用户名: 密码: 验证码:
基于生物网络的疾病microRNA挖掘技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非编码RiboNucleic Acid (RNA)是生物信息学领域当前的研究热点。步入21世纪以来,非编码RNA的相关研究连续获得Science评选的年度十大科学突破,并在2006年获得了诺贝尔生理学或医学奖。MicroRNA是一类重要的非编码RNA,它的异常能导致人类疾病的发生、发展。通过生物实验的方法能够挖掘疾病microRNA,但是实验方法代价高、周期长。本文从生物信息学的角度提出四种疾病microRNA的挖掘方法,挖掘出潜在的导致该疾病发生的microRNA,从而为生物学、医学研究者有针对性地进行microRNA生物实验提供一定指导,进而为药物开发、临床诊断治疗提供一定的依据。本文的主要内容包括:
     (1)挖掘及分析已知的microRNA与疾病关系
     自2002年以来,越来越多的研究证明microRNA失调有助于疾病的发生发展,然而这些已知的疾病与microRNA关联关系分散在已发表的文献当中,目前还没有研究机构建立在线共享的数据库,收集、存储、管理这些数据;科研人员不易获取这些已知的microRNA与疾病的关联信息。因此我们先从文献中挖掘已知的疾病microRNA ,构建了全球首个microRNA与疾病关系数据库(miR2Disease),并对数据进行管理。对miR2Disease中的数据进行分析,发现多种疾病往往共享一些致病microRNA,拥有部分相似的发病机制;此外,总结出疾病microRNA失调的三种机制:首先,疾病microRNA常位于与疾病有关的基因座内,例如杂合子缺失的微小区域、微小扩增区域或断裂位点等脆性位点区域;其次,疾病microRNA失调是由异常的表观遗传信息改变所致;例如DNA异常甲基化、组蛋白异常修饰等等;最后,疾病microRNA失调是由参与microRNA生物合成的酶的功能异常所致。
     (2)提出基于布尔网络的疾病microRNA挖掘技术
     生物网络在挖掘编码蛋白的疾病基因方面发挥了重要作用,然后在疾病microRNA挖掘领域,至今还未提出基于生物网络的疾病microRNA挖掘方法。因此本文提出了构造布尔型的功能相关microRNA网络的算法,以网络的形式来研究microRNA。通过对网络的分析,我们发现布尔型microRNA网络像其他生物网络一样,网络的度服从幂分布,网络具有层次模块性等特点。我们进一步构建了phenome-microRNAome网络,在此网络上,对已知的疾病microRNA进行分析,发现“功能相关的microRNA失调倾向于导致表型相同或相似的疾病”这一规律。以此为理论基础,提出了基于布尔型生物网络的疾病microRNA挖掘算法,并验证了算法的有效性。
     (3)提出基于权重型网络的疾病microRNA挖掘技术
     基于布尔网络的疾病microRNA挖掘技术在构造布尔型microRNA网络只需根据靶基因重叠的显著性来确定二个microRNA之间的关联关系。当知道microRNA对靶基因的抑制强度信息时,可以利用该信息构建权重型网络。因此,我们提出了基于权重型网络的疾病microRNA挖掘方法,取得了很好的性能。
     (4)提出基于支持向量机的疾病microRNA挖掘方法
     为了直接从数据出发挖掘疾病microRNA,我们把疾病microRNA的挖掘问题转化为一个分类问题,提出了基于支持向量机的疾病microRNA挖掘方法,把数据挖掘、机器学习的思想引入到疾病microRNA的挖掘中并交叉验证了方法的有效性。
     (5)提出基于基因组数据融合的疾病microRNA挖掘技术
     统计数据表明近三年获得的生物医学数据超过过去四万年的总和,数据呈爆炸增长,面对浩瀚的生物学数据海洋,如何把这海量的数据转化为有意义的医学诊断和治疗信息并惠及人类自身的健康是21世纪生物医学信息学面临的严峻挑战。本章整合了多种生物数据资源,构建了全人类基因组范围的基因功能相关网络,在此网络基础上,提出了利用microRNA的靶基因与已知的感兴趣疾病的致病基因之间在网络上的功能关系来挖掘新的潜在的疾病microRNA的算法,将算法应用到结肠癌上验证了算法的有效性。
Non protein-coding RNAs (ncRNAs) are a research hotspot in bioinformatics. Since we entered the 21st Century, the research on non-coding RNA has been voted consecutively as top ten scientific breakthroughs for several years, and it won the Nobel Prize in Physiology or Medicine in 2006. MicroRNA is an important class of non-coding RNA, and is closely associated with the development of human diseases. Disease microRNAs can be identified by biological experiments, but it is often expensive and time-consuming. In this dissertation, we proposed several technologies for mining disease microRNAs based on bioinformatics, which aim at identifying the most possible microRNAs that potentially cause disease development. The proposed methods will drive testable hypotheses for the experimental efforts to identify the true roles of microRNAs in human diseases and provide a basis for the drug development, clinical diagnosis and treatment. The main contents include:
     (1) Mining and analyzing known disease microRNAs
     Since 2002, Accumulating studies have shown that microRNA deregulation contributes to the development of disease, detailed information on these known microRNA–disease relationships are scattered in literatures and there is no online repository for these known microRNA–disease relationships. Researchers are difficult to obtain these known microRNA-disease associations. Therefore, we develop a manually curated database entitled‘miR2Disease’, which provides a comprehensive resource of microRNA deregulation in various human diseases and manages these data. By analyzing these data, we found that some disease often share similar pathogenesis. In addition, we found three types of mechanisms that can explain the deregulation of disease microRNAs: First, microRNA is often located in disease-related loci, for example, minimal regions of loss of heterozygosity, minimal amplicons, or breakpoint fragile regions; Secondly, microRNA dereguation is caused by abnormal epigenetic modifications; such as DNA methylation, histone abnormal modification, etc.; Third, microRNA deregulation may be caused by abnormalities of the enzymes that are involved in microRNA biogenesis.
     (2) An algorithm for identifying disease microRNAs based on Boolean network is proposed
     Biological networks have played an important role in mining protein-coding disease genes. However, In the field of disease microRNA identification, no biolgocial network-based approach was proposed to mine the disease microRNAs. Therefore, we for the first constructed a Boolean functionally related microRNA network. By analyzing the network, we found that microRNA network is like other biological network whose degree follows the power distribution and is of the hierarchical organization of modularity. We further constructed a phenome-microRNAome network. In this network, we analyzed the known microRNA-disease associations and found that the deregulation of functionally related microRNAs tend to cause phenotypically similar diseases. Based on this point, we for the first proposed an algorithm for mining disease microRNAs based on Boolean biological network, and verified its validity.
     (3) An algorithm for identifying disease microRNAs based on weighted network is proposed
     To take full advantage of silencing score between microRNA and its target gene and phenotypical similarity score, we proposed an algorithm for identifying disease microRNAs based on weighted network. Experimental results showed that the algorithm for identifying disease microRNAs based on the weighted network outperformed the approach based on Boolean Network.
