用户名: 密码: 验证码:
预修正快速傅立叶变换方法在电磁散射分析中的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在雷达探测、目标识别、隐身和反隐身等技术领域中,快速分析目标的电磁散射特性具有重要意义。随着越来越多的复合材料被用于各种目标和设备,对任意金属和多种介质构成的复杂目标进行快速准确的散射分析已经成为热门研究课题。本文以电磁积分方程为理论基础,以矩量法为求解方法,使用预修正快速傅立叶变换(P-FFT)方法来加速求解过程。主要致力于对P-FFT方法的关键问题开展研究,对算法进行改进,并将其应用于快速分析复杂目标的电磁散射特性。
     本文可以分为三个部分。第一部分主要研究利用矩量法求解电磁积分方程的基本理论和具体方法;第二部分主要根据P-FFT方法的原理和实现方法,利用P-FFT方法分析金属目标、介质目标、金属-介质混合目标;第三部分主要针对P-FFT方法的固有缺陷,提出并实现多层P-FFT方法,并将其性能与P-FFT方法进行比较。
     在第一部分中,首先从基本电磁理论出发推导出电磁积分方程,然后介绍矩量法求解积分方程的基本思想和一般步骤,随后构建应用于金属目标的RWG基函数、应用于介质目标的SWG基函数,最后详细说明了利用RWG基函数离散金属目标的面积分方程、利用SWG基函数离散介质目标的体积分方程、利用RWG基函数和SWG基函数离散金属-介质混合目标的体-面结合积分方程的具体方法以及所得到的线性方程组。
     在第二部分中,首先阐述P-FFT方法的基本思想、一般步骤、理论依据以及各个算子的具体实现方法,然后提出模板拓扑的改进方法,实现一种新的模板拓扑,以达到降低近区预修正存储需求的目的,最后分别将P-FFT方法应用于分析金属目标、非均匀介质目标以及金属-介质混合目标的RCS,并分别考察P-FFT方法的计算精度、存储需求和计算复杂度。
     在第三部分中,针对P-FFT方法分析金属目标、空心介质目标和金属-介质混合目标时效率较低的问题,提出多层P-FFT方法,构造适用于多层P-FFT方法的模板拓扑和多层模板结构,然后实现多层P-FFT方法的层间投影、插值、预修正等算子,考察多层P-FFT方法分析各类目标时的计算精度、存储需求和计算复杂度,最后将多层P-FFT方法应用于分析各类目标的RCS,并比较多层P-FFT方法与P-FFT方法各自的适用范围。
The fast analysis of electromagnetic scattering characteristic of targets plays an important role in the technical areas of radar detection, radar target identification and radar cloaking and anti-cloaking. It has been a hot research topic to analyze the electromagnetic scattering from complex targets that compose of arbitrary metal and dielectric, partly because more and more composite materials are used in more and more targets and equipments. Aiming at these backgrounds, with the electromagnetic field integral equations being used as theoretical basis and the method of moments being used as solving technique the precorrected-FFT method is employed to accelerate the solving process in this thesis. The primary research focuses on studying some key problems of the precorrected-FFT method, improving the method, and applying the method to the fast analysis of EM scattering characteristics of complex targets.
     This thesis is made up of three parts. The first part of this thesis focuses on studying the basic theory and the specific implementation to solve electromagnetic field integral equations with method of moments. The second part focuses on applying the precorrected-FFT method to analyze metallic objects, dielectric objects, and composite metallic-dielectric objects based on its principle and implementation. In the third part, the multilevel precorrected-FFT method is presented and implemented to overcome the intrinsic drawback of the precorrected-FFT method, and then the performances of both methods are compared.
