用户名: 密码: 验证码:
认知无线电中空闲频谱检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的快速发展,目前宽带多媒体业务已经成为无线服务重点,而无线频谱资源的匮乏已成为实现高性能无线服务的严重屏障。动态频谱接入被认为是解决无线频谱资源紧张、利用率低下的有效途径。认知无线电技术能够动态利用时间和空间上空闲的无线授权频段,为新的无线应用提供可用的频谱资源,因此它被认为是未来实现动态频谱接入的理想载体。而空闲频谱检测作为认知无线电物理层的关键技术之一,它是认知无线电系统能够正常工作的前提。本文从快速、准确、高灵敏度的检测要求出发,对单感知用户频谱检测技术、多天线频谱检测技术、多感知用户合作频谱检测技术做了深入研究。
     在第1章,首先对认知无线电的频谱检测的特殊性进行了讨论;然后对频谱检测技术进行了比较详细的分类;并对各种频谱检测方法的优缺点进行了归纳总结;此外,还对各种方法中具有代表性的文献的内容要点进行了阐述。
     在第2章,首先介绍了信号检测的基本概念,基本准则。然后为了克服能量检测方法易受噪声功率不确定性影响的严重缺点,提出了一种基于广义似然比准则的频谱检测算法,该算法首先通过最大似然准则分别对两种假设下的似然函数中的未知参数进行估计,然后按照似然比检验准则产生一个与噪声功率无关的检测统计量。通过数学推导和仿真实验都证明了该检测统计量在任何信道条件下都具有良好的抗噪声不确定性的优点。当存在噪声不确定性时,仿真结果还表明在接收数据长度和信噪比相同的条件下,本文GLRT算法的检测概率将明显高于能量检测法。
     在第3章,首先对循环谱的基本理论、估计方法进行了阐述。然后介绍了Dandawate和Giannakis提出的循环谱统计量检测算法。最后从降低循环谱检测统计量构造复杂度、如何设置判决门限、提高检测概率的角度出发,提出了一种基于频域平滑的循环谱统计量(FSCSS)频谱检测算法,在对检测统计量的概率分布进行了理论分析的基础之上,通过数学推导得到了高斯白噪声信道和瑞利衰落信道下,检测统计量虚警概率和检测概率的解析表达式,并解决了判决门限的设置问题。随后把在一个循环频率处构造检测统计量的方法推广到在两个循环频率处构造检测统计量的情景中。仿真实验的结果表明:在接收数据长度和信噪比相同的条件下,本文FSCSS算法的检测概率将高于DG算法。
     在第4章,由于多天线具有良好的抗衰落特性,所以可以将它与其他物理层检测方法相结合,从而达到进一步提高检测性能的目的。首先将基于频域平滑的循环谱统计量检测算法与多天线技术相结合,推导了采用等增益合并后检测统计量虚警概率的解析表达式,解决了判决门限的设置问题。然后给出了基于能量检测的多天线等增益合并法分别在两种信道条件下,虚警概率和检测概率的解析表达式。接下来介绍了Quan等人提出的最优线性加权合并频谱检测算法,并将其应用到多天线场景中。最后通过仿真实验将本文FSCSS算法的检测性能与这两种算法进行了比较。仿真结果表明:在接收数据长度和信噪比相同的条件下,本文FSCSS算法的检测概率最高。
     另外,在第4章中还从降低循环谱算法计算量的角度出发,对基于频域平滑的循环谱统计量频谱检测算法提出一种折衷方案;然后从使感知用户的平均吞吐量最大化的角度出发,研究了多天线下的折衷循环谱统计量频谱检测算法检测时长的优化问题。通过数学推导和仿真实验都证明了最佳检测时长的存在性。仿真实验还给出了不同天线个数和不同参数条件下吞吐量性能的对比曲线,仿真结果表明:通过增加天线个数不仅可以提高感知用户的最大平均吞吐量,而且还缩短了最佳检测时长。
     在第5章,为了抵抗深度衰落、提高频谱检测的可靠性,提出了一种新的基于集中式判决融合的合作频谱检测算法。该算法从使多感知用户合作检测概率最大化的角度出发,利用序列二次规划法求解控制中心的优化融合准则和各感知用户优化判决门限。本文首先给出了合作检测算法的数学描述。然后求解了不同信道条件下合作检测算法中联合判决概率的表达式。接下来分别对合作检测算法的优化问题、求解方法、实施步骤进行了阐述。最后对2比特软判决合作检测算法和两个感知用户判决相关条件下合作检测算法的优化问题进行了讨论。仿真实验得到以下结果:第一,无论是从检测概率随信噪比变化的曲线,还是从接收机操作特性曲线都可以看出,与其他融合准则固定的合作检测算法相比,本文的优化合作检测算法的检测概率始终是最高的。第二,在检测概率相同的条件下,通过多用户合作,可以缩短检测时长。第三,在信噪比相同的条件下,2比特软判决相比于1比特硬判决优化合作检测算法而言,检测概率只有微小改善,而且随着感知用户的增加,改善量越来越小。第四,两个相关感知用户的相关系数越大,与它们相互独立时相比,合作检测概率的改善量损失越大。
With the rapid development of wireless communication technologies, wireless service is now focusing on broadband multimedia business. However, the lack of wireless spectrum is becoming the obstacle of implementing these service. Dynamic spectrum access is considered an effective approach to solve shortness of wireless spectrum resources and lowness of spectrum utilization. Cognitive radio can dynamically reuse those idle authorized spectrum in temporal and spatial domain, and provide usable spectrum resources for new wireless applications. Therefore, cognitive radio is considered as an ideal carrier of implementing dynamic spectrum access in the future. As an key technology of cognitive radio physical layer, idle spectrum detection is the premise of cognitive radio system to operate normally. Starting from the request of quickness, exactness, and sensitiveness by spectrum detection, This dissertation studys idle spectrum detection deeply.
