用户名: 密码: 验证码:
内蒙古赤峰市热水镇地热田热资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地热是新能源家族中的重要种类,对于改善能源结构意义重大。与石油、煤炭和天然气相比,地热资源释放出的温室效应气体很少,具有廉价、清洁、易开采、可直接利用和可再生等优点。我国的地热资源总量仅次于美国,居世界第二位,约占全球地热资源的7.9%。我国利用地热的主要方式是高温地热发电和中低温地热直接利用。内蒙古自治区地热资源的勘查与开发起步较晚,发现的地热点不多,地下热水资源相对有限,赤峰市热水镇为一天然热水矿泉,在该热水矿泉进行了包括地质、重力和地温测量等项内容的地质、地球物理野外勘查,并结合对以往既有勘探资料的分析,对地热田的热结构模型进行了深入研究,为正确评价该地热田地热资源提供了科学依据。同时对开发利用该地热资源发展当地经济和提高当地人民生活水平有十分重要的现实意义。
     通过分析赤峰市热水镇地区地质构造特征,阴山断裂构造属于最古老的构造活动带,其活动一直延续到燕山造山活动时代,对本区的地质构造影响极大,与其斜交的八里罕断裂主要活动时期为燕山造山运动的末期。这一断裂在八里罕北部为北东—南西走向,以南变为南北走向。八里罕断裂在本区存在约100m宽破碎带,并发育有次级张性断层和裂隙。八里罕断裂现在还发生微小地震,说明其还在活动。本区除了南北走向的八里罕断裂之外,还存在北西—南东和北东—南西向的断裂系列。地热田正好在上述南北向、北西—南东向、北东—南西向及东西向断裂构造的交汇处,这些断裂构成了地热田热水上升的主要通道,与中生代燕山造山运动相伴的岩浆活动形成的花岗岩和古近纪岩浆活动相伴的玄武岩侵入体构成本区温泉的热源。研究区内地热田西临陡峻山区,东接平缓丘陵地带。两者的分界是南北走向的八里罕断裂,西部由前寒武纪结晶片岩、片麻岩和侵入岩等块状岩构成,东部凹陷上覆由侏罗纪火山岩和第四纪堆积岩所构成,下部为前寒武纪岩类。
     做为地热流体主体的水的起源,可通过对其氢、氧同位素组成的分析而得。研究中分别采集温泉水样,地热田附近井水样和周边地表水样,并对它们进行了化学成分和同位素成分的测试及分析,结合氚浓度分析可知在离地热田向西、北部约10~20km远处的高海拔地区向地下渗透的天水为地热田热水的起源,推测这些天水约经80年以上时间才流动、滞留在本地热田。渗透到地下的天水到达深部后,主要以热传导方式加热成热水。根据热水中的化学成份、同位素分析数据,用各种地球化学、同位素温度计,估算浅部热水层和深部储集层中的热水的温度分别为100~110℃和140~150℃,因此本地热田热水属于天水起源的中、低温裂隙水。
     为了探明地热田的基底构造和断层的位置,我们在该区进行了重力勘探。对所测重力数据进行了相应改正后得到了测区重力异常分布,该区重力异常具有西部高而向东方向逐渐变低的倾向。测区西北部还呈现局部的高异常。这正与该区西部为前寒武纪岩类,东部陷没,而上覆侏罗纪岩类的岩性分布特征相吻合。同时为了掌握地热田的热构造和范围,并选定开发有利地点的目的,在该区进行1m深和50cm深的地温测量。对测温数据进行各种改正后,绘制了50cm深、1m深地温分布图。由地温分布图可知地下的热水是向低高程方向流动的,并随着变浅逐渐朝南东向倾斜。
     从热构造背景分析可知,本地区热背景具有略厚的地壳、稍低的大地热流和壳内相对低温的特征。在这样的地温条件下,壳内很难发生热水对流的现象。又从该区火山活动的分析研究可知,在地壳浅部形成地热田热源的大规模岩浆囊或岩浆固结所成高温岩体的可能性也是非常小的。这样,我们只能想象该地热田热水的热源为伴随构造运动所侵入的侏罗纪花岗岩和第三纪玄武岩体。因此,该地热田的热水循环模型推断如下:从地热田西、北部山区渗透到地下深部的天水,流到地热田下部,受由花岗岩和玄武岩侵入体所构成热源以热传导方式加热变成高温热水,再经该区发育的断裂、裂隙上升到浅部,并与浅层地下水混合,形成了该地热田浅部的热水储集层。根据以上分析和研究,给出该地热田的热结构模型。
     通过放热量法、容积法和可采集热水量的方法评价地热储量。各种不同评价法给出的资源量大体都落在200~2000KW范围内。这些评价方法中,认为依放热量法所进行的评价最粗略的话,那么可信度较高的资源量应该是以容积法和可采集热水量来评价的190~900KW。这些资源的评价中已经考虑了具有最高温度150℃的储集层的存在,因此,又发生推算的资源量大幅上浮的可能性很小。根据已有资料记载地热田实际的热水总涌出量(总抽取量)为1400~2100m3/天,若按参考假设可采热水量为1200L/min(1730m3/天)及1500L/min(2160m3/天),则与其相应的发电量计算结果分别为252~720KW和315~900KW。
Geothermal energy is one of the new energy.It is of great significance for improving energy structure.With oil,coal and natural gas,geothermal resource are cheap,clean and renewable.They can be used directly. China's total geothermal resources are 7.9% around the world, ranking second, fewer than the United States'.High temperature geothermal resources are used for power generation, whereas low-medium geothermal resources mainly for non-electrical utilization. For the correct evaluation of the geothermal fields provide a scientific basis for geothermal resources. Meanwhile, development and utilization of geothermal resources in the development of local economy and improve the level of the living conditions of local people is very important practical significance.