     In the first part of this thesis, the electromagnetic field integral equations are deduced from the basic electromagnetic theory firstly. Then the basic ideas and the general process of solving the integral equation with method of moments are introduced. And then the RWG basis function for metallic objects and SWG basis function for dielectric objects are constructed. Finally, the specific processes of the discretization of the surface integral equation of metallic objects with RWG basis function, the discretization of the volume integral equation of dielectric objects with SWG basis function, and the discretization of the volume-surface integral equation of composite metallic-dielectric objects with RWG and SWG basis functions are explained in detail, as well as the resulting linear equations.
     In the second part of this thesis, the basis ideas, the general process, the theory foundation and the implementation of the operators of the precorrected-FFT method are set forth firstly. Then a new stencil topology is implemented to reduce the memory requirement of near-zone precorrections. Finally, the precorrected-FFT method is applied to analyze the RCSs of metallic objects, dielectric objects and composite metallic-dielectric objects, with its accuracy, memory requirement and computation complexity being investigated.
     In the last part of this thesis, the multilevel precorrected-FFT method is presented to overcome the poor efficiency of the precorrected-FFT method when analyzing metallic objects, hollow dielectric objects and composite metallic-dielectric objects. Then an improved stencil topology and the multilevel stencil structure adapted to the multilevel precorrected-FFT method are constructed. And then the inter-level operators such as projection, interpolation and precorrection are implemented. And then the accuracy, memory requirement and computation complexity of the multilevel precorrected-FFT method are investigated in combination with the analysis of various objects. Finally, the multilevel precorrected-FFT method is applied to analysis the RCSs of various objects, followed by the range of application of the multilevel precorrected-FFT method and the range of application of the precorrected-FFT method being compared.
引文
[1]盛新庆.计算电磁学要论[M].北京:科学出版社, 2004.
    [2]王秉中.计算电磁学[M].北京:科学出版社, 2002.
    [3] Peterson A F, Ray S L, Mittra R. Computational Methods for Electromagetics[M]. New York: IEEE Press, 1998.
    [4] Chew W C, Jin J M, Midielssen E, et al. Fast and Efficient Algorithms in Computational Electromagnetics[M]. Boston: Artech House, 2001.
    [5] Volakis J L, Chatterjee A, Kempel L C. Finite Element Method for Electromagnetics: Antennas, Microwave Circuits and Scattering Applications[M]. New York: IEEE Press, 1998.
    [6] Swanson D J, Hoefer J R. Microwave Circuit Modeling with Electromagnetic Field Simulation[M]. Boston: Artech House, 2004.
    [7]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社, 1998.
    [8]高本庆.时域有限差分法[M].北京:国防工业出版社, 1995.
    [9] Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation. 1966, 14(3): 302-307.
    [10] Taflove A, Brodwin M E. Numerical solution of steady-state EM scattering problems using the time dependent Maxwell's equations[J]. IEEE Transactions on Microwave Theory and Techniques. 1975, 23: 623-630.
    [11] Britt L C. Solution of EM scattering problems using time domain techniques[J]. IEEE Transactions on Antennas and Propagation. 1989, 37(9).
    [12] Yee K S, Ingham D, Shlager K. Time domain extrapolation to the far field based on FDTD calculations[J]. IEEE Transactions on Antennas and Propagation. 1991, 39(3): 410-413.
    [13] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics. 1994, 114(2): 185-200.
    [14] Berenger J P. Three dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics. 1996, 127(2).
    [15]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社, 2002.
    [16]姜永金,陈忠宽,田立松,等. MPSTD算法子域分界面上改进的特征变量匹配条件[J].电子学报. 2006, 34(12): 229-2302.
    [17]姜永金,陈忠宽,毛钧杰,等. MPSTD算法中子域分界面匹配条件的比较研究[J].电波科学学报. 2006, 24(3): 337-341.
    [18]姜永金.多区域时域伪谱算法关键问题研究及其应用[D].长沙:国防科学技术大学研究生院, 2006.
    [19] Wang J J H. Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations[M]. New York: John Wiley & Sons, 1991.