     (4) An algorithm for identifying disease microRNAs based on support vector machine is proposed
     In order to predict disease microRNAs directly from data, we translated the identification of disease microRNA into a classification problem, and proposed a method to predict disease microRNA based on support vector machine. we for the first introduced data mining, machine learning into the identification of disease microRNAs. Cross-validation results proved that the method is cost-effective.
     (5) Identifying disease microRNAs based on data fusion
     Statistics show that biomedical data obtained in recent three years are more than total ones obtained in the past fourty thousand years. The data grow explosively. Facing the vast ocean of biological data, how we tranlated this mass of data into meaningful medical diagnosis and treatment information and benefit the health of human beings. It is the great challenges that biomedical informatics faces in the 21st century. In this dissertation, we integrated a variety of biological data resources to construct a genome-wide functionally related gene network. Based on this network, we proposed an approach to predict disease microRNA by the use of the functional associations between the microRNA target gene and the known causing genes that cause the disease of interest. The proposed approach is applied to the colon cancer and is proved to be effective.
引文
1 R Dhand. Functional Genomics. Nature 2000, 405(6788):819-819.
    2 DG Thomassen: Genomics Gtl: A Look into the Treasure Trove of Environmental Microbes. In: 229th National Meeting of the American-Chemical-Society: Mar 13-17 2005; San Diego, CA; 2005: 036-BTEC.
    3 LJ Lesko. Personalized Medicine: Elusive Dream or Imminent Reality? Clinical Pharmacology & Therapeutics 2007, 81(6):807-816.
    4 DP Bartel. Micrornas: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116(2):281-297.
    5 T Uziel, FV Karginov, S Xie, JS Parker, YD Wang, A Gajjar, L He, D Ellison, RJ Gilbertson, G Hannon et al. The Mir-17~92 Cluster Collaborates with the Sonic Hedgehog Pathway in Medulloblastoma. Proc Natl Acad Sci U S A 2009, 106(8):2812-2817.
    6 S Griffiths-Jones, HK Saini, S van Dongen, AJ Enright. Mirbase: Tools for Microrna Genomics. Nucleic Acids Res 2008, 36(Database issue):D154-158.
    7 CA Kulikowski, CW Kulikowski. Biomedical and Health Informatics in Translational Medicine. Methods of Information in Medicine 2009, 48(1):4-10.
    8 V Kashyap: From the Bench to the Bedside: The Role of Semantic Web and Translational Medicine for Enabling the Next Generation Healthcare Enterprise. In: International Joint Conference on Biomedical Engineering Systems and Technologies: Jan 28-31 2008; Funchal, PORTUGAL; 2008: 35-56.
    9 Q Jiang, Y Wang, Y Hao, L Juan, M Teng, X Zhang, M Li, G Wang, Y Liu. Mir2disease: A Manually Curated Database for Microrna Deregulation in Human Disease. Nucleic Acids Res 2009, 37(Database issue):D98-104.
    10 GA Calin, CD Dumitru, M Shimizu, R Bichi, S Zupo, E Noch, H Aldler, S Rattan, M Keating, K Rai et al. Frequent Deletions and Down-Regulation ofMicro- Rna Genes Mir15 and Mir16 at 13q14 in Chronic Lymphocytic Leukemia. Proc Natl Acad Sci U S A 2002, 99(24):15524-15529.
    11 J Lu, G Getz, EA Miska, E Alvarez-Saavedra, J Lamb, D Peck, A Sweet-Cordero, BL Ebert, RH Mak, AA Ferrando et al. Microrna Expression Profiles Classify Human Cancers. Nature 2005, 435(7043):834-838.
    12 RJ Mayoral, ME Pipkin, M Pachkov, E van Nimwegen, A Rao, S Monticelli. Microrna-221-222 Regulate the Cell Cycle in Mast Cells. J Immunol 2009, 182(1):433-445.
    13 JJ Zhao, JH Lin, H Yang, W Kong, LL He, X Ma, D Coppola, JQ Cheng. Microrna-221/222 Negatively Regulates Estrogen Receptor Alpha and Is Associated with Tamoxifen Resistance in Breast Cancer. Journal of Biological Chemistry 2008, 283(45):31079-31086.
    14 MW Nasser, J Datta, G Nuovo, H Kutay, T Motiwala, S Majumder, B Wang, S Suster, ST Jacob, K Ghoshal. Down-Regulation of Micro-Rna-1 (Mir-1) in Lung Cancer. Suppression of Tumorigenic Property of Lung Cancer Cells and Their Sensitization to Doxorubicin-Induced Apoptosis by Mir-1. J Biol Chem 2008, 283(48):33394-33405.
    15 TE Miller, K Ghoshal, B Ramaswamy, S Roy, J Datta, CL Shapiro, S Jacob, S Majumder. Microrna-221/222 Confers Tamoxifen Resistance in Breast Cancer by Targeting P27kip1. J Biol Chem 2008, 283(44):29897-29903.
    16 Q Huang, K Gumireddy, M Schrier, C le Sage, R Nagel, S Nair, DA Egan, A Li, G Huang, AJ Klein-Szanto et al. The Micrornas Mir-373 and Mir-520c Promote Tumour Invasion and Metastasis. Nat Cell Biol 2008, 10(2):202-210.
    17 B Yang, H Lin, J Xiao, Y Lu, X Luo, B Li, Y Zhang, C Xu, Y Bai, H Wang et al. The Muscle-Specific Microrna Mir-1 Regulates Cardiac Arrhythmogenic Potential by Targeting Gja1 and Kcnj2. Nat Med 2007, 13(4):486-491.
    18 H Zhu, S Huang, P Dhar. The Next Step in Systems Biology: Simulating the Temporospatial Dynamics of Molecular Network. Bioessays 2004, 26(1):68-72.
    19 AL Barabasi, ZN Oltvai. Network Biology: Understanding the Cell's Functional Organization. Nat Rev Genet 2004, 5(2):101-113.
    20 JA Papin, JL Reed, BO Palsson. Hierarchical Thinking in Network Biology: The Unbiased Modularization of Biochemical Networks. Trends Biochem Sci 2004, 29(12):641-647.
    21 R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, U Alon. Network Motifs: Simple Building Blocks of Complex Networks. Science 2002, 298(5594):824-827.
    22 GD Bader, CW Hogue. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinformatics 2003, 4:2.
    23 M Altaf-Ul-Amin, Y Shinbo, K Mihara, K Kurokawa, S Kanaya. Development and Implementation of an Algorithm for Detection of Protein Complexes in Large Interaction Networks. BMC Bioinformatics 2006, 7:207.