     In chapter one, first, the particularity of spectrum detection in cognitive radio is discussed. Second, the spectrum detection technologies are classified in detail. Third, the merit and shortcoming of various spectrum detection methods has been summrized,and the outline of representative literature of each spectrum method is expatiated at the same time.
     In chapter two, first, it is introduced the based concepts and rules of signal detection. Second, to overcome the serious shortcoming of failing to noise uncertainty by energy detection, it is proposed a blind spectrum detection algorithm based on generalized likehood ratio rule by this dissertation. First, the unknown parameters of likehood function are estimated through maximum likehood ratio rule under two hypothesis. Then, it is produced a detection statistic which is not ralated to nosie power by likehood ratio test rule. This statistic is free of noise uncertainty through mathematical deduction and computer simulation. When the noise uncertainty exists, if the length of received data and SNR are the same, the simulation results show that the detection probability of GLRT algorithm exceeds the energy detection clearly.
     In chapter three, first, the basic theory and esitimation methods of cyclic spectral are expatiated. Second, it is introduced the cyclic spectral statistic detection algorithm brought forward by Dandawate and Giannakis. Starting from deducing cyclic spectral detection statistic constructing complexity,how to set the threshold and improving detection probability, an cyclic spectral statistic spectrum detection algorithm based on freqency domain smoothing(FSCSS) is proposed by this dissertation. First, the distribution of detection statistic is analyzed theoretically. Second, it is deduced analytic expression of the false alarm probability and detection probability under AWGN channel and flat Rayleigh fading channel, the threshold setting is solved at the same time. Then, the FSCSS algorithm which has construct detection statistic at one cyclic frequency is extended to construct detection statistic at two frequency. The simulaiton results show when the length of received data and SNR are the same, the detection probability of FSCSS algorithm exceeds the DG algorithm.
     In chapter four, because of the merit of resisting fading, the multi-antenna technology can be combined with other physical layer detection methods, so as to further improve detection probability. First, the cyclic spectral statistic spectrum detection algorithm based on freqency domain smoothing is combined with multi-antenna technology, then it is deduced analytic expression of false alarm probability, and the threshold setting is solved at the same time. Second, analytic expression of the false alarm probability and detection probability of multi-antenna equal gain combining energy detection method are present. Third, it is introduced the optimal linear weighted combining detection algorithm proposed by Quan etc. At last, the three detection algorithms are compared through simulaiton, the results show that, when the length of received data and SNR are the same, the detection probability of the proposed algorithm is the best of all.
     In addition, starting from deducing calculation of cyclic spectral detection algorithm, a compromising scheme is proposed. Next, starting from maximizing the average throughput of sensing user, the optimization of detection time of compromising multi-antenna cyclic spectral statistic spectrum detection algorithm is study. It is proved the optimal detection time is existent through mathematical deduction and computer simulation. The simulation experiments give the performance curve of throughput under different number of antennas and paremeters. The simulation results show that increasing the number of antennas can not only improve the maximum average throughput, but also shorten the optimal detection time.
     In chapter five, to resist deep fading and improve reliability of spectrum detection, a new cooperative spectrum detection algorithm based on centralized decision fusion is proposed. The proposed algorithm starts from maximizing the global cooperative detection, solves optimized the fusion rule of control center and thresholds of each cognitive user by sequential quadratic programming. First, the mathematical description of cooperative detection algorithm is present. Second, solution of uniting judging probability are given under different channel. Third, the optimizing problem of cooperative detection algorithm, solution method, implementation steps are expatiated. At last, the soft decision optimal cooperative spectrum detection algorithm and optimal cooperative spectrum detection algorithm under correlated decision are discussed. The simulation experiments get results as followed: first, whether from the curve of detection probability versus SNR, or from receiver operating characteristic curve, compared with other cooperative detection algorithm whose fusion is fixed, the detection probability of the proposed algorithm is always the best. Second, when the detection probability is the same, the detection time is shorter by users cooperation.Third, when SNR is the same, compared with hard decision algorithm, the detection probability of soft decision algorithm has only a little improvement. And with the raise of sensing users, the improvement is worse and worse. Fouth, compared with two users independent, the bigger the correlated coefficient of two users is, the bigger the loss of improvement of cooperative detection probability is.