     Through survering on geological structural of Reshuizhen of Chifeng, The Yinshan faulted structure belonging to one of the oldest tectonic activities with its activities has been extended to the era of the Yanshan orogenic activity, the geological structure of this enormous influence, Bias of Balihan fracture with its main activity period is broken end of the Yanshan orogeny. The fault in the northern part of Balihan is NE - SW direction, south into north and south. Balihan fracture in the area there is about 100m wide fracture zone, and development of a secondary tensile faults and fissures. Balihan occurrence of small earthquakes is still broken, indicating the still active. In addition to the area north-south fracture outside of Balihan fracture, there is also the north west - south east and north east–SW fracture series. Geothermal field is just in the junction of the above fracture structure of north-south direction, west north- east south direction, east north– west north direction, and east- west direction, and the main passageway of hot water in geothermal field consists of these fractures, which are made up of the heat source of local spring with granite formed together with magmatism of the Yanshan orogenic movement in Mesozoic Era and basalt formed together with orogenic movement in Paleocene. And the geothermal field in research faces high and precipitous mountainous area in the west and connects with flat hilly country in the east. The dividing line of the two landforms is Balihan fracture with south- north direction, in the west it is composed of massive rocks, such as crystalline schist, gneiss, and intrusive rock of Precambrian period; while the east sunk part is covered with volcanic rocks of the Jurassic Period and accumulative rocks of the Quaternary period, and in the under part they are Precambrian rocks.
     The origin of main water of geothermal fluid can be gained through the analysis of the composition of hydrogen and oxygen isotope. Hot spring water samples, water samples nearby geothermal field, and circumjacent earth’s surface samples are collected respectively in the research, which are tested and analyzed for chemical composition and isotopic composition, combining the analysis of tritium concentration, you can know that the meteoric water permeating to the underground in high-altitude areas 10~20 km away from geothermal field in the west and north, and we think that this meteoric water has flown to and stayed in this geothermal field through more than eighty years. After the meteoric water permeated to the underground reaches deep part, which is heated to hot water mainly in the way of heat conduction. According to the chemical composition in hot water and data of isotope analysis, the hot-water temperatures in superficial part hot-water layer and deep part reservoir stratum are respectively 100~110℃and 140~150℃, so the hot water in local geothermal field belongs to intermediate and low temperature crevice water originated from meteoric water.