    24 JD Han, N Bertin, T Hao, DS Goldberg, GF Berriz, LV Zhang, D Dupuy, AJ Walhout, ME Cusick, FP Roth et al. Evidence for Dynamically Organized Modularity in the Yeast Protein-Protein Interaction Network. Nature 2004, 430(6995):88-93.
    25 O Vanunu, O Magger, E Ruppin, T Shlomi, R Sharan. Associating Genes and Protein Complexes with Disease Via Network Propagation. PLoS Comput Biol 2010, 6(1):e1000641.
    26 A Camargo, JT Kim. Identification of Markers of Cardiovascular Disease in Women and the Reconstruction of Its Corresponding Protein Interaction Network. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:6963-6968.
    27 HQ Wang, HL Zhu, WC Cho, TT Yip, RK Ngan, SC Law. Method of Regulatory Network That Can Explore Protein Regulations for Disease Classification. Artif Intell Med 2010, 48(2-3):119-127.
    28 XF Jiang, J Yang. A Novel Approach to Predict Protein-Protein Interactions Related to Alzheimer's Disease Based on Complex Network. Protein Pept Lett 2009.
    29 J Xu, Y Li. Discovering Disease-Genes by Topological Features in Human Protein-Protein Interaction Network. Bioinformatics 2006, 22(22):2800-2805.
    30 BA Soreghan, BW Lu, SN Thomas, K Duff, EA Rakhmatulin, T Nikolskaya,T Chen, AJ Yang. Using Proteomics and Network Analysis to Elucidate the Consequences of Synaptic Protein Oxidation in a Ps1 + Abetapp Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2005, 8(3):227-241.
    31 H Goehler, M Lalowski, U Stelzl, S Waelter, M Stroedicke, U Worm, A Droege, KS Lindenberg, M Knoblich, C Haenig et al. A Protein Interaction Network Links Git1, an Enhancer of Huntingtin Aggregation, to Huntington's Disease. Mol Cell 2004, 15(6):853-865.
    32 F Cailloux, F Gauthier-Barichard, C Mimault, V Isabelle, V Courtois, G Giraud, B Dastugue, O Boespflug-Tanguy. Genotype-Phenotype Correlation in Inherited Brain Myelination Defects Due to Proteolipid Protein Gene Mutations. Clinical European Network on Brain Dysmyelinating Disease. Eur J Hum Genet 2000, 8(11):837-845.
    33 K Fatah, A Hamsten, B Blomback, M Blomback. Fibrin Gel Network Characteristics and Coronary Heart Disease: Relations to Plasma Fibrinogen Concentration, Acute Phase Protein, Serum Lipoproteins and Coronary Atherosclerosis. Thromb Haemost 1992, 68(2):130-135.
    34 CC Liu, J Hu, M Kalakrishnan, H Huang, XJ Zhou. Integrative Disease Classification Based on Cross-Platform Microarray Data. BMC Bioinformatics 2009, 10 Suppl 1:S25.
    35 S Sharma, N Mucke, HA Katus, H Herrmann, H Bar. Disease Mutations in the "Head" Domain of the Extra-Sarcomeric Protein Desmin Distinctly Alter Its Assembly and Network-Forming Properties. J Mol Med 2009, 87(12):1207-1219.
    36 A Achiron, I Grotto, R Balicer, D Magalashvili, A Feldman, M Gurevich. Microarray Analysis Identifies Altered Regulation of Nuclear Receptor Family Members in the Pre-Disease State of Multiple Sclerosis. Neurobiol Dis 2010.
    37 T Curran, WA Coulter, DJ Fairley, T McManus, J Kidney, M Larkin, JE Moore, PV Coyle. Development of a Novel DNA Microarray to Detect Bacterial Pathogens in Patients with Chronic Obstructive Pulmonary Disease (Copd). J Microbiol Methods 2010, 80(3):257-261.
    38 L Ma, TT Cao, G Kandpal, L Warren, J Fred Hess, GR Seabrook, WJ Ray. Genome-Wide Microarray Analysis of the Differential NeuroprotectiveEffects of Antioxidants in Neuroblastoma Cells Overexpressing the Familial Parkinson's Disease Alpha-Synuclein A53t Mutation. Neurochem Res 2010, 35(1):130-142.
    39 A Papatheodorou, P Makrythanasis, M Kaliakatsos, A Dimakou, D Orfanidou, C Roussos, E Kanavakis, M Tzetis. Development of Novel Microarray Methodology for the Study of Mutations in the Serpina1 and Adrb2 Genes--Their Association with Obstructive Pulmonary Disease and Disseminated Bronchiectasis in Greek Patients. Clin Biochem 2010, 43(1-2):43-50.
    40 M Yu, RH Bell, EK Ross, BK Lo, M Isaac-Renton, M Martinka, A Haegert, J Shapiro, KJ McElwee. Lichen Planopilaris and Pseudopelade of Brocq Involve Distinct Disease Associated Gene Expression Patterns by Microarray. J Dermatol Sci 2010, 57(1):27-36.
    41 Z Zhang, DL Gasser, EF Rappaport, MJ Falk. Cross-Platform Expression Microarray Performance in a Mouse Model of Mitochondrial Disease Therapy. Mol Genet Metab 2010, 99(3):309-318.
    42 K Habig, M Walter, H Stappert, O Riess, M Bonin. Microarray Expression Analysis of Human Dopaminergic Neuroblastoma Cells after Rna Interference of Snca--a Key Player in the Pathogenesis of Parkinson's Disease. Brain Res 2009, 1256:19-33.
    43 H Zembutsu, M Yanada, A Hishida, T Katagiri, T Tsuruo, I Sugiura, J Takeuchi, N Usui, T Naoe, Y Nakamura et al. Prediction of Risk of Disease Recurrence by Genome-Wide Cdna Microarray Analysis in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Treated with Imatinib-Combined Chemotherapy. Int J Oncol 2007, 31(2):313-322.
    44 R Jelier, PA t Hoen, E Sterrenburg, JT den Dunnen, GJ van Ommen, JA Kors, B Mons. Literature-Aided Meta-Analysis of Microarray Data: A Compendium Study on Muscle Development and Disease. BMC Bioinformatics 2008, 9:291.
    45 P Pandey, B Brors, PK Srivastava, A Bott, SN Boehn, HJ Groene, N Gretz. Microarray-Based Approach Identifies Micrornas and Their Target Functional Patterns in Polycystic Kidney Disease. BMC Genomics 2008, 9:624.
    46 R Kano, S Konnai, M Onuma, K Ohashi. Microarray Analysis of Host Immune Responses to Marek's Disease Virus Infection in Vaccinated Chickens. J Vet Med Sci 2009, 71(5):603-610.
    47 X Li, S Rao, Y Wang, B Gong. Gene Mining: A Novel and Powerful Ensemble Decision Approach to Hunting for Disease Genes Using Microarray Expression Profiling. Nucleic Acids Res 2004, 32(9):2685-2694.