引文
1 D. Cabric, S.M. Mishra, R.W. Brodersen. Implementation Issues in Spectrum Sensing for Cognitive Radios. 38th Asilomar Conference on Signals Systems and Computers, 2004,1:772~776
    2 FCC. Spectrum policy task force report. No.02~155,2002.
    3谢显中.感知无线电技术及其应用.电子工业出版社, 2008:2~4
    4 Qing Zhao, B.M. Sadler. A Survey of Dynamic Spectrum Access. IEEE Signal Processing Magazine. 2007,(5): 79~89
    5陈东.认知无线电中无线频谱感知技术的研究.西安电子科技大学博士论文. 2009:4~6
    6 J. Mitola, G. Q. Maguire. Cognitive radio: Making Software Radios more Personal. IEEE Personal Communications. 1999, 6(4):13~18
    7 FCC. Notice of Proposed Rule Making and Order. No.03~322,2003.
    8 S. Haykin. Cognitive Radio: Brain-Empowered Wireless Communications. IEEE Journal on Selected Areas in Communications. 2005,23(2):201~220
    9 I. F. Akyildiz , W.Y. Lee, C. Mehmet. Next Generation/Dynamic Spectrum Access Cognitive Radio Wireless Networks: A Survey. Computer Networks. 2006, 50(13): 2127~2159
    10叶佩军,安建平.认知无线电在未来多媒体移动通信中的应用.电讯技术. 2004,44(2): 25~29
    11梁燕芬,殷瑞祥.认知无线电技术.信息安全与通信保密.2007, 8(3):55~57
    12 D. Cabric, R. W.Brodersen. Physical Layer Design Issues Unique to Cognitive Radio Systems. IEEE 16th International Symposium on Personal Indoor and Mobile Radio Communications. 2005,2:759~763
    13毕志明,匡镜明,王华.认知无线电技术的研究及发展.电信科学, 2006, 23(7): 57~60
    14罗涛,郝建军,乐光新.多用户协同通信与感知技术.中兴通讯技术. 2009, 15 (2):60~64
    15乔夏君.认知无线电系统的物理层频谱检测算法研究.北京交通大学硕士论文. 2009: 7~9 11~12
    16 T.A. Weiss, F.K. Jondral. Spectrum Pooling: An Innovative Strategy for the Enhancement of Spectrum Efficiency. IEEE Communications Magazine, 2004, 42(3):8~14.
    17 D. Cabric, S.M. Mishra, D. Willkomm. A Cognitive Radio Appraoch for Usage of Virtual Unlicensed Spectrum. 14th IST Mobile and Wireless Communi- cations 2006,31:1~4
    18 XG Working Group. The XG Architecture Framework. http: //www. ir.bbn. com/projects/xmac/rfc/rfc~of pdf
    19 D. Grandblaise, C. Kloeck, K. Moessner. Technology Economic of Collabo- rative Based Secondary Spectrum Usage: E2R Research Project Outcomes Overview. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005:318~327
    20 Qiwei Wang, Haitao Zheng. Route and Spectrum Selection in Dynamic Spectrum Networks. 3rd IEEE Consumer Communications and Networking Conference, 2006,1:625~629
    21 P. Leaves, K. Moessner, R. Tafazolli. Dynamic Spectrum Allocation in Composite Reconfigurable Wireless Networks. IEEE Communications Magazine. 2004, 42(5):72 ~81
    22 Haitao Zheng, Chunyi Peng. Collaboration and Fairness in Opportunistic Spectrum Access. 2005 IEEE International Conference on Communications. 2005, 5:3132~3136
    23 Lili Cao, Haitao Zheng. Distributed Spectrum Allocation via Local Bargaining. Second Annual IEEE Communications Society Conference on Sensor and Ad-Hoc Communications and Networks. 2005:475~486
    24 S. Shellhammer, G.. Chouinard. Spectrum Sensing Requirements Summay. http://www.ieee802.org/22
    25 R.Tandra, A.Sahai. SNR Walls for Signal Detection. IEEE Journal of Selected Topics in Signal Processing. 2008,2(1):4~17
    26 D. Cabric, A. Tkachenko, R.W. Brodersen. Spectrum Sensing Measurements of Pilot, Energy, and Collaborative Detection. 2006 Military Communications Conference.2006:1~7
    27 BiingHwang Juang, G.Y. Li, Jun Ma. Signal Processing in Cognitive Radio. Proceedings of the IEEE. 2009, 97(5):805~823
    28 T. Yucek, H. Arslan. A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications. IEEE Communications Surveys & Tutorials. 2009 11(1):116~130
    29 T. Ikuma, M.N. Pour. A Comparison of Three Classes of Spectrum Sensing Techniques. 2008 IEEE Global Telecommunications Conference. 2008:1~5
    30 N.H. Kamil, Wei Liu; Wenqing Cheng. Signal Processing Techniques for Robust Spectrum Sensing. International Conference on Future Computer and Communication. 2009 :120~123
    31刘子琦,冯春燕,曾志民,郭彩丽.认知无线电网络中物理层频谱检测算法的研究.电信科学. 2009,26(3):64~69
    32 B.Wild, K. Ramchandran. Detecting Primary Receivers for Cognitive Radio Applications. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. 2005:124~130
    33 FCC. Notice of inquiry and notice of proposed Rulemaking. No.03~237,2003
    34张晓.邓建国.干扰温度机制的研究进展.中兴通讯技术.2007,13(3):19~23.