    [20] Makarov S N. Antenna and EM Modeling with MATLAB[M]. New York: John Wiley & Sons, 2002.
    [21] Kolundzija B M, Djordjevic A R. Electromagnetic Modeling of Composite Metallic and Dielectric Structures[M]. Boston: Artech House, 2002.
    [22] Lu C C. A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes[J]. IEEE Transactions on Antennas and Propagation. 2003, 51(9): 606-612.
    [23] Sarkar T K, Arvas E. An integral equation approach to the analysis of finite microstrip antennas: volume/surface formulation[J]. IEEE Transactions on Antennas and Propagation. 1990, 38(3): 305–313.
    [24] Lu C C, Chew W C. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets[J]. IEEE Transactions on Antennas and Propagation. 2000, 48(12): 1866–1868.
    [25] Harrington R F. Field Computation by Method of Moment[M]. New York: MacMillan, 1968.
    [26] Schaubert D H, Wilton D R, Glisson A W. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies[J]. IEEE Transactions on Antennas and Propagation. 1984, 32(1): 77-85.
    [27] Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation. 1982, 30(3): 409-418.
    [28] Mei K K, Bladel J V. Scattering by perfectly conducting rectangular cylinders[J]. IEEE Transactions on Antennas and Propagation. 1963, 11(2): 185–192.
    [29] Andreasen M G. Scattering from parallel metallic cylinders with arbitrary cross sections[J]. IEEE Transactions on Antennas and Propagation. 1964, 12(6): 746–754.
    [30] Mei K K. On the integral equations of thin wire antennas[J]. IEEE Transactions on Antennas and Propagation. 1965, 13(3): 374–378.
    [31] Andreasen M G. Scattering from bodies of revolution[J]. IEEE Transactions on Antennas and Propagation. 1965, 13(2): 303–310.
    [32] Richmond J H. Scattering by a dielectric cylinder of arbitrary cross section shape[J]. IEEE Transactions on Antennas and Propagation. 1965, 13(3): 334–341.
    [33] Richmond J H. Scattering by an arbitrary array of parallel wires[J]. IEEE Transactions on Microwave Theory and Techniques. 1965, 13(4): 408–412.
    [34] Richmond J H. TE-wave scattering by a dielectric cylinder of arbitrary cross section shape[J]. IEEE Transactions on Antennas and Propagation. 1966, 14(4): 460–464.
    [35] Richmond J H. A wire-grid model for scattering by conducting bodies[J]. IEEE Transactions on Antennas and Propagation. 1966, 16(6): 782–786.
    [36] Harrington R F, Mautz J R. Straight wires with arbitrary excitation and loading[J]. IEEE Transactions on Antennas and Propagation. 1967, 15(4): 502–515.
    [37] Poggio A J, Miller E K. Integral equation solutions of three dimensional scattering problems[M]. in Computer Techniques for Electromagnetics, Mittra R Ed., New York:Permagon, 1973.
    [38] Chang Y, Harrington R F. A surface formulation for characteristic modes of material bodies[J]. IEEE Transactions on Antennas and Propagation. 1977, 25(6): 789–795.
    [39] Wu T K, Tsai L L. Scattering from arbitrarily-shaped lossy dielectric bodies of revolution[J]. Radio Science. 1977, 12(5): 709–718.
    [40] Mautz J R, Harrington R F. Electromagnetic scattering from a homogeneous material body of revolution[J]. A. E. U. 1979, 33(2): 71–80.
    [41] Umashankar K R, Taflove A, Rao S M. Electromagnetic scattering by arbitrary shaped three dimensional homogeneous lossy dielectric objects[J]. IEEE Transactions on Antennas and Propagation. 1986, 34(6): 758–766.
    [42] Sarkar T K, Arvas E, Ponnapalli S. Electromagnetic scattering from dielectric boies[J]. IEEE Transactions on Antennas and Propagation. 1989, 37(5): 673-676.