    48 T Ideker, R Sharan. Protein Networks in Disease. Genome Res 2008, 18(4):644-652.
    49 C Ortutay, M Vihinen. Identification of Candidate Disease Genes by Integrating Gene Ontologies and Protein-Interaction Networks: Case Study of Primary Immunodeficiencies. Nucleic Acids Research 2009, 37(2):622-628.
    50 S Karni, H Soreq, R Sharan. A Network-Based Method for Predicting Disease-Causing Genes. J Comput Biol 2009, 16(2):181-189.
    51 X Wu, R Jiang, MQ Zhang, S Li. Network-Based Global Inference of Human Disease Genes. Mol Syst Biol 2008, 4:189.
    52 S Kohler, S Bauer, D Horn, PN Robinson. Walking the Interactome for Prioritization of Candidate Disease Genes. Am J Hum Genet 2008, 82(4):949-958.
    53 U Ala, RM Piro, E Grassi, C Damasco, L Silengo, M Oti, P Provero, F Di Cunto. Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis. PLoS Comput Biol 2008, 4(3):e1000043.
    54 K Lage, EO Karlberg, ZM Storling, PI Olason, AG Pedersen, O Rigina, AM Hinsby, Z Tumer, F Pociot, N Tommerup et al. A Human Phenome-Interactome Network of Protein Complexes Implicated in Genetic Disorders. Nat Biotechnol 2007, 25(3):309-316.
    55 M Oti, B Snel, MA Huynen, HG Brunner. Predicting Disease Genes Using Protein-Protein Interactions. Journal of Medical Genetics 2006, 43(8):-.
    56 L Franke, H van Bakel, L Fokkens, ED de Jong, M Egmont-Petersen, C Wijmenga. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes. Am J Hum Genet 2006, 78(6):1011-1025.
    57 S Aerts, D Lambrechts, S Maity, P Van Loo, B Coessens, F De Smet, LCTranchevent, B De Moor, P Marynen, B Hassan et al. Gene Prioritization through Genomic Data Fusion. Nature Biotechnology 2006, 24(5):537-544.
    58 M Kertesz, N Iovino, U Unnerstall, U Gaul, E Segal. The Role of Site Accessibility in Microrna Target Recognition. Nat Genet 2007, 39(10):1278-1284.
    59 V Zimmer, T Widmann, M Muller, MF Ong, JM Stein, M Pfreundschuh, F Lammert, K Roemer, G Assmann. Genotypic Interaction and Gender Specificity of Common Genetic Variants in the P53/Mdm2 Network in Crohn's Disease. Digestion 2010, 81(4):246-251.
    60 A Ozgur, T Vu, G Erkan, DR Radev. Identifying Gene-Disease Associations Using Centrality on a Literature Mined Gene-Interaction Network. Bioinformatics 2008, 24(13):i277-285.
    61 F Friedrichs, L Henckaerts, S Vermeire, T Kucharzik, T Seehafer, M Moller-Krull, E Bornberg-Bauer, M Stoll, J Weiner, 3rd. The Crohn's Disease Susceptibility Gene Dlg5 as a Member of the Card Interaction Network. J Mol Med 2008, 86(4):423-432.
    62 Y Zhang, S De, JR Garner, K Smith, SA Wang, KG Becker. Systematic Analysis, Comparison, and Integration of Disease Based Human Genetic Association Data and Mouse Genetic Phenotypic Information. BMC Med Genomics 2010, 3:1.
    63 S Yilmaz, P Jonveaux, C Bicep, L Pierron, M Smail-Tabbone, MD Devignes. Gene-Disease Relationship Discovery Based on Model-Driven Data Integration and Database View Definition. Bioinformatics 2009, 25(2):230-236.
    64 T Wolber, M Maeder, D Weilenmann, F Duru, I Bluzaite, W Riesen, H Rickli, P Ammann. Integration of B-Type Natriuretic Peptide Levels with Clinical Data and Exercise Testing for Predicting Coronary Artery Disease. Am J Cardiol 2006, 98(6):764-767.
    65 SJ Potts, DJ Edwards, R Hoffman. Challenges of Target/Compound Data Integration from Disease to Chemistry: A Case Study of Dihydrofolate Reductase Inhibitors. Curr Drug Discov Technol 2005, 2(2):75-87.
    66 N Tiffin, JF Kelso, AR Powell, H Pan, VB Bajic, WA Hide. Integration of Text- and Data-Mining Using Ontologies Successfully Selects Disease GeneCandidates. Nucleic Acids Res 2005, 33(5):1544-1552.
    67 JA Scott, K Aziz, T Yasuda, H Gewirtz. Integration of Clinical and Imaging Data to Predict the Presence of Coronary Artery Disease with the Use of Neural Networks. Coron Artery Dis 2004, 15(7):427-434.
    68 Successful Integration Requires Data on Disease Distribution and Utilization Patterns. Data Strateg Benchmarks 1998, 2(8):116-118.
    69 The Gene Ontology (Go) Project in 2006. Nucleic Acids Res 2006, 34(Database issue):D322-326.
    70 M Kanehisa. The Kegg Database. Novartis Found Symp 2002, 247:91-101; discussion 101-103, 119-128, 244-152.
    71 M Kanehisa, S Goto. Kegg: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28(1):27-30.
    72 H Ogata, S Goto, K Sato, W Fujibuchi, H Bono, M Kanehisa. Kegg: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999, 27(1):29-34.
    73 E Wingender. The Transfac Project as an Example of Framework Technology That Supports the Analysis of Genomic Regulation. Brief Bioinform 2008, 9(4):326-332.
    74 E Wingender, H Karas, R Knuppel. Transfac Database as a Bridge between Sequence Data Libraries and Biological Function. Pac Symp Biocomput 1997:477-485.
    75 E Wingender, P Dietze, H Karas, R Knuppel. Transfac: A Database on Transcription Factors and Their DNA Binding Sites. Nucleic Acids Res 1996, 24(1):238-241.
    76 RC Lee, RL Feinbaum, V Ambros. The C. Elegans Heterochronic Gene Lin-4 Encodes Small Rnas with Antisense Complementarity to Lin-14. Cell 1993, 75(5):843-854.
    77 BJ Reinhart, FJ Slack, M Basson, AE Pasquinelli, JC Bettinger, AE Rougvie, HR Horvitz, G Ruvkun. The 21-Nucleotide Let-7 Rna Regulates Developmental Timing in Caenorhabditis Elegans. Nature 2000, 403(6772):901-906.
    78 M Lagos-Quintana, R Rauhut, A Yalcin, J Meyer, W Lendeckel, T Tuschl. Identification of Tissue-Specific Micrornas from Mouse. Curr Biol 2002, 12(9):735-739.