    35杨丰瑞,刘辉.认知无线电中基于干扰温度的频谱探测技术.通信技术. 2008, 41 (8):92~94
    36黄慧,张朝阳,黄爱苹.感知能力受限的认知无线电系统中的合作检测.解放军理工大学学报(自然科学版).2008, 9(6):621~624
    37李红岩.认知无线电的若干关键技术研究.北京邮电大学博士论文. 2009: 29~30
    38 S. M. Mishra, A. Sahai, R.W. Brodersen. Cooperative Sensing among Cognitive Radios. IEEE International Conference on Communications. 2006, (4):1658~1663
    39王海军,栗欣,王京.认知无线电中的协作频谱检测技术.中兴通讯技术. 2009, 15(2):10~14
    40 F.F. Digham, M.S. Alouini, M.K. Simon. On the Energy Detection of Unknown Signals over Fading Channels. 2003 IEEE International Conference on Communications. 2003,(5):3575~3579
    41 S.P. Herath, N. Rajatheva, C. Tellambura. Unified Approach for Energy Detection of Unknown Deterministic Signal in Cognitive Radio Over Fading Channels. IEEE International Conference on Communications Workshops. 2009:1~5
    42 H. Tang. Some Physical Layer Issues of Wide-band Cognitive Radio Systems. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. 2005 :151 ~159
    43冯文江,郭瑜,胡志远.认知无线电中的频谱感知技术.重庆大学学报(自然科学版).2007, 30(11):46~49
    44 Ning Han, SungHwan Shon, JaeHak Chung. Spectral Correlation Based Signal Detection Method for Spectrum Sensing in IEEE 802.22 WRAN systems. Advanced Communication Technology the 8th International Conference. 2006: 1776~1770
    45 Kyouwoong Kim, I.A. Akbar, K.K Bae. Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio. 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. 2007:212~215
    46 JaeKwon Lee, JuHyun Yoon, JinUp Kim. A New Spectral Correlation Approach to Spectrum Sensing for 802.22 WRAN System. The 2007 International Conference on Intelligent Pervasive Computing. 2007:101~104
    47 A.V. Dandawate, G.B. Giannakis. Statistical Tests for Presence of Cyclostation- arity.IEEE Transactions on Signal Processing. 1994,42(9): 2355~2369
    48 J. Lunden, V. Koivunen, A. Huttunen. Collaborative Cyclostationary Spectrum Sensing for Cognitive Radio Systems.IEEE Transactions on Signal Processing. 2009,57(11): 4182~4195
    49 Yuan Qi, Wenbo Wang, Tao Peng, etc. Spectrum Sensing Combining Time and Frequency Domain in Multipath Fading Channels. Third International Conference on Communications and Networking. 2008:142~46
    50 Hao Feng, Yanbo Wang, Shiju Li. Statistical Test Based on Finding the Optimum Lag in Cyclic Autocorrelation for Detecting Free Bands in Cognitive Radios. 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 2008:1~6
    51 J. Lunden, S.A. Kassam, V. Koivunen. Nonparametric Cyclic Correlation Based Detection for Cognitive Radio Systems. 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications.2008:1~6
    52刘航,于丹,孔祥维.低信噪比条件下提高认知无线电的频谱感知能力的方法.电子与信息学报.2009, 31(4):993~996
    53 Yonghong Zeng, YingChang Liang. Spectrum Sensing Algorithms for Cognitive Radio Based on Statistical Covariances. IEEE Transactions on Vehicular Technology. 2009,58(4):1804 ~1815
    54 P. De, YingChang Liang. Blind Spectrum Sensing Algorithms for Cognitive Radio Networks. IEEE Transactions on Vehicular Technology. 2008, 57(5): 2834~2842
    55 Yonghong Zeng, YingChang Liang. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio. IEEE Transactions on Communications. 2009, 57(6):1784~1793
    56 F. Penna, R. Garello, M. Spirito. Cooperative Spectrum Sensing Based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices. IEEE Communications Letters. 2009,13(7):507~509
    57夏文芳,王殊,刘威,程文青.信号相关的模拟电视信号检测算法.华中科技大学学报(自然科学版).2009,37(12):33~36
    58 HouShin Chen, Wen Gao, D.G. Daut. Spectrum Sensing for OFDM Systems Employing Pilot Tones. IEEE Transactions on Wireless Communications. 2009,8(12):5862~5870
    59 HouShin Chen, Wen Gao, D.G.. Daut. Signature Based Spectrum Sensing Algorithms for IEEE 802.22 WRAN. 2007 IEEE International Conference on Communications. 2007:6487~6492
    60 HouShin Chen, Wen Gao, D.G.. Daut. Spectrum Sensing for DMB-T Systems Using PN Frame Headers. 2007 IEEE International Conference on Communications. 2007:4889~4893
    61 Gosan Noh, Jemin Lee, Hano Wang. A New Spectrum Sensing Scheme using Cyclic Prefix for OFDM-Based Cognitive Radio Systems. 2008 IEEE Vehicular Technology Conference.2008:1891~1895