    [43] Jin J M, Liepa V V, Tai C T. Volume-surface integral formulation for electromagnetic scattering by inhomogeneous cylinders[C]. In: IEEE APS Int. Symp. Dig., Syracuse, New York: 1988. 372-375.
    [44] Lu C C, Chew W C. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets[J]. IEEE Transactions on Antennas and Propagation. 2000, 48(12): 1866-1868.
    [45] Saad Y. Iterative Methods for Sparse Linear Systems[M]. Boston: PWS Publishing Company, 1996.
    [46] Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Journal of Computational Physics. 1990, 86(2): 414–439.
    [47] Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: A pedestrian prescription[J]. IEEE Antennas and Propagation Magazine. 1993, 35(3): 7–12.
    [48] Lu C C, Chew W C. A fast algorithm for solving hybrid integral equation[J]. IEEProceedings-H. 1993, 140(6): 455–460.
    [49] Hamilton L R, Macdonald P A, Stalzer M A, et al. 3D method of moments scattering computations using the fast multipole method[C]. In: IEEE Antennas Propagat. Int. Symp. Dig., 1994. 435-438.
    [50] Lu C C, Chew W C. A multilevel algorithm for solving boundary integral equations of wave scattering[J]. Microwave and Optical Technology Letters. 1994, 7(10): 466–470.
    [51] Dembart B, Yip E. A 3D fast multipole method for electromagnetics with multiple levels[C]. In: 11th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, California: 1995. 621-628
    [52] Song J, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetics scattering[J]. Microwave and Optical Technology Letters. 1995, 10(1): 14-19.
    [53] Song J, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennas and Propagation. 1997, 45(10): 1488–1493.
    [54] Song J M, Lu C C, Chew W C, et al. Fast Illinois Solver Code[J]. IEEE Antennas and Propagation Magazine. 1998, 40(3): 27–34.
    [55] Brigham E O. The Fast Fourier Transform and Its Applications[M]. Englewood Cliffs: Prentice-Hall, 1988.
    [56] Sarkar T K, Arvas E, Rao S M. Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies[J]. IEEE Transactions on Antennas and Propagation. 1986, 34: 635–640.
    [57] Gan H, Chew W C. A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems[J]. Journal of Electromagnetic Waves and Applications. 1995, 9(10): 1339–1357.
    [58] Bleszynski E, Bleszynski M, Jaroszewicz T. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems[J]. Radio Science. 1996, 31(5): 1225–1251.
    [59] Zhang Z Q, Liu Q H. A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects[J]. IEEE Antennas and Wireless Propagation Letters. 2002, 1(6): 102–105.
    [60] Carr M A, Topsakal E, volakis J L, et al. Adaptive integral method applied to multilayer penetrable scatterers with junctions[C]. In: IEEE Antennas Propag. Soc. Int. Symp., 2001. 858-861.
    [61] Phillips J R, Kamon M, White J. An FFT-based approach to including nonideal ground planes in a fast 3-D inductance extraction program[C]. In: Custom Int. Circuits Conf.,1993.
    [62] Phillips J R, White J K. Efficient capacitance extraction of 3D structures using generalized pre-corrected FFT methods[J]. Computer Methods in Applied Mechanics and Engineering. 1994.
    [63] Phillips J R P R, White J K. Efficient capacitance extraction of 3D structures using generalized pre-corrected FFT methods[C]. In: IEEE 3rd Topical Meeting on Electrical Performance of Electronic Packaging,1994.
    [64] Phillips J R, White J K. A precorrected-FFT method for electrostatic analysis of complicated 3-D structures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1997, 16(10): 1059-1072.
    [65] Phillips J R. Rapid solution of potential integral equations in complicated 3-dimensional geometries[D]. Cambridge: Massachusetts Institute of Technology, 1997.