    79 RC Lee, V Ambros. An Extensive Class of Small Rnas in Caenorhabditis Elegans. Science 2001, 294(5543):862-864.
    80 M Lagos-Quintana, R Rauhut, J Meyer, A Borkhardt, T Tuschl. New Micrornas from Mouse and Human. RNA 2003, 9(2):175-179.
    81 LP Lim, ME Glasner, S Yekta, CB Burge, DP Bartel. Vertebrate Microrna Genes. Science 2003, 299(5612):1540.
    82 S Griffiths-Jones. Mirbase: Microrna Sequences and Annotation. Curr Protoc Bioinformatics 2010, Chapter 12:Unit 12 19 11-10.
    83 S Griffiths-Jones. Mirbase: The Microrna Sequence Database. Methods Mol Biol 2006, 342:129-138.
    84 S Griffiths-Jones, RJ Grocock, S van Dongen, A Bateman, AJ Enright. Mirbase: Microrna Sequences, Targets and Gene Nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-144.
    85 GA Calin, CM Croce. Microrna Signatures in Human Cancers. Nat Rev Cancer 2006, 6(11):857-866.
    86 EA Miska. How Micrornas Control Cell Division, Differentiation and Death. Curr Opin Genet Dev 2005, 15(5):563-568.
    87 PZ Xu, M Guo, BA Hay. Micrornas and the Regulation of Cell Death. Trends in Genetics 2004, 20(12):617-624.
    88 S Volinia, GA Calin, CG Liu, S Ambs, A Cimmino, F Petrocca, R Visone, M Iorio, C Roldo, M Ferracin et al. A Microrna Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. P Natl Acad Sci USA 2006, 103(7):2257-2261.
    89 CZ Chen, L Li, HF Lodish, DP Bartel. Micrornas Modulate Hematopoietic Lineage Differentiation. Science 2004, 303(5654):83-86.
    90 K Kasashima, Y Nakamura, T Kozu. Altered Expression Profiles of Micrornas During Tpa-Induced Differentiation of Hl-60 Cells. Biochem Biophys Res Commun 2004, 322(2):403-410.
    91 E Wienholds, RH Plasterk. Microrna Function in Animal Development. FEBS Lett 2005, 579(26):5911-5922.
    92 C Ortholan, MP Puissegur, M Ilie, P Barbry, B Mari, P Hofman. Micrornas and Lung Cancer: New Oncogenes and Tumor Suppressors, New Prognostic Factors and Potential Therapeutic Targets. Curr Med Chem 2009,16(9):1047-1061.
    93 BH Zhang, XP Pan, GP Cobb, TA Anderson. Micrornas as Oncogenes and Tumor Suppressors. Dev Biol 2007, 302(1):1-12.
    94 OA Kent, JT Mendell. A Small Piece in the Cancer Puzzle: Micrornas as Tumor Suppressors and Oncogenes. Oncogene 2006, 25(46):6188-6196.
    95 YS Lee, A Dutta. Micrornas: Small but Potent Oncogenes or Tumor Suppressors. Curr Opin Investig D 2006, 7(6):560-564.
    96 CZ Chen. Micrornas as Oncogenes and Tumor Suppressors. New Engl J Med 2005, 353(17):1768-1771.
    97 EC Lai, P Tomancak, RW Williams, GM Rubin. Computational Identification of Drosophila Microrna Genes. Genome Biol 2003, 4(7):R42.
    98 LP Lim, NC Lau, EG Weinstein, A Abdelhakim, S Yekta, MW Rhoades, CB Burge, DP Bartel. The Micrornas of Caenorhabditis Elegans. Genes Dev 2003, 17(8):991-1008.
    99 Y Grad, J Aach, GD Hayes, BJ Reinhart, GM Church, G Ruvkun, J Kim. Computational and Experimental Identification of C. Elegans Micrornas. Mol Cell 2003, 11(5):1253-1263.
    100 I Bentwich, A Avniel, Y Karov, R Aharonov, S Gilad, O Barad, A Barzilai, P Einat, U Einav, E Meiri et al. Identification of Hundreds of Conserved and Nonconserved Human Micrornas. Nat Genet 2005, 37(7):766-770.
    101 BP Lewis, CB Burge, DP Bartel. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are Microrna Targets. Cell 2005, 120(1):15-20.
    102 M Rehmsmeier, P Steffen, M Hochsmann, R Giegerich. Fast and Effective Prediction of Microrna/Target Duplexes. Rna-a Publication of the Rna Society 2004, 10(10):1507-1517.
    103 RB Denman. Using Rnafold to Predict the Activity of Small Catalytic Rnas. Biotechniques 1993, 15(6):1090-1095.
    104 K Chaudhuri, R Chatterjee. Microrna Detection and Target Prediction: Integration of Computational and Experimental Approaches. DNA Cell Biol 2007, 26(5):321-337.
    105 M Kiriakidou, PT Nelson, A Kouranov, P Fitziev, C Bouyioukos, Z Mourelatos, A Hatzigeorgiou. A Combined Computational-ExperimentalApproach Predicts Human Microrna Targets. Gene Dev 2004, 18(10):1165-1178.
    106 A Krek, D Grun, MN Poy, R Wolf, L Rosenberg, EJ Epstein, P MacMenamin, I da Piedade, KC Gunsalus, M Stoffel et al. Combinatorial Microrna Target Predictions. Nature Genetics 2005, 37(5):495-500.
    107 D Grun, YL Wang, D Langenberger, KC Gunsalus, N Rajewsky. Microrna Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets. Plos Computational Biology 2005, 1(1):51-66.
    108 X Zhou, J Ruan, G Wang, W Zhang. Characterization and Identification of Microrna Core Promoters in Four Model Species. PLoS Comput Biol 2007, 3(3):e37.
    109 S Fujita, H Iba. Putative Promoter Regions of Mirna Genes Involved in Evolutionarily Conserved Regulatory Systems among Vertebrates. Bioinformatics 2008, 24(3):303-308.
    110 J Gu, T He, YF Pei, F Li, XW Wang, J Zhang, XG Zhang, YD Li. Primary Transcripts and Expressions of Mammal Intergenic Micrornas Detected by Mapping Ests to Their Flanking Sequences. Mamm Genome 2006, 17(10):1033-1041.
    111 HK Saini, S Griffiths-Jones, AJ Enright. Genomic Analysis of Human Microrna Transcripts. P Natl Acad Sci USA 2007, 104(45):17719-17724.
    112 A Barski, S Cuddapah, KR Cui, TY Roh, DE Schones, ZB Wang, G Wei, I Chepelev, KJ Zhao. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 2007, 129(4):823-837.
    113 A Marson, SS Levine, MF Cole, GM Frampton, T Brambrink, S Johnstone, MG Guenther, WK Johnston, M Wernig, J Newman et al. Connecting Microrna Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells. Cell 2008, 134(3):521-533.