    62 Zhi Tian, G..B. Giannakis. A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios. 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 2006:1~5
    63 Xi Chen, Linjing Zhao, Jiandong Li. A Modified Spectrum Sensing Method for Wideband Cognitive Radio Based on Compressive Sensing. Fourth International Conference on Communications and Networking. 2009:1~5
    64 Youngwoo Youn, Hyoungsuk Jeon, JiHwan Choi. Fast spectrum sensingalgorithm for 802.22 WRAN Systems. 2006 International Symposium on Communi- cations and Information Technologies. 2006:960~964
    65 Y. Hur, J. Park, W. Woo. A Cognitive Radio (CR) System Employing A Dual-Stage Spectrum Sensing Technique:A Multi-Resolution Spectrum Sensing (MRSS) and A Temporal Signature Detection (TSD) Technique. 2006 IEEE Global Telecommunications Conference. 2006:1~5
    66 S. Haykin, D.J. Thomson, J.H. Reed. Spectrum Sensing for Cognitive Radio. Proceedings of the IEEE. 2009,97(5):849~877
    67 P. Welch. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Transactions on Audio and Electroacoustics. 1967, 15(2):70~73
    68刘勤,张雯.认知无线电中的频谱空洞检测技术.中兴通讯技术. 2007, 13 (3):12~14
    69 Bing Zhao, Lili Guo. Research of Spectrum Detection Technology in Cognitive Radio. 2009 International Conference on Networks Security, Wireless Communi- cations and Trusted Computing. 2009:188~191
    70 Bairu Chen, Tingting Liu, Feng Shu. On Performance Comparison of Wide- band Multiple Primary User Detection Methods in Cognitive Radios.5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009, 1~4
    71 A. Pandharipande, J. Linnartz. Performance Analysis of Primary User Detection in A Multiple Antenna Cognitive Radio. 2007 IEEE International Conference on Communications. 2007:6482~6486
    72 S.P. Rodriguez, V. Ramon, A. Bourdoux. Spectrum Sensing over SIMO Multi- Path Fading Channels Based on Energy Detection. 2008 IEEE Global Telecommunications Conference. 2008:1~6
    73 S.P.Herath, N.Rajatheva. Analysis of Equal Gain Combining in Energy Detection for Cognitive Radio over Nakagami Channels. 2008 Global Telecommunications Conference. 2008:1~5
    74 N.M. Pour, T. Ikuma. Diversity Techniques for Spectrum Sensing in Fading Environments. 2008 IEEE Military Communications Conference. 2008:1~7
    75 R.Mahapatra, M.Krusheel. Cyclostationary Detection for Cognitive Radio withMultiple Receivers. 2008 IEEE International Symposium on Wireless Communication Systems. 2008:493~497
    76 Tengyi Zhang, Guanding Yu, Chi Sun. Performance of Cyclostationary Features Based Spectrum Sensing Method in a Multiple Antenna Cognitive Radio System. 2009 IEEE Wireless Communications and Networking Conference. 2009:1~5
    77 A. Ghasemi, E.S. Sousa. Collaborative Spectrum Sensing for Opportunistic Access in Fading Environments. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. 2005:131~136
    78 Xuping Zhai, Jianguo Pan. Energy-Detection Based Spectrum Sensing for Cognitive Radio. 2007 IET Conference on Wireless, Mobile and Sensor Networks. 2007:944~947
    79 Yibing Li, Xing Liu, Wei Meng. Multi-Node Spectrum Detection Based on the Credibility in Cognitive Radio System. 5th International Conference on Wireless Communications, Networking and Mobile Computing. 2009:1~4
    80 Lei Chen, Jun Wang, Shaoqian Li. An Adaptive Cooperative Spectrum Sensing Scheme Based on the Optimal Data Fusion Rule. 4th International Symposium on Wireless Communication Systems. 2007:582~586
    81 Z. Chair, P.K.Varshney. Optimal Data Fusion in Multiple Sensor Detection Systems.IEEE Transactions on Aerospace and Electronic Systems. 1986,22(1): 98~101
    82 Lei Chen, Jun Wang, Shaoqian Li. Cooperative Spectrum Sensing with Multi- Bits Local Sensing Decisions in Cognitive Radio Context. 2008 IEEE Wireless Communications and Networking Conference. 2008:570~575
    83 Jun Ma, Ye Li. Soft Combination and Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks. 2007 IEEE Global Telecommunications Conference. 2007:3139~3143
