用户名: 密码: 验证码:
糖尿病肾病肾小球硬化机制的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     糖尿病肾病(Diabetic nephropathy, DN)是糖尿病常见的微血管并发症,它不仅是慢性肾功能衰竭患者肾移植的主要原因,还能大幅增加糖尿病患者心血管疾病的死亡率。肾小球硬化是1型与2型DN共同的特征性肾脏病理改变。DN发病机制非常复杂,涉及氧化应激、多元醇通路激活、糖基化终末产物沉积、血流动力学改变及诸多细胞因子异常等因素,为了深入揭示DN肾小球硬化的病理机制,本研究采用蛋白质组学技术,以体内与体外实验相结合,通过自发型2型DN模型OLETF大鼠肾皮质胞浆和胞膜亚差异蛋白质组学研究和高糖环境下大鼠肾小球系膜细胞动态差异蛋白质组学研究,探讨DN时肾小球硬化发病过程中蛋白质组学变化规律,以期更加深入理解DN肾小球硬化的发生机理。
     方法:
     1.自发型2型DN模型OLETF大鼠差异蛋白质组学研究
     OLETF大鼠和遗传背景相似但不发病的LETO大鼠各7只用于本实验。实验中OLETF大鼠血糖及尿蛋白排泄呈渐进性升高,出现肾小球硬化及间质纤维化等类似于人类2型DN的肾脏病理改变。动物在36周龄时处死取材,分离肾皮质,分别提取胞浆和胞膜总蛋白。获得的蛋白样品经双向电泳分离,胶体考马斯亮蓝染色显示。扫描输入计算机,用图像分析软件ImageMaster 6.0对凝胶进行分析,差异蛋白判定标准为:该蛋白点在LETO和OLETF两组间有统计学差异(两组蛋白点的volume%先经方差不齐t检验获得p,后经FDR校正后p<0.05),且volume%值变化超过2倍。将凝胶中的差异蛋白点切出,经胶内胰蛋白酶解和MALDI-TOF-MS获得肽质量指纹谱并进行Mascot对蛋白质进行分析。利用GoMinerTM、BINGO软件对差异蛋白质进行Gene Ontology(GO)分类和过度表达分析。对发现磷酸修饰的蛋白进行进一步的同源性和磷酸化位点保守性分析。
     2.高糖环境下大鼠肾小球系膜细胞动态差异蛋白质组学研究
     原代分离培养并传至第5代的大鼠肾小球系膜细胞分别置含5.5mM(正常对照组,NC组)和30mM葡萄糖(高糖组,HG组)培养基中,分别培养0h、8h、16h、72h、25day,提取细胞总蛋白。蛋白样品经双向电泳技术分离,胶体考马斯亮蓝显示,差异蛋白分析、判定,利用MALDI-TOF-MS获得肽指纹图谱进行蛋白鉴定,对凝胶上多个蛋白点代表同一种蛋白质的肽指纹图谱进行磷酸化修饰分析,对差异蛋白进行GO功能分类及过度表达分析。从IntAct Web Service Clien获取差异蛋白质的相互作用网路,用Cytoscape显示,并用MCODE分析。
     结果:
     1.描述了36周龄OLETF和LETO大鼠肾皮质胞浆和胞膜蛋白的差异蛋白质组学变化。与LETO大鼠相比OLETF大鼠肾皮质胞浆蛋白中9个蛋白点(Gapdh, Qdpr, Fah, similar to Protein C14orf159 mitochondrial precursor, Ephx2, Alb, Acadsb, Clybl)下调,8个蛋白点(Qdpr, Ephx2, Fthfd, Tf, Naprtl, Idh1, Fah, Cryab)上调。胞膜蛋白中11个蛋白点(Uqcrfsl, Nrnll, Pbld, LOC683519, Calbl, Acadsb, Dmgdh, Etfb)下调,10个蛋白点(LOC683519, Qdpr, GMPK, Etfb, Uqcrfsl, Fah, Dmgdh, Gpx3, cytokeratin 8 polypeptide)上调。这些差异蛋白主要定位在胞浆、线粒体和细胞小泡。能够和离子、维生素、蛋白结合,其分子功能主要和氧化还原活性、电子传递、转运、抗氧化有关,主要参与细胞信号传导、细胞凋亡、应激反应和芳香族氨基酸、氧和活性氧代谢过程。其参与的生物学过程包括氧化还原、羧酸代谢、一元羧酸代谢、急性炎症反应、应激反应、脂肪酸代谢过度表达等。研究中发现多个不同的点代表相同的蛋白质,提示不同的转录版本或不同的翻译后修饰在DN发病过程中有重要作用。初步判断Qdpr, Ephx2、LOC683519、GMPK在DN发病过程中发生了磷酸化修饰的改变。Ephx2同源性较高,Thr-50、Thr-59、Ser-70在人、小鼠、大鼠中保守性较高。
     2.描述了高糖环境对肾小球系膜细胞影响的蛋白质组学动态变化。细胞蛋白质组学结果分析发现28个差异蛋白点,其中在8h和16h2个蛋白点表达上调(Rcn2, Hspb1),24个蛋白点(Tcpl, Wdrl, Cct2, Eno1, Adss, Eef1g, Idhl, Pcbpl, Akrlbl, rCG53488, Pgam1, Psma6, Psmb7, Prdx6, Gstpl, Stmn1, Sodl, Krt2-7, Hmgb1, Serpinb9)表达下调,72小时2个蛋白点(Psma6, Hmgbl)表达下调,25天有2个蛋白点(Pdia3, Idh3a)表达上调。差异表达的蛋白主要定位在胞浆、胞核、细胞骨架、线粒体和内质网上,能与蛋白、核酸、离子结合,其分子功能以抗氧化活性、氧化还原活性、水解酶活性、异构酶活性为主;并参与细胞信号、细胞周期、凋亡、细胞增殖、细胞碳水化合物代谢、DNA代谢、RNA代谢、蛋白质代谢、氧和活性氧代谢等多种生物过程。GO过度表达和蛋白相互作用分析发现差异蛋白不仅和已知在DN发病中起到重要作用的糖代谢、氧化应激、分子伴侣有关,还和蛋白酶体相关的蛋白降解过程密切相关。
     结论:
     1.本研究结果发现与基因背景类似的正常LETO大鼠相比糖尿病肾病大鼠OLETF大鼠中Qdpr、Ephx2、Fah、Fthfd、p55 protein等蛋白表达丰度或磷酸化修饰的改变,尤其是发现体内有着重要功能的Ephx2存在磷酸化修饰,且在糖尿病肾病下发生了磷酸化修饰的改变。提示在DN肾小球硬化过程中,许多蛋白不仅存在丰度变化,还存在转录后修饰变化。这些发现为DN肾小球硬化机理研究提供新的思路。