    114 Y Zhao, D Srivastava. A Developmental View of Microrna Function. Trends Biochem Sci 2007, 32(4):189-197.
    115 G Childs, M Fazzari, G Kung, N Kawachi, M Brandwein-Gensler, M McLemore, Q Chen, RD Burk, RV Smith, MB Prystowsky et al. Low-Level Expression of Micrornas Let-7d and Mir-205 Are Prognostic Markers of Head and Neck Squamous Cell Carcinoma. Am J Pathol 2009,174(3):736-745.
    116 C Zhang. Micrornomics: A Newly Emerging Approach for Disease Biology. Physiol Genomics 2008, 33(2):139-147.
    117 SL Yu, HY Chen, GC Chang, CY Chen, HW Chen, S Singh, CL Cheng, CJ Yu, YC Lee, HS Chen et al. Microrna Signature Predicts Survival and Relapse in Lung Cancer. Cancer Cell 2008, 13(1):48-57.
    118 KP Porkka, MJ Pfeiffer, KK Waltering, RL Vessella, TL Tammela, T Visakorpi. Microrna Expression Profiling in Prostate Cancer. Cancer Res 2007, 67(13):6130-6135.
    119 QH Jiang, YD Wang, YY Hao, LR Juan, MX Teng, XJ Zhang, MM Li, GH Wang, YL Liu. Mir2disease: A Manually Curated Database for Microrna Deregulation in Human Disease. Nucleic Acids Research 2009, 37:D98-D104.
    120 X Chen, X Guo, H Zhang, Y Xiang, J Chen, Y Yin, X Cai, K Wang, G Wang, Y Ba et al. Role of Mir-143 Targeting Kras in Colorectal Tumorigenesis. Oncogene 2009.
    121 H Xia, Y Qi, SS Ng, X Chen, S Chen, M Fang, D Li, Y Zhao, R Ge, G Li et al. Microrna-15b Regulates Cell Cycle Progression by Targeting Cyclins in Glioma Cells. Biochem Biophys Res Commun 2009.
    122 E Ferretti, E De Smaele, A Po, L Di Marcotullio, E Tosi, MS Espinola, C Di Rocco, R Riccardi, F Giangaspero, A Farcomeni et al. Microrna Profiling in Human Medulloblastoma. Int J Cancer 2009, 124(3):568-577.
    123 DG Schaar, DJ Medina, DF Moore, RK Strair, Y Ting. Mir-320 Targets Transferrin Receptor 1 (Cd71) and Inhibits Cell Proliferation. Exp Hematol 2009, 37(2):245-255.
    124 M Lu, Q Zhang, M Deng, J Miao, Y Guo, W Gao, Q Cui. An Analysis of Human Microrna and Disease Associations. PLoS ONE 2008, 3(10):e3420.
    125 A Esquela-Kerscher, P Trang, JF Wiggins, L Patrawala, A Cheng, L Ford, JB Weidhaas, D Brown, AG Bader, FJ Slack. The Let-7 Microrna Reduces Tumor Growth in Mouse Models of Lung Cancer. Cell Cycle 2008, 7(6):759-764.
    126 SP Nana-Sinkam, MW Geraci. Microrna in Lung Cancer. J Thorac Oncol 2006, 1(9):929-931.
    127 GA Calin, CM Croce. Microrna-Cancer Connection: The Beginning of a New Tale. Cancer Res 2006, 66(15):7390-7394.
    128 M Eder, M Scherr. Microrna and Lung Cancer. N Engl J Med 2005, 352(23):2446-2448.
    129 GA Calin, CG Liu, M Ferracin, T Hyslop, R Spizzo, C Sevignani, M Fabbri, A Cimmino, EJ Lee, SE Wojcik et al. Ultraconserved Regions Encoding Ncrnas Are Altered in Human Leukemias and Carcinomas. Cancer Cell 2007, 12(3):215-229.
    130 B John, AJ Enright, A Aravin, T Tuschl, C Sander, DS Marks. Human Microrna Targets. PLoS Biol 2004, 2(11):e363.
    131 Y Andachi. A Novel Biochemical Method to Identify Target Genes of Individual Micrornas: Identification of a New Caenorhabditis Elegans Let-7 Target. RNA 2008, 14(11):2440-2451.
    132 SA Georges, MC Biery, SY Kim, JM Schelter, J Guo, AN Chang, AL Jackson, MO Carleton, PS Linsley, MA Cleary et al. Coordinated Regulation of Cell Cycle Transcripts by P53-Inducible Micrornas, Mir-192 and Mir-215. Cancer Res 2008, 68(24):10105-10112.
    133 Y Lee, RC Samaco, JR Gatchel, C Thaller, HT Orr, HY Zoghbi. Mir-19, Mir-101 and Mir-130 Co-Regulate Atxn1 Levels to Potentially Modulate Sca1 Pathogenesis. Nat Neurosci 2008, 11(10):1137-1139.
    134 AN Packer, Y Xing, SQ Harper, L Jones, BL Davidson. The Bifunctional Microrna Mir-9/Mir-9* Regulates Rest and Corest and Is Downregulated in Huntington's Disease. J Neurosci 2008, 28(53):14341-14346.
    135 A Saumet, G Vetter, M Bouttier, E Portales-Casamar, WW Wasserman, T Maurin, B Mari, P Barbry, L Vallar, E Friederich et al. Transcriptional Repression of Microrna Genes by Pml-Rara Increases Expression of Key Cancer Proteins in Acute Promyelocytic Leukemia. Blood 2008.
    136 RF Duisters, AJ Tijsen, B Schroen, JJ Leenders, V Lentink, I van der Made, V Herias, RE van Leeuwen, MW Schellings, P Barenbrug et al. Mir-133 and Mir-30 Regulate Connective Tissue Growth Factor. Implications for a Role of Micrornas in Myocardial Matrix Remodeling. Circ Res 2008.
    137 ME Crosby, R Kulshreshtha, M Ivan, PM Glazer. Microrna Regulation of DNA Repair Gene Expression in Hypoxic Stress. Cancer Res 2009.
    138 R Visone, L Russo, P Pallante, I De Martino, A Ferraro, V Leone, E Borbone, F Petrocca, H Alder, CM Croce et al. Micrornas (Mir)-221 and Mir-222, Both Overexpressed in Human Thyroid Papillary Carcinomas, Regulate P27kip1 Protein Levels and Cell Cycle. Endocr Relat Cancer 2007, 14(3):791-798.
    139 R Visone, P Pallante, A Vecchione, R Cirombella, M Ferracin, A Ferraro, S Volinia, S Coluzzi, V Leone, E Borbone et al. Specific Micrornas Are Downregulated in Human Thyroid Anaplastic Carcinomas. Oncogene 2007, 26(54):7590-7595.
    140 A Vecchione, G Baldassarre, H Ishii, MS Nicoloso, B Belletti, F Petrocca, N Zanesi, LY Fong, S Battista, D Guarnieri et al. Fez1/Lzts1 Absence Impairs Cdk1/Cdc25c Interaction During Mitosis and Predisposes Mice to Cancer Development. Cancer Cell 2007, 11(3):275-289.