    84 Zhi Quan, Shuguang Cui, A.H.Sayed. Optimal Linear Cooperation for Spectr- um Sensing in Cognitive Radio Networks. IEEE Journal of Selected Topics in Signal Processing. 2008,2(1):28~40
    85 Jun Ma, Ye Li. Soft Combination and Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks. 2007 IEEE Global Telecommunications Conference.2007:3139~3143
    86 Bin Shen, Taiping Cui, Zheng Zhou, etc. An Optimal Soft Fusion Scheme for Cooperative Spectrum Sensing in Cognitive Radio Network. 2009 IEEE Wireless Communications and Networking Conference. 2009:1~5
    87 Bin Shen, Longyang Huang, Zheng Zhou, etc. Weighted Cooperative Spectrum Sensing in Cognitive Radio Networks.Third International Conference on Convergence and Hybrid Information Technology. 2008, 1:1074~1079
    88 Chunhua Sun, Wei Zhang, K.B.Letaief. Cooperative Spectrum Sensing for Cognitive Radios under Bandwidth Constraints. 2007 IEEE Wireless Communications and Networking Conference.2007:1~5
    89 Jiang Zhu, Zhengguang Xu, Furong Wang, etc. Double Threshold Energy Detection of Cooperative Spectrum Sensing in Cognitive Radio. 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2008:1~5
    90 Jinbo Wu, Tao Luo, Guangxin Yue, etc. A Cooperative Double-Threshold Energy Detection Algorithm in Cognitive Radio Systems.5th International Conference on Wireless Communications, Networking and Mobile Computing. 2009:1~4
    91 Xueqiang Zheng, Jinlong Wang, Li Cui, etc. A Novel Cooperative Spectrum Sensing Algorithm in Cognitive Radio Systems. 4th International Conference on Wireless Communications, Networking and Mobile Computing. 2008:1~4
    92 Lili Duan, Lei Zhang, Yujun Chu, etc. Cooperative Spectrum Sensing with Double Threshold Detection Based on Reputation in Cognitive Radio.5th International Conference on Wireless Communications, Networking and Mobile Computing. 2009:1~4
    93 Chen Guo, Wenbo Wang, Tao Peng. Agility Improvements by Censor-Based Cooperative Spectrum Sensing in Cognitive Radio Networks. Third International Conference on Communications and Networking. 2008:132~136
    94 Chunhua Sun, Wei Zhang, K.B. Letaief. Cluster-Based Cooperative Spectrum Sensing in Cognitive Radio Systems. IEEE International Conference on Communications.2007:2511~2515
    95 LiHua He, Xianzhong Xie, XueTao Dong, etc. Twice-Cooperative Spectrum Sensing in Cognitive Radio Systems. 4th International Conference on Wireless Communications, Networking and Mobile Computing.2008:1~3
    96 Ling Li, Yin Lu, Hongbo Zhu. Half-Voting Based Twice-Cooperative Spectrum Sensing in Cognitive Radio Networks. 5th International Conference on Wireless Communications, Networking and Mobile Computing. 2009:1~3
    97 Chunmei Qi, Jun Wang, Shaoqian Li.Weighted-Clustering Cooperative Spectr- um Sensing in Cognitive Radio Context. 2009 WRI International Conference on Communications and Mobile Computing.2009,1:102~106
    98 Bin Shen, Chengshi Zhao, Zheng Zhou. User Clusters Based Hierarchical Cooperative Spectrum Sensing in Cognitive Radio Networks. 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications.2009:1~6
    99 Chen Guo, Tao Peng, Wenbo Wang, etc. Cooperative Spectrum Sensing with Cluster-Based Architecture in Cognitive Radio Networks. IEEE 69th Vehicular Technology Conference. 2009:1~5
    100 N. Kundargi, A.Tewfik. Hierarchical Sequential Detection in the Context of Dynamic Spectrum Access For Cognitive Radios. 14th IEEE International Conference on Electronics, Circuits and Systems, 2007:514~517
    101 A.Taherpour, Y. Norouzi, M.N. Kenari, etc. Asymptotically Optimum Detec- tion of Primary User in Cognitive Radio Networks. IET Communications. 2007, 1(6):1138~1145
    102 S.Chaudhari, V. Koivunen, H.V. Poor. Autocorrelation-Based Decentralized Sequential Detection of OFDM Signals in Cognitive Radios. IEEE Transactions on Signal Processing. 2009,57(7):2690~2700
    103 N. Kundargi, A. Tewfik. Sequential Pilot Sensing of ATSC Signals in IEEE 802.22 Cognitive Radio Networks. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. 2008:2789~2792.