     2.本研究结果发现高糖环境下系膜细胞PCBP1、HMGB1、Psma6、Psmb7、Prdx6、Rcn2、Serpinb9等蛋白表达丰度发生了动态改变。通过信息生物学研究发现除了已知的通路外,蛋白酶体通路也发生了改变,提示该通路与高糖环境下的肾小球系膜细胞增殖、肥大有着重要作用。这些发现可能为DN肾小球硬化机制研究提供新的思路。
Objective:Diabetic nephropathy is the leading cause of end stage renal disease, and is associated with increased cardiovascular mortality. The major renal pathological changes of diabetic nephropathy both developed from type 1 and type 2 diabetes are glomerular sclerosis. The major mechanism of diabetic nephropathy is not clear up to now, although oxidative stress, polyol pathway activation, advanced glycation end products, hemodynamics and various cytokines are presumed to be the main culprits of development of diabetic nephropathy. To explore the pathophysiologic mechanisms of diabetic nephropathy in depth, and improve our understanding of DN pathogenesis, proteomics strategy was performed to screen for dynamic proteomics profile of mesangial cells in response to high glucose condition and global changes of renal cortex protein expression in OLETF and LETO rats.
     Methods:
     1. Differential proteomics study of spontaneous type 2 diabetes model of OLETF and LETO rats.
     Spontaneous diabetic rat of OLETF and healthy control rats with the same genetic background LETO rats were used in this experiment. OLETF rats developed hyperglycemia, progressive increase of urinary protein excretion and glomeruloscerosis. OLETF and LETO rats were sacrificed at the age of 36 weeks, and the renal cortical total membrane and cytosolic protein were respectively extracted, and separated by. Two-dimensional gel electrophoresis and stained by colloidal Coomassie brilliant blue method. The gels were scanned with Lab Scan III system and analyzed by Imagemaster software 6.0. The determinant criterion of differential protein was statistical significance of the volume% of the same protein spot between the two groups of various time points (i.e. P value was less than 0.05 which obtained by t-test of heterogeneity of variance and then adjusted by false discovery rate (FDR)), and difference of volume% exceeding twofold compared with NC group. The differentially expressed proteins were subject to MALDI-TOF-MS and Mascot search engine analysis to get the molecular weight and pI value of the protein. Gene Ontology (GO) classification and over expression analysis of the differential proteins were conducted using GoMinerTM and BIGO software. Homology and conservation of phosphorylations sites of Ephx2 were further analyzed.
