of the Two-dimensional Navier-Stokes Equations and Newton's Laws of Motion[J]. Journal of Experimental Biology.1998,201:3143-3166.
    [68]Zhu Q. Three-dimensional Flow Structures and Vorticity Control in Fish-like Swimming[J].J Fluid Mech.2002,468:1-28.
    [69]Ramamurti R, Sandberg WC, Lohner R,Walker JA and Westneat MW. Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse:Three Dimensional Unsteady Computations with Fin Deformation[J].The Journal of Experimental Biology.2002,205:2997-3008.
    [70]Ramamurti R, Sandberg W C, Lohner R. The Influence of Fin Rigidity and Gusts on the Force Production in Fishes and Insects:A Computational Study[C]. AIAA-2004-0404, Washington, D.C,2004.
    [71]胡文蓉.鱼类单向机动运动二维流动特征的数值研究[D].南京航空航天大学博士学位论文.2003.
    [72]吴锤结,王亮.鱼类最优游动规律研究[C].空气动力学新进展论文集.北京.2003.
    [73]Wu C J, Wang L. Unsteady Moving Boundary CFD and Optimal Control Method With Applications in the Adaptive Optimal Control of Fluid Flow with Smart Surface[C].Proceeding of 2003 National Congress of Computational Mechanics Beijing.2003.
    [74]Lu X Y, Yin X Z. Propulsive Performance of Fish-like Rraveling Wavy Wall[J].Acta Mechanica.2005,175:197-215.
    [75]夏全新,鲁传敬,吴磊.鱼类波状摆动推进的数值模拟[J].水动力学研究与进展A辑.2005,20:921-928.
    [76]Bozkurttas M., Dong H., Mittal R., Madden P., Lauder G V.. Hydrodynamic Performance of Deformable Fish Fins and Flapping Foils[C].44nd AIAA Aerospace Sciences Metting and Exhibit. January 9-12. Reno, Nevada.2006,1-11.
    [77]胡文蓉.鳐的典型运动方式的水动力学数值研究[J].水动力学研究与进展.2008,23(3):269-274.
    [78]Hu W R.Performance of an Asymmetric Oscillating Foil[C].The Fourth International Symposium on Aero Aqua Bio-mechanisms. Shanghai, China.2009, 8.29-9.2.
    [79]Toshio Fukuda, Atsushi Kawamoto, Fumihito Arai and Hideo Matsuura. Steering Mechanism of Underwater Micro Mobile Robot. Proceedings of IEEE International Conference on Robotic and Automation.1995,363-368.
    [80]Kato Naomi. Pectoral Fin Model for Maneuver of Underwater Vehicles. Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology. 1996,49-56.
    [81]Kato Naomi, Inaba Tadahiko. Hovering Performance of Fish Robot with Apparatus of Pectoral Fin Motion. Proceedings of International Symposium on Unmanned Submersible Technology.1997,177-188.
    [82]Kato Naomi, Inaba Tadahiko. Guidance and Control of Fish Robot with Apparatus of Pectoral Fin Motion. Proceedings of IEEE International Conference on Robotics and Automation.1998,446-451.
    [83]Brower T P L. Design of a Manta Ray Inspired Underwater Propulsive Mechanism for Long Range, Low Power Operation[D]. Massachusetts, USA:Tufts University.2006.
    [84]Yasuyuki T, Toshio S, Sinpei U, et al. Fundamental Study of a Fishlike Body with Two Undulating Side-fins[A]. Bio-mechanisms of Swimming and Flying[M]. Japan:Springer Japan.2004,93~110.
    [85]Low K H, Willy A. Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins[A]. Proceedings of the IEEE International Conference on Mechatronics and Automation[C]. Piscataway, NJ, USA, IEEE.2005, 958~963.
    [86]Hishinuma K, Konno A, Mizuno A, et al. Analysis Method of Flapping Fin Motion for Manta-like Underwater Robot[C]. Proceedings of 7th International Symposium on Marine Engineering. Tokyo, Japan.2005,180.
    [87]Xu Y C, Zong G H, Bi S S, et al. Initial Development of a Flapping Propelled Unmanned Underwater Vehicle[A]. Proceedings of the IEEE Interntional Conference on Robotics and Biomimetics[C]. Piscataway, NJ, USA, IEEE.2007, 524~529.
    [88]Triantafyllou G S, Triantafyllou M S, Grosenbaugh M A. Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion[J].Journal of Fluids and Structures.1993,7:205-224.
    [89]Ogilby J D.On some Queensland Fishes[J].the Memoirs of the Queensland Museum.1912,1:26-65.