    141 MS Nicoloso, TJ Kipps, CM Croce, GA Calin. Micrornas in the Pathogeny of Chronic Lymphocytic Leukaemia. Br J Haematol 2007, 139(5):709-716.
    142 H Nakanishi, T Nakamura, E Canaani, CM Croce. All1 Fusion Proteins Induce Deregulation of Epha7 and Erk Phosphorylation in Human Acute Leukemias. Proc Natl Acad Sci U S A 2007, 104(36):14442-14447.
    143 G Lanza, M Ferracin, R Gafa, A Veronese, R Spizzo, F Pichiorri, CG Liu, GA Calin, CM Croce, M Negrini. Mrna/Microrna Gene Expression Profile in Microsatellite Unstable Colorectal Cancer. Mol Cancer 2007, 6:54.
    144 R Kulshreshtha, M Ferracin, SE Wojcik, R Garzon, H Alder, FJ Agosto-Perez, R Davuluri, CG Liu, CM Croce, M Negrini et al. A Microrna Signature of Hypoxia. Mol Cell Biol 2007, 27(5):1859-1867.
    145 MV Iorio, R Visone, G Di Leva, V Donati, F Petrocca, P Casalini, C Taccioli, S Volinia, CG Liu, H Alder et al. Microrna Signatures in Human Ovarian Cancer. Cancer Res 2007, 67(18):8699-8707.
    146 L Gramantieri, M Ferracin, F Fornari, A Veronese, S Sabbioni, CG Liu, GA Calin, C Giovannini, E Ferrazzi, GL Grazi et al. Cyclin G1 Is a Target of Mir-122a, a Microrna Frequently Down-Regulated in Human Hepatocellular Carcinoma. Cancer Res 2007, 67(13):6092-6099.
    147 RW Georgantas, 3rd, R Hildreth, S Morisot, J Alder, CG Liu, S Heimfeld, GA Calin, CM Croce, CI Civin. Cd34+ Hematopoietic Stem-Progenitor CellMicrorna Expression and Function: A Circuit Diagram of Differentiation Control. Proc Natl Acad Sci U S A 2007, 104(8):2750-2755.
    148 R Garzon, F Pichiorri, T Palumbo, M Visentini, R Aqeilan, A Cimmino, H Wang, H Sun, S Volinia, H Alder et al. Microrna Gene Expression During Retinoic Acid-Induced Differentiation of Human Acute Promyelocytic Leukemia. Oncogene 2007, 26(28):4148-4157.
    149 L Fontana, E Pelosi, P Greco, S Racanicchi, U Testa, F Liuzzi, CM Croce, E Brunetti, F Grignani, C Peschle. Micrornas 17-5p-20a-106a Control Monocytopoiesis through Aml1 Targeting and M-Csf Receptor Upregulation. Nat Cell Biol 2007, 9(7):775-787.
    150 M Fabbri, R Garzon, A Cimmino, Z Liu, N Zanesi, E Callegari, S Liu, H Alder, S Costinean, C Fernandez-Cymering et al. Microrna-29 Family Reverts Aberrant Methylation in Lung Cancer by Targeting DNA Methyltransferases 3a and 3b. Proc Natl Acad Sci U S A 2007, 104(40):15805-15810.
    151 A Care, D Catalucci, F Felicetti, D Bonci, A Addario, P Gallo, ML Bang, P Segnalini, Y Gu, ND Dalton et al. Microrna-133 Controls Cardiac Hypertrophy. Nat Med 2007, 13(5):613-618.
    152 M Oti, HG Brunner. The Modular Nature of Genetic Diseases. Clin Genet 2007, 71(1):1-11.
    153 MY Galperin, GR Cochrane. Nucleic Acids Research Annual Database Issue and the Nar Online Molecular Biology Database Collection in 2009. Nucleic Acids Res 2009, 37(Database issue):D1-4.
    154 JF Fries, EV Hess, J Klinenberg. A Standard Database for Rheumatic Diseases. Arthritis Rheum 1974, 17(3):327-336.
    155 MO Dayhoff, RM Schwartz, HR Chen, WC Barker, LT Hunt, BC Orcutt. Nucleic Acid Sequence Database. DNA 1981, 1(1):51-58.
    156 BC Orcutt, DG George, JA Fredrickson, MO Dayhoff. Nucleic Acid Sequence Database Computer System. Nucleic Acids Res 1982, 10(1):157-174.
    157 C Burks, JW Fickett, WB Goad, M Kanehisa, FI Lewitter, WP Rindone, CD Swindell, CS Tung, HS Bilofsky. The Genbank Nucleic Acid Sequence Database. Comput Appl Biosci 1985, 1(4):225-233.
    158 R Leinonen, R Akhtar, E Birney, J Bonfield, L Bower, M Corbett, Y Cheng, F Demiralp, N Faruque, N Goodgame et al. Improvements to Services at the European Nucleotide Archive. Nucleic Acids Res 2010, 38(Database issue):D39-45.
    159 H Sugawara, K Ikeo, S Fukuchi, T Gojobori, Y Tateno. Ddbj Dealing with Mass Data Produced by the Second Generation Sequencer. Nucleic Acids Res 2009, 37(Database issue):D16-18.
    160 H Berman, K Henrick, H Nakamura, JL Markley. The Worldwide Protein Data Bank (Wwpdb): Ensuring a Single, Uniform Archive of Pdb Data. Nucleic Acids Res 2007, 35(Database issue):D301-303.
    161 A Andreeva, D Howorth, JM Chandonia, SE Brenner, TJ Hubbard, C Chothia, AG Murzin. Data Growth and Its Impact on the Scop Database: New Developments. Nucleic Acids Res 2008, 36(Database issue):D419-425.
    162 M Kanehisa, M Araki, S Goto, M Hattori, M Hirakawa, M Itoh, T Katayama, S Kawashima, S Okuda, T Tokimatsu et al. Kegg for Linking Genomes to Life and the Environment. Nucleic Acids Res 2008, 36(Database issue):D480-484.
    163 T Barrett, DB Troup, SE Wilhite, P Ledoux, D Rudnev, C Evangelista, IF Kim, A Soboleva, M Tomashevsky, KA Marshall et al. Ncbi Geo: Archive for High-Throughput Functional Genomic Data. Nucleic Acids Res 2009, 37(Database issue):D885-890.
    164 A Kauffmann, TF Rayner, H Parkinson, M Kapushesky, M Lukk, A Brazma, W Huber. Importing Arrayexpress Datasets into R/Bioconductor. Bioinformatics 2009, 25(16):2092-2094.
    165 RJ Marinelli, K Montgomery, CL Liu, NH Shah, W Prapong, M Nitzberg, ZK Zachariah, GJ Sherlock, Y Natkunam, RB West et al. The Stanford Tissue Microarray Database. Nucleic Acids Res 2008, 36(Database issue):D871-877.