     In order to detect clearly the basement structure of geothermal field and the location of fault, we should conduct gravitational prospecting in this area. After correcting relevantly the measured gravity data, we get the gravity anomaly distribution in measured area, and the gravity anomaly in this area has the tendency of western high and it becomes lower to the east direction gradually. In the northwest of this researched area also appears partial unusual height. And this is identical to the Precambrian rocks in the west, subsidence in the east, and lithological characters distribution characteristics of Jurassic Period rocks. And at the same time, in order to master the thermo-tectonics and scope of geothermal field and select vantage point, we measure the earth temperature in this area with the depth of 1m and 50cm. After the amendments of the temperature measurement data, the temperature distribution map with the depth of 1m and 50cm has been drawed.The underground hot water flows from the lower part to the higher part, which can be known through ground temperature distribution map, and it leans to the southeast direction.
     From thermo-tectonics backgrounds, the thermal background of this area has characteristics of thick earth’s crust, low terrestrial heat flow, and low temperature within the shell. Under this kind of ground temperature, convective phenomena in the shell are difficult to be seen. Through the analysis and research of volcanic activity in this area, we can know that it is nearly impossible to form large-scale magma pocket of heat source in the geothermal field or concrete to rock mass with high temperature. In this case, we only can imagine that the heat sources of this hot water in the geothermal field are granites of Jurassic Period and tortoise rocks of the Tertiary period. Therefore, the hot-water circulation of this geothermal field is inferred as follows: meteoric water permeating to the underground deep part from the west and north mountainous area of geothermal field, to the under part of geothermal field, and heat sources that consist of granite and basalt intrusive mass become high-temperature hot water in the way of heat conduction, and it rise to the superficial area through the fracture and fissuring of this area, combining with shallow ground water, in this way, the shallow hot-water reservoir stratum is formed. Through the above analysis and research, the thermal structural model of the local geothermal field is given.
     The terrestrial heat reserves are evaluated with the use of heat release method, volumetric method, and collectable hot water volume method. The given resource amount by different evaluation methods in mainly in the scope of 200~2000 KW. Among these evaluation methods, if the evaluation according to heat release amount method is roughest, then the resource amount with high credibility should be 190~900 KW that is evaluated with the use of volumetric method and collectable hot water volume method. In the evaluation of these resources, the existing reservoir stratum with the highest temperature of 150℃has been considered, therefore, it is nearly impossible to occur that the computative resources amount rise. According to the record of existing data, the actual hot water total gush amount of geothermal field (total extraction amount) is 1400~2100m3/day. If the collectable hot water amount is 1200L/min (1730m3/day) and 1500L/min (2160m3/day) according to reference, then the corresponding generated energy calculation results are 252~720 KW and 315~900 KW respectively.
引文
[1]汪集旸,孙占学.神奇的地热[M].北京:清华大学出版社, 2001.
    [2]陈墨香,汪集旸,邓孝.中国地热资源—形成特点和潜力估算[M].北京:科学出版社, 1994.
    [3]汪集旸,黄少鹏.中国大陆地区大地热流数据汇编(第二版)[J].地震地质. 1990, 12(4): 351-363.
    [4]黄少鹏.中国大陆地区热流数据的分布及其初步分析[J].地震地质. 1989, 11(3): 17-26.
    [5]管彦武,金旭,韩湘君,等.基于GIS平台的中国大地热流数据库[J].吉林大学学报(地球科学版). 2005, 35(4): 525-528.
    [6]金旭,韩湘君.大地热流测量数据子库[J].地球学报. 2001, 22(6): 521-525.
    [7]廖志杰.中国的火山、温泉和地热资源[M].北京:科学普及出版社, 1990.
    [8]汪集旸.近年来我国地热学的研究与展望[J].地球物理学报. 1997, 40(增刊): 249-256.
    [9]佟伟,章铭陶.腾冲地热[M].北京:科学出版社, 1989.
    [10]廖志杰,赵平等.滇藏地热—地热资源和典型地热系统[M].北京:科学出版社, 1999.
    [11]西藏地热工程处.地热和地热发电技术指南[Z].北京:水利电力出版社, 1988.
    [12]蔡义汉.地热直接利用[M].天津:天津大学出版社, 2004.
    [13]高仰才,葛玉玮.内蒙古地热资源成因类型及开发前景初探[C].北京:地质出版社, 2002.