    [90]Rosenberger L J,Westneat M W. Functional Morphology of Undulatory Pectoral Fin Locomotion in the Stingray Taeniura Lymma (Chondrichthyes: Dasyatidae) [J].The Journal of Experimental Biology.1999,202:3523-3539.
    [91]郭春钊.基于鱼体肌肉模型的虚拟防鱼机器人优化设计与仿真研究[D].安徽,中国科学技术大学博士学位论文.2007.
    [92]张代兵.波动鳍仿生水下推进器及其控制方法研究[D].湖南,国防科学技术大学博士学位论文.2007.
    [93]Rosenberger L J. The Evolution of Batoid Locomotion[D].The University of Chicago. Chicago, Illinois.2000.
    [94]Dukes L J, Hu I H.Novel Mechatronics Design for a Robotic Fish. IEEE/RSJ International Conference on Intelligent Robots and Systems.2005, 2007-2082.
    [95]Zhang Z G, Wang S, Tan M.3-D Locomotion Control for a Biomimetic Robot Fish. Journal of Control Theory and Application.2004,2:169-174.
    [96]刘军考,陈维山,陈在礼.仿生机器鱼的运动学参数及试验研究[J].中国机械工程.2002,13(16):1354-1357.
    [97]成巍,孙俊岭,戴杰,袁剑平,徐玉如.仿生水下机器人的运动仿真技术研究[J].系统仿真学报.2005,17(1):11-15.
    [98]刘军考.仿鱼水下推进器理论与实验研究[D].黑龙江,哈尔滨工业大学博士学位论文.2001.
    [99]梁建宏.水下航行体仿生推进机理研究[D].北京,北京航空航天大学博士学位论文.2006.
    [100]谢海斌.基于多波动鳍推进的仿生水下机器人设计,建模与控制[D].湖南,国防科学技术大学.2006.
    [101]王光明.胡天江.沈林成等.弓鳍目柔性波动长鳍运动学特征分析[J].中国机械工程.2007,13(7):1526-1530.
    [102]章永华.柔性仿生波动鳍的理论与实验研究[D].安徽,中国科学技术大学博士学位论文.2008.
    [103]戴莱 J W,哈里曼 D R F著.郭子中,陈玉璞等译.流体动力学[M].人民 教育出版社.北京,1981.
    [104]王献孚,韩久瑞编.机翼理论[M].北京,人民交通出版社.1987.
    [105]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构.2008,14(1):3-15.
    [106]苏波,袁行飞,聂国隽,钱若军.流固耦合理论研究述评(1)—流固耦合问题研究进展[C].第七届全国现代结构工程学术研讨会第七届全国现代结构工程学术研讨会.2007.
    [107]胡天江,李非,沈林成.“尼罗河魔鬼”长背鳍波动包络线的提取算法[J].国防科学技术大学学报.2005,27(5):67-72.
    [108]卞文杰,万力,吴莘馨编著.瞬态动力学CAE解决方案MSC.Dytran基础教程[M].北京大学出版社.2004.
    [109]冯元桢著,邓善熙译.生物力学——运动,流动,应力和生长[M],四川教育出版社.1993.
    [110]胡广书.数字信号处理—理论,算法与实现[M].北京,清华大学出版社.1999.
    [111]刘习军,贾启芬编著.工程振动理论与测试技术[M].北京,高等教育出版社.2004.
    [112]MSC.Dytran Reference Manual[K].2005.
    [113]伏欣 H W 著,沈克扬译.气动弹性力学原理[M].上海科学技术文献出版社.1982.
    [114]赵经文.王宏钰.结构有限元分析[M].北京,科学出版社.2001.
    [115]Clark R P, Smits A J. Thrust Production and Wake Ftructure of a Batoid-inspired Oscillating Fin[J]. J. Fluid Mech.2006,562:415-429.
    [116]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志.1998,20(1):1-7.
    [117]李学敏.鱼类波状游动尾涡流场测量[D].安徽,中国科学技术大学硕士学位论文.2002.
    [118]超强胶水O型环法(SOR法)[EB/OL]. http://www.chuandong.com /cdbbs/2007-6/6/1737137324.html.2007.6.6/2007.10.10.
    [119]从爽,李泽湘.实用运动控制技术[M].北京,电子工业出版社.2005,
    [120]NACA 4 digits series profile generator [EB/OL]. http://www.ppart.de/ aerodynamics/profiles/NACA4.html.2009.10.7/2009.11.5.
    [121]王铁城.空气动力学实验技术[M].北京,航空工业出版社.1995.
    [122]范洁川.流动显示与测量[M].北京,机械工业出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700