    166 D Swarbreck, C Wilks, P Lamesch, TZ Berardini, M Garcia-Hernandez, H Foerster, D Li, T Meyer, R Muller, L Ploetz et al. The Arabidopsis Information Resource (Tair): Gene Structure and Function Annotation. Nucleic Acids Res 2008, 36(Database issue):D1009-1014.
    167 J Amberger, CA Bocchini, AF Scott, A Hamosh. Mckusick's OnlineMendelian Inheritance in Man (Omim). Nucleic Acids Res 2009, 37(Database issue):D793-796.
    168 A Hamosh, AF Scott, JS Amberger, CA Bocchini, VA McKusick. Online Mendelian Inheritance in Man (Omim), a Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Res 2005, 33(Database issue):D514-517.
    169 S Nam, B Kim, S Shin, S Lee. Mirgator: An Integrated System for Functional Annotation of Micrornas. Nucleic Acids Res 2008, 36(Database issue):D159-164.
    170 P Alexiou, T Vergoulis, M Gleditzsch, G Prekas, T Dalamagas, M Megraw, I Grosse, T Sellis, AG Hatzigeorgiou. Mirgen 2.0: A Database of Microrna Genomic Information and Regulation. Nucleic Acids Res 2010, 38(Database issue):D137-141.
    171 M Megraw, P Sethupathy, B Corda, AG Hatzigeorgiou. Mirgen: A Database for the Study of Animal Microrna Genomic Organization and Function. Nucleic Acids Res 2007, 35(Database issue):D149-155.
    172 SD Hsu, CH Chu, AP Tsou, SJ Chen, HC Chen, PW Hsu, YH Wong, YH Chen, GH Chen, HD Huang. Mirnamap 2.0: Genomic Maps of Micrornas in Metazoan Genomes. Nucleic Acids Res 2008, 36(Database issue):D165-169.
    173 D Betel, M Wilson, A Gabow, DS Marks, C Sander. The Microrna.Org Resource: Targets and Expression. Nucleic Acids Res 2008, 36(Database issue):D149-153.
    174 BP Lewis, IH Shih, MW Jones-Rhoades, DP Bartel, CB Burge. Prediction of Mammalian Microrna Targets. Cell 2003, 115(7):787-798.
    175 A Krek, D Grun, MN Poy, R Wolf, L Rosenberg, EJ Epstein, P MacMenamin, I da Piedade, KC Gunsalus, M Stoffel et al. Combinatorial Microrna Target Predictions. Nat Genet 2005, 37(5):495-500.
    176 J Kruger, M Rehmsmeier. Rnahybrid: Microrna Target Prediction Easy, Fast and Flexible. Nucleic Acids Res 2006, 34(Web Server issue):W451-454.
    177 GL Papadopoulos, M Reczko, VA Simossis, P Sethupathy, AG Hatzigeorgiou. The Database of Experimentally Supported Targets: A Functional Update of Tarbase. Nucleic Acids Res 2009, 37(Database issue):D155-158.
    178 P Sethupathy, B Corda, AG Hatzigeorgiou. Tarbase: A ComprehensiveDatabase of Experimentally Supported Animal Microrna Targets. RNA 2006, 12(2):192-197.
    179 CX Zhang. Micrornomics: A Newly Emerging Approach for Disease Biology. Physiological Genomics 2008, 33(2):139-147.
    180 Y Zhao, D Srivastava. A Developmental View of Microrna Function. Trends in Biochemical Sciences 2007, 32(4):189-197.
    181 DP Bartel, CZ Chen. Micromanagers of Gene Expression: The Potentially Widespread Influence of Metazoan Micrornas. Nature Reviews Genetics 2004, 5(5):396-400.
    182 D Baek, J Villen, C Shin, FD Camargo, SP Gygi, DP Bartel. The Impact of Micrornas on Protein Output. Nature 2008, 455(7209):64-U38.
    183 B Gabor, O Katalin, IJ Farkas. Human Micrornas Co-Silence in Well-Separated Groups and Have Different Predicted Essentialities. Bioinformatics 2009, 25(8):1063-1069.
    184 Y Benjamini, Y Hochberg. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995, 57(1):289-300.
    185 Y Benjamini, D Yekutieli. The Control of the False Discovery Rate in Multiple Testing under Dependency. Annals of Statistics 2001, 29(4):1165-1188.
    186 A Hintze, C Adami. Evolution of Complex Modular Biological Networks. Plos Computational Biology 2008, 4(2).
    187 AL Barabasi, E Ravasz, Z Oltvai. Hierarchical Organization of Modularity in Complex Networks. Statistical Mechanics of Complex Networks 2003, 625:46-65
    188 P Pearson, C Francomano, P Foster, C Bocchini, P Li, V Mckusick. The Status of Online Mendelian Inheritance in Man (Omim) Medio 1994. Nucleic Acids Research 1994, 22(17):3470-3473.
    189 MA van Driel, J Bruggeman, G Vriend, HG Brunner, JA Leunissen. A Text-Mining Analysis of the Human Phenome. European Journal of Human Genetics 2006, 14(5):535-542.
    190 U Ala, RM Piro, E Grassi, C Damasco, L Silengo, M Oti, P Provero, F Di Cunto. Prediction of Human Disease Genes by Human-Mouse ConservedCoexpression Analysis. Plos Computational Biology 2008, 4(3):-.
    191 HN Chua, WK Sung, L Wong. Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions. Bioinformatics 2006, 22(13):1623-1630.
    192 C Bock, J Walter, M Paulsen, T Lengauer. Cpg Island Mapping by Epigenome Prediction. PLoS Comput Biol 2007, 3(6):e110.
    193 L Han, RL Yang, B Su, ZM Zhao. An Svm-Based Algorithm for Classifying Promoter-Associated Cpg Islands in the Human and Mouse Genomes. Advanced Intelligent Computing Theories and Applications, Proceedings 2008, 5227:975-981
    194 LA Baumes, JM Serra, P Serna, A Corma. Support Vector Machines for Predictive Modeling in Heterogeneous Catalysis: A Comprehensive Introduction and Overfitting Investigation Based on Two Real Applications. Journal of Combinatorial Chemistry 2006, 8(4):583-596.
    195 RP Cogdill, P Dardenne. Least-Squares Support Vector Machines for Chemometrics: An Introduction and Evaluation. Journal of near Infrared Spectroscopy 2004, 12(2):93-100.
    196 YB Dibike, S Velickov, D Solomatine, MB Abbott. Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering 2001, 15(3):208-216.
    197 B Scholkopf. An Introduction to Support Vector Machines. Recent Advances and Trends in Nonparametric Statistics 2003:3-17
    198 C Cortes, V Vapnik. Support-Vector Networks. Mach Learn 1995, 20(3):273-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700