    104 Qiyue Zou, Songfeng Zheng, A.H.Sayed. Cooperative Spectrum Sensing via Sequential Detection for Cognitive Radio Networks. IEEE 10th Workshop on Signal Processing Advances in Wireless Communications.2009:121~125
    105 Qihang Peng, Kun Zeng, Shaoqian Li, etc. A Distributed Spectrum Sensing Scheme Based on Credibility and Evidence Theory in Cognitive Radio Context. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications. 2006:1~5
    106 N.N.Thanh, Koo Insoo. An Enhanced Cooperative Spectrum Sensing SchemeBased on Evidence Theory and Reliability Source Evaluation in Cognitive Radio Context. IEEE Communications Letters.13(7):492~494
    107郑学强,王金龙,陈娟.基于证据理论的协同频谱感知算法.解放军理工大学学报. 2008, 9(6):629~632
    108 G..Ganesan, Y. Li. Cooperative Spectrum Sensing in Cognitive Radio, Part I: Two User Networks. IEEE Transactions on Wireless Communications. 2007,6(6): 2204~2213
    109 G..Ganesan, Y.Li. Cooperative Spectrum Sensing in Cognitive Radio, Part II: Multiuser Networks. IEEE Transactions on Wireless Communications. 2007,6(6):2214~2222
    110 Yunxue Liu, Dongfeng Yuan, Qingjia Lin, etc. New Insights to Cooperative Spectrum Sensing for Cognitive radios. 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 2007:414~419
    111 Qian Chen, Feifei Gao, A.Nallanathan, etc. Improved Cooperative Spectrum Sensing in Cognitive Radio. 2008 IEEE Vehicular Technology Conference. 2008: 1418~1422
    112 Haifeng Yuan, YongHuat Chew, K.S. Puthusserypady Performance Study of a Novel Selective Cooperative Spectrum Sensing Scheme for Secondary Radios. 2008 IEEE Military Communications Conference. 2008:1~ 6
    113 Jia Zhu, Baoyu Zheng. Detection Probability Analysis of Cooperative SpectrumSensing in Rayleigh Fading Channels. Eighth IEEE/ACIS International Conference on Computer and Information Science. 2009:177~182
    114毛小矛,余官定,仇佩亮.认知无线电中的用户合作通信.浙江大学学报(工学版). 2009, 43(1):111~115
    115王丽娜,李超,周贤伟.认知无线电的合作频谱检测分析.电讯技术.2008, 48(7):1~4
    116高路,康桂华,李庆玲.基于认知无线电网络的用户合作频谱检测.现代电子技术. 2009(6):143~146
    117 Dongliang Guan, Gang Xiong. Detection of Primary User in Cognitive Radio Networks under Correlated Noise. First International Conference on Future Information Networks. 2009:156~160
    118 Yi Zheng, Xianzhong Xie, Lili Yang. Cooperative Spectrum Sensing Based on Blind Source Separation for Cognitive Radio. First International Conference on Future Information Networks.2009:398~402
    119夏金祥,范平志.基于次用户协作的主用户频谱洞周期稳态特征检测.电路与系统学报.2009,14(3):1~5
    120 A.S. Ghasemi, S.Elvino. Optimization of Spectrum Sensing for Opportun- istic Spectrum Access in Cognitive Radio Networks. 4th IEEE Consumer Communications and Networking Conference. 2007:1022~1026
    121 YingChang Liang, Yonghong Zeng, E.C.Y. Peh. Sensing-Throughput Tradeoff for Cognitive Radio Networks. IEEE Transactions on Wireless Communications. 2008,7(4):1326~1337
    122 Peng Wang, Limin Xiao, Jing Wang, etc.Optimization of Detection Time for Channel Efficiency in Cognitive Radio Systems. 2007 IEEE Wireless Communications and Networking Conference. 2007:111~115
    123 Xiangwei Zhou, YeLi, YoungHoon Kwon, etc. Detection Timing and Channel Selection for Periodic Spectrum Sensing in Cognitive Radio. 2008 IEEE Global Telecommunications Conference. 2008:1~5
    124 K.Hamdi, B. K.Letaief.Power, Sensing Time, and Throughput Tradeoffs in Cognitive Radio Systems: A Cross-Layer Approach. IEEE Wireless Communications and Networking Conference. 2009:1~5