    [66] Phillips J R. Error and complexity analysis for a collocation-grid-projection plus precorrected-FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels[C]. In: Conf. of Multigrid Methods, Copper Mountain, CO: 1995. 2-7.
    [67] Mclaren A D. Optimal numerical integration on a sphere[J]. Mathematics of Computation. 1963, 17: 361-383.
    [68] Hu H, Blaauw D T, Zolotov V, et al. Fast on-chip inductance simulation using a precorrected-FFT method[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2003, 22(1): 49-66.
    [69] Ling F, Okhmatovski V I, Harris W, et al. Large-Scale Broad-Band parasitic extraction for fast layout verification of 3-D RF and Mixed-Signal On-Chip structures[J]. 2005, 53(1): 264-273.
    [70] Zhu Z, Song B, White J K. Algorithms in FastImp: a fast and Wide-Band impedance extraction program for complicated 3-D geometries[J]. 2005, 24(7): 981-997.
    [71] Nie X C, Li L W, Yuan N, et al. Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method[J]. Microwave and Optical Technology Letters. 2002, 34(6): 438-442.
    [72] Nie X C, Li L W, Yuan N. Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering[J]. Journal of Electromagnetic Waves and Applications. 2002, 16(8): 1171–1187.
    [73] Nie X C, Li L W, Yuan N, et al. Precorrected-FFT solution of the volume integral equation for 3-D inhomogeneous dielectric objects[J]. IEEE Transactions on Antennas and Propagation. 2005, 53(1): 313-320.
    [74] Nie X C, Li L W, Yuan N, et al. A fast analysis of electromagnetic scattering by arbitrarily shaped homogeneous dielectric objects[J]. Microwave Opt. Technol. Lett. 2002, 38(1): 30–35.
    [75] Nie X C, Yuan N, Gan Y, et al. A fast combined field volume integral equation solution to EM scattering by 3-D dielectric objects of arbitrary permittivity and permeability[J]. IEEE Transactions on Antennas and Propagation. 2006, 54(3): 961-969.
    [76] Nie X C, Yuan N, Li L W, et al. A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects[J]. IEEE Transactions on Antennas and Propagation. 2005, 53(2): 818-824.
    [77] Yuan N, Yeo T S, Nie X, et al. Analysis of probe-fed conformal microstrip antennas on finite grounded substrate[J]. IEEE Transactions on Antennas and Propagation. 2006, 54(2): 554-563.
    [78] Yuan N, Yeo T S, Nie X, et al. A fast analysis of scattering and radiation of large microstrip antenna arrays[J]. IEEE Transactions on Antennas and Propagation. 2003, 51(9): 2218-2226.
    [79] Zhang M, Li L, Ma A. Analysis of scattering by a large array of Waveguide-Fed Wide-Slot millimeter wave antennas using precorrected-FFT algorithm[J]. IEEE Transactions on Antennas and Propagation. 2005, 15(11): 772-774.
    [80] Zhu A, Gedney S D. A quadrature-sampled precorrected FFT method for the electromagnetic scattering from inhomogeneous objects[J]. IEEE Antennas and Wireless Propagation Letters. 2003, 2: 50-53.
    [81] Yilmaz A E, Weile D S, Jin J, et al. A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena[J]. IEEE Transactions on Antennas and Propagation. 2002, 50(7): 971-982.
    [82] Altman M D, Bardhan J P, Tidor B, et al. FFTSVD: a fast multiscale boundary-element method solver suitable for bio-MEMS and biomolecule simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006, 25(2): 274-284.
    [83] Harrington R F. Time-Harmonic Electromagnetic Fields[M]. New York: John Wiley & Sons, 2001.
    [84]洪伟,孙连友,尹雷,等.电磁场边值问题的区域分解算法[M].北京:科学出版社, 2005.
    [85]毛钧杰,刘莹,朱建清.电磁场与微波工程基础[M].北京:电子工业出版社, 2004.