     2. Dynamic proteomic analysis of high glucose cultured rat glomerular mesangial cells.
     Primary glomerular mesangial cells of the 5th generation were cultured. Cells were cultured in 5.4 mM normal glucose (NG) and 30 mM high glucose (HG) for 0,8,16,72 hour and 25 day respectively. Cell total protein of both groups at different time point were extracted and separated by two-dimensional gel electrophoresis. The differential proteins were analyzed and identified by the same methods mentioned above. Protein interaction network were imported from IntAct Web Service Client, illustrated by cytoscape and analyzed by MCODE.
     Results:
     1. Compared with LETO rats:in the cytosolic fractions,9 protein spots (identified as Gapdh, Qdpr, Fah, similar to Protein C14orf159 mitochondrial precursor, Ephx2, Alb, Acadsb, Clybl) were down-regulated, and 8 (identified as Gapdh, Qdpr, Fah, similar to Protein C14orfl59 mitochondrial precursor, Ephx2, Alb, Acadsb, Clybl) were up-regulated (identified as Qdpr, Ephx2, Fthfd, Tf, Naprtl, Idh1, Fah, Cryab); In the membrane fractions,11 protein spots (identified as Uqcrfs1, Nrn11, Pbld, LOC683519, Calb1, Acadsb, Dmgdh, Etfb) were down-regulated and 10 (LOC683519, Qdpr, GMPK, Etfb, Uqcrfsl, Fah, Dmgdh, Gpx3, cytokeratin 8 polypeptide) up-regulated. The differential expressed proteins of OLETF and LETO rats were mainly located in the cytosol, mitochondria and cyto plasmic vesicle. Their molecular functions were mainly related to ion, vitamin and protein transportation, with the biological functions of oxidation-reduction reaction, electron carrier, transporter and antioxidant, and were primarily involved in cell communication, cell apoptosis, response to stress and cell metabolic process such as aromatic compound, oxygen and reactive oxygen species. GO analysis verified biology process related to those proteins were oxidation reduction, aromatic compound metabolic process, carboxylic acid metabolic process, oxygen and reactive oxygen species metabolic process, acute inflammatory response, fatty acid metabolic process, monocarboxylic acid metabolic process. MALDI-TOF-MS results suggested Qdpr、Ephx2、LOC683519、GMPK in different spots stand for different phosphorylation states. Homology of ephx2 was high, and Thr-50、Thr-59、Ser-70 of ephx2 were much conserved in rat, mouse and human.
     2.28 differential protein spots were found between NC and HG group. Among those in 8, 16h,2 (Rcn2, Hspb1) up regulated, and 24 (Tcpl, Wdrl, Cct2, Enol, Adss, Eeflg, Idhl, Pcbpl, Akrlbl, rCG53488, Pgaml, Psma6, Psmb7, Prdx6, Gstpl, Stmn1, Sodl, Krt2-7, Hmgb1, Serpinb9) were down regulated. In 72 h,2 (Psma6, Hmgbl) were down regulated. At the 25th day of culture,2 were up regulated (Pdia3 and Idh3a) over twofold. The differentially expressed proteins were mainly located in the cytosol, nucleus, cytoskeleton, mitochondria and endoplasmic reticulum. They could be bound with proteins, nucleic acids, ions. Their molecular function were related with antioxidant, oxidation-reduction, hydrolytic enzyme and isomerase, were primarily involved in the biological process such as cell communication, cell cycle, apoptosis, proliferation and metabolic process of carbohydrate, DNA, RNA, protein, oxygen and active oxygen. Gene ontology(GO) over expression and protein interaction analysis revealed that those protein were not only linked with already known diabetic nephropathy process such as glucose metabolism, oxidative stress and molecular chaperones, but also related to protein degradation.
     Conclusions:
     1.Some of differentially expressed proteins or their modification transform like Qdpr、Ephx2、Fah、Fthfd and p55 protein, which found in OLETF, were newly linked with pathogenesis of type 2 diabetic nephropathy. It can be concluded that type2 DN is not only associated with protein abundance changes but also modification changes. Especially we found ephx2 which perform important function in body, can be phosphorylated and its phosphorylation is changed in DN seems much more prospective. Those found would provide new clues about the etiopathogenisis of