    125 Zhi Quan, Shuguang Cui, A.H Sayed, H.V .Poor. Optimal Multiband Joint Detection for Spectrum Sensing in Cognitive Radio Networks. 2009 IEEE Transactions on Signal Processing.2009,57(3):1128~1140
    126 Wei Zhang, R.K. Mallik, K.B. Letaief. Optimization of Cooperative Spectrum Sensing with Energy Detection in Cognitive Radio Networks. IEEE Transactions on Wireless Communications. 2009.8(12):5761~5766
    127彭霄,吴素文,朱近康.一种高效利用资源的协作感知方法.中国科学技术大学学报.2009,39 (10):1039~1044
    128吴素文,彭霄,赵明,朱近康.一种低复杂度的最大化资源效用的最优感知节点数目优化算法.中国科学技术大学学报.2009,39 (10):1059~1063
    129 S.Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, 1998: 621
    130 W.A.Gardner. Measurement of Spectral Correlation. IEEE Transactions onAcoustics, Speech and Signal Processing. 1986,34(5):1111~1123
    131 H.L.V. Trees. Detecion, Estimation and Modulation Theory. New York, John Wiley & Sons, 2001,333~366
    132赵树杰,赵建勋.信号检测与估计理论.清华大学出版社,北京.2006:65~73, 85~87, 99~100,219~222
    133 Teng Joon Lim, Rui Zhang, YingChang Liang, etc.GLRT-Based Spectrum Sensing for Cognitive Radio. 2008 IEEE Global Telecommunications Conference. 2008:1~5
    134 M.F.Pop, N.C Beaulieu. Limitations of Sum-of-Sinusoids Fading Channel Simulators. IEEE Transactionsons on Communications. 2001,49(4): 699~708
    135杨大成.移动传播环境.机械工业出版社,北京.2003:210~215
    136韦岗,季飞,傅娟.通信系统建模与仿真.电子工业出版社,北京.2007:169~178
    137 W.A.Gardner. Signal Interception: a Unifying Theoretical Framework for Fea- ture Detection. IEEE Transactions on Communications. 1988,36(8):897 ~906
    138 W.A.Gardner . Exploitation of Spectral Redundancy in Cyclostationary Signals. IEEE Signal Processing Magazine. 1991,8(2):14~36
    139 W.A.Gardner, C.M. Spooner. Signal Interception: Performance Advantages of Cyclic-Feature Detectors. IEEE Transactions on Communications. 1992,40(1): 149~159
    140 W.A.Gardner. Spectral Correlation of Modulated Signals Part I: Analog Modu- lation. IEEE Transactions on Communications. 1987,35(6):584~594
    141 W.A.Gardner, W.A. Brown, Chinkang Chen. Spectral Correlation of Modulated Signals: Part II--Digital Modulation. IEEE Transactions on Communications. 1987, 35(6):595~601
    142漆春梅.认知无线电中频谱感知技术研究.电子科技大学硕士论文. 2009:23~27
    143 J.Hu, N.C. Beaulieu. Accurate Simple Closed-Form Approximations to Ray- leigh Sum Distributions and Densities. IEEE Communications Letters, 2005,9(2): 109~111
    144 R. Tandra, A. Sahai. SNR Walls for Feature Detectors. International Symposium on New Frontiers Dynamic Spectrum Access Networks. 2007: 559~570
    145 F.F. Digham, M.S. Alouini, M.K. Simon. On the Energy Detection of Unkn-own Signals over Fading Channels. IEEE Transactions on Communications, 2007,55(1):21~24
    146 S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge. U.K. Cambr- idge University Press. 2003.
    147 R.R. Tenney, N.R. Sandel. Detection with Distributed Sensors. IEEE Transac- tions on Aerospace and Electronics,System. 1981,17(4):98~101.
    148 R.S. Blum. Necessary Conditions for Optimum Distributed Sensor Detectors under the Neyman-Pearson Criterion. IEEE Transactions on Information Theory. 1996,42(3):990~994
    149黄红选,韩继业.数学规划.北京.清华大学出版社.2006:221~224,289~304
    150袁亚湘.非线性优化计算方法.北京.科学技术出版社.2008:201~210
    151 M.K. Simon. Probability Distributions Involving Gaussian Random Variables. New York:Springer. 2006:19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700