    [14]马刚.华北平原北部地热资源评价[J].水文地质工程地质. 1990, 2: 8-11.
    [15]马家鑫.在通辽地区打出优质地热井[N].中国国土资源报, 2009-11-24.
    [16]李虎平,胡凤翔.内蒙古自治区地热能源分布情况及开发利用研究[C].北京:地质出版社, 2006.
    [17]刘英.内蒙古敖汉旗热水汤地热田地热成因、评价与开发利用研究[D].北京:中国地质大学, 2009.
    [18]周振才,郑克棪.内蒙古宁城地热资源开发规划论证[C].北京:地质出版社, 2007.
    [19]邵显珉,李艳秋.内蒙古宁城热水热田形成条件及远景预测[J].内蒙古地质. 2002, 2: 19-24.
    [20]白永峰,曹翔云,王玉华.宁城县热水资源的开发与利用[J].内蒙古水利. 2000, 2: 34-35.
    [21]王宇林,于常武,张立琴.平庄盆地中低温对流型地热系统及勘查靶区研究[J].辽宁工程技术大学学报. 2003, 22增刊(S1): 106-108.
    [22]辽宁省水文地质大队.宁城热水镇区水文地质普查报告[M].沈阳:辽宁省地质局, 1973.
    [23]张振国.中国地热资源勘查评价方法[M].北京:地震出版社, 1992.
    [24]汪集旸.中国地热资源及其开发利用[C].北京:地质出版社, 2002.
    [25]田廷山,刘延忠.中国地热资源的勘查开发利用和管理[J].中国地质. 1999, 11: 21-23.
    [26]国家质量技术监督局.地热资源勘查规范[S].北京, 1989.
    [27]中华人名共和国地质矿产部.地热资源评价方法[S].北京, 1986.
    [28]张振国.华北盆地岩溶地热资源评价[J].中国岩溶. 1988, 7(4): 324-328.
    [29]韩湘君,金旭.中国东北地区地热资源及热结构分析[J].地质与勘探. 2002, 38(1): 74-76.
    [30]韩湘君.东北地区大地热流数据的分布及分析[J].世界地质. 1998, 17(4): 48-53.
    [31]汪祖仁,许绍倬.中国矿泉与医疗[M].郑州:河南科学技术出版社, 1988.
    [32]王维勇,黄尚瑶.地热理论基础研究[M].北京:地质出版社, 1982.
    [33]徐寿波,彭敏华.能源技术[M].南京:江苏人民出版社, 1988.
    [34]朱俊生.国内外新能源和可再生能源发展现状[J].节能与环保. 2001, 4: 33-35.
    [35]郑敏.全球地热资源分布与开发利用[J].国土资源. 2007, 67: 56-57.
    [36]朱家玲.国内外地热资源开发利用概况[J].地热能. 2003, 10(6):20-28.
    [37]王贵玲,张发旺,刘志明.国内外地热能开发利用现状及前景分析[J].地球学报. 2000, 21(2): 134-139.
    [38]张克冰,赵素萍,薛江波.国内外地热资源开发利用的现状及发展思路[J].理论导刊. 2002, 8: 58-60.
    [39] K L W H. On the global variation of terrestrial heat flow[J]. Physics Earth Planet. 1970, 2(5): 332-341.
    [40] Pruess K, Bodvarsson G S. Thermal effects of reinjection in geothermal reservoirs with major vertical fractures[J]. Journal of Petroleum Techonlogy. 1984, 36: 1567-1578.
    [41] Eckstein Y, Maurath G, Ferry R A. Modeling the thermal evolution of an active geothermal system[J]. Journal of Geodynamics. 1985, 4: 149-163.
    [42] Shemin G. Estimation of groundwater velocity in localized fracture zones from well temperature profiles[J]. Journal of Volcanology and Geothermal Research. 1998, 84: 93-101.
    [43]周念沪.地热资源开发利用务实全书[M].北京:中国地质科学出版社, 2005.
    [44]陈墨香,汪集肠.中国地热研究的回顾和展望[J].地球物理学报. 1994, 37(A01): 320-338.
    [45]熊亮萍,汪集旸,庞忠和.漳州地热田温度场[J].地质科学. 1990, 1: 70-79.