    [86] Volakis J L. Quadrature rules for numerical integration over triangles and tetrahedra[J]. IEEE Antennas and Propagation Magazine. 1996, 38(3): 100-102.
    [87] Zienkiewicz O C. The Finite Element Method in Engineering Science, Third Edition[M]. Third Edition ed. London: New York: McGraw-Hill, 1977.
    [88]曾攀.有限元分析及应用[M].北京:清华大学出版社, 2005.
    [89] Sunder K S, Cookson R A. Integration points for triangles and tetrahedronsobtained from the Gaussian quadrature points for a line[J]. Computers & Structures. 1985, 5: 881-885.
    [90] Wilton D R, Rao S M, Glisson A, et al. Potential integrals of uniform and linear source distributions on polygonal and poiyhedral domains[J]. IEEE Transactions on Antennas and Propagation. 1984, 32(3): 276-281.
    [91] Sleijpen G, Van Der Vorst H. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic[J]. Numerical Algorithms. 1995, 10.
    [92] Sleijpen G, Van Der Vorst H. Reliable updated residuals in hybrid BiCG methods[J]. Computing. 1996, 56: 141-163.
    [93] Fraysse V, Giraud L, Gratton S. A Set of GMRES Routines for Real and Complex Arithmetics[R]. France: CERFACS Technical Report TR/PA/03/3, 1997.
    [94] Harrington R F. Time-Harmonic Electromagnetic Fields[M]. Revised ed. New Jersey: IEEE Press, 2001.
    [95]《现代应用数学手册》编委会.现代应用数学手册-计算与数值分析卷[M].北京:清华大学出版社, 2005.
    [96] Arfken G. Mathematical Methods for Physicists[M]. 3rd ed. Orlando, Florida: Academic Press, 1985: 680-685.
    [97] Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge, Massachusetts: Cambridge Univ. Press, 1985.
    [98] Davis P J. Circulant Matrices[M]. 2nd ed. New York: Chelsea, 1994.
    [99] Vardi I. Computational Recreations in Mathematica[M]. MA: Addison-Wesley, 1991.
    [100] Stroeker R J. Brocard Points, Circulant Matrices, and Descartes' Folium[J]. Math. Mag. 1988, 61: 172-187.
    [101]周后型.大型电磁问题快速算法的研究[D].南京:东南大学研究生院, 2002.
    [102] Saad Y. ILUT a dual threshold incomplete LU factorization[J]. Numerical Linear Algebra With Applications. 1994, 1(4): 387-402.
    [103] Woo A C, Wang H T G, Schuh M J. Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs[J]. IEEE Antennas and Propagation Magazine. 1993, 35(1): 84-89.
    [104] Ewe W B. Fast solution to electromagnetic scattering by large-scale complicated structures using adaptive integral method[D]. Singapore: National University of Singapore, 2004.
    [105] Wang Y J, Nie X C, Li L W, et al. A parallel analysis of the scattering from inhomogeneous dielectric bodies by the volume integral equation and the precorrected-FFT algorithm[J]. Microwave and Optical Technology Letters. 2004, 42(1): 77–79.
    [106] Liu J, Jin J. A Novel Hybridization of Higher Order Finite Element and BoundaryIntegral Methods for Electromagnetic Scattering and Radiation Problems[J]. IEEE Transactions on Antennas and Propagation. 2001, 49(2): 1794-1806.
    [107] Liu J, Jin J. A Highly Effective Preconditioner for Solving the Finite Element–Boundary Integral Matrix Equation of 3-D Scattering[J]. 2002, 50(9): 1212-1221.
    [108] Aluru S, Sevilgen F. Dynamic Compressed Hyperoctrees with Applications to N-body Problems[C]. In: Proceedings of Foundations of Software Technology and Theoretical Computer Science, 1999. 21-33.
    [109] Samet A. Design and Analysis of Spatial Data Strucures[M]. MA: Addison-Wesley Publishing Company, 1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700