    [46]熊亮萍,汪集旸,庞忠和.漳州热田地下热水的循环深度[J].地质科学. 1990, 4: 377-384.
    [47]李大心,曾陆海.漳州热田地温分布规律研究及成因模式的初步设想[J].地球科学. 1985, 3: 241-245.
    [48]周立岱.中低温地热系统形成机制及评价研究[D].阜新:辽宁工程技术大学, 2005.
    [49]万天丰,褚明记,陈明佑.福建省岩石圈热状态及地热资源远景评价[J].地质学报. 1988, 6(2): 178-189.
    [50] Wang J Y, Pang Z H, Xiong L P, et al. Genesis analysis of Zhangzhou bain geothermal system[J]. Advances in Geoscience. 1989, 1: 409-417.
    [51]臧绍先,刘永刚,宁杰远.华北地区岩石圈热结构的研究[J].地球物理学报. 2002, 45(1): 56-66.
    [52] Liao Z, Chen Z. Thermal waters of Shanlingzhi geothermal field, Tianjin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis. 1993, 29(2): 224-232.
    [53] Axelsson G, Dong Z. The Tanggu geothermal reservoir[J]. Geothermics. 1998, 27:271-294.
    [54]王东升,王经兰.中国地下热水的基本类型和成因特征[J].第四纪研究. 1996, 2: 139-146.
    [55]王贵玲,刘志明,蔺文静.鄂尔多斯周缘地质构造对地热资源形成的控制作用[J].地质学报. 2004, 78(1): 44-51.
    [56]张抗.鄂尔多斯断块构造和资源[M].西安:陕西科技出版社, 1989.
    [57]于湲.北京地区地热田地下热水的水化学及同位素研究[D].北京:中国地质大学, 2006.
    [58]刘育松,冯武军.如何开发北京地热[N].北京科技报, 2009-11-09(56).
    [59]吕金波,车用太,王继明.京北地区热水水文地球化学特征与地热系统的成因模式[J].地震地质. 2006, 28(3): 419-429.
    [60]张菊朋,熊亮萍.有限单元法在地热研究中的应用[M].北京:科学出版社, 1986.
    [61]伶伟,汪集肠.我国地热学研究的最新进展[J].地球物理学报. 1988, 31: 168-175.
    [62]刘延忠.中国地热资源开发与利用的思考[J].中国矿业. 2001, 10(5): 5-9.
    [63]王大纯,张人权,史毅虹.水文地质学基础[M].北京:地质出版社, 1995.
    [64]韩湘君,金旭,孙春晖.内蒙古阿尔山温泉热结构[J].地球学报. 2001, 22(3): 260-264.
    [65]孙春晖.中低温对流型地热系统及其研究方法简介[J].世界地质. 1999, 18(1): 90-92.
    [66]汪集.中低温对流型地热系统[J].地学前缘. 1996, 3(3-4): 97-99.
    [67]司士荣.国内外地热能开发利用综述[J]. 1998(2): 6-7.
    [68]郑秀华.世界地热资源开发应用现状[J].探矿工程. 2001, 1: 6-7.
    [69]张季生,武功建.世界直接利用地热资源的现状[J].物探与化探. 2001, 25(2): 90-94.
    [70]戴传山,梁军,孙乐平.地热直接与间接供暖系统的热特性比较[J].太阳能. 1998, 19(3): 303-306.
    [71]李志茂,朱彤.世界地热发电现状[J].太阳能. 2007, 8: 10-14.
    [72] Freesston D H. Direct uses of geothermal energy[J]. Gerthermal ResourcesCouncil Bulletin. 1990, 19(7): 188-198.
    [73]李红英译.地热能源带给人类的利益[J].水文地质工程地质技术方法动态. 2001(6): 7-8.
    [74] Elsson G.,等.冰岛低温热田回灌实验[C].北京:科学出版社,1995.
    [75]角清爱.日本温泉放热量的分布与地质构造带的关系[J].日本地质调查所月报. 1980, 31(3): 255-266.
    [76]田廷山,李明朗,白冶.中国地热资源及开发利用[M].北京:中国环境科学出版社, 2006.
    [77]章鸿钊.中国温泉辑要[M].北京:地质出版社, 1956.
    [78]姜建军,陶庆法,胡杰.我国地热资源开发利用现状、存在问题与建议[J].地热能. 2005, 10(5): 12-17.
    [79]李安宁,吕金波.开发利用地热资源[J].中国地质. 2001, 28(10): 41-45.
    [80]刘时彬,吴方之.西藏羊八井地热电站[J].新能源. 1990, 12(7): 43-46.
    [81]佟伟,穆治国,刘时彬.中国晚新生代火山和现代高温水热系统[J].地球物理学报. 1990, 33(3): 329-335.
    [82]朱梅湘,徐勇.西藏羊八井地热田水烛变[J].地质科学. 1989, 2: 162-175.
    [83]沈显杰.我国第一个高温地热田的地热资源评价[J].科学通报. 1985, 15: 1171-1174.
    [84]佟伟,刘时彬,穆治国.温泉与西藏经济[J].科学与中国. 1997(8): 22-24.
    [85]刘久荣.地热回灌的发展现状[J].地热能. 2003(4): 3-7.
    [86]徐军祥.我国地热资源与可持续开发利用[J].资源与环境. 2005, 15(2): 139-141.
    [87]李建宏,凌成健.浅谈地热资源的综合开发利用[J].油田节能. 2001, 12(3): 13-16.
    [88]田茂华.浅谈地热资源的综合利用开发[J].中国石油大学胜利学院学报. 2007, 21(3): 16-17.
    [89]杨毓桐.地热资源的形成与评价[J].水文地质工程地质. 1983, 5: 15-17.
    [90]雷万杉,王淼,张振庭,等.赤峰南部金地球化学块体评价[J].吉林大学学报(地球科学版). 2005, 39(2): 255-261.
    [91]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991: 570-572.
    [92] Corporation W J E E. Fluid geochemistry survey of geothermal field of Reshuizhen in Ningchen of Inner Mongolia,China[M]. Kyushu Electric Power Co., Ltd, 2007: 142-153.
    [93] Kozo Y, Kinzo S. The springs[M]. Tokyo: Local People Libiray, 1984: 1-278.
    [94] D'Amore F, Panichi C. Geochemistry in geothermal exploration[J]. Applied Geothermics. 1987, 9(3): 277-298.
    [95] Henlev R W, Truesdell A H, Braton P B. Fluid-mineral equihbria in hydrothermal system[J]. Review Econ Geol. 1984, 1: 267.
    [96]万军伟,刘存富,晁念英.同位素水文学理论与实践[M].武汉:中国地质大学出版社, 2003.
    [97]卫克勤.同位素水文地球化学[J].地球科学进展. 1992, 7(5): 67-68.
    [98]金旭,高锐.中国东部地区的热结构和地壳上地幔构造特征[J].日本地热学会誌. 1990, 12(2): 129-143.
    [99]黄少鹏.我国大陆地区大地热流与地壳厚度的变化[J].地球物理学报. 1992, 35(4): 441-450.
    [100]吴乾番,祖金华,谢毅真,等.我国第5号地学断面的大地热流研究[J].科学通报. 1990, 2: 126-129.
    [101]韩湘君,金旭.中国东北地区地热资源及热结构分析[J].地质与勘探. 2002, 38(1): 74-76.
    [102]高锐,黄立言,骆团结,等.深部地球物理探测数据库研究进展[J].地球学报. 2001, 22(6): 481-485.
    [103]江原幸雄,金旭.张力场热结构的比较研究[J].地球月刊. 1997, 19(11): 714-719.
    [104]赵连海.内蒙古凉城岱海地区地热地质勘查[J].地热能. 2006, 4: 7-9.
    [105]颜英军.蒙特卡罗法在中国典型地热资源评价中的应用[D].北京:中国地质大学, 2009.
    [106]王心义,廖资生,韩星霞,等.地热资源评价的蒙特卡罗法[J].水文地质工程地质. 2002, 29(4): 10-13.
    [107]周厚芳,刘闯,石昆法.地热资源探测方法进展[J].地球物理学进展. 2003,18(4): 656-661.
    [108]尤孝才,姚书振,颜世强,等.我国地热资源勘查开发利用及保护政策[J].中国矿业. 2007, 16(6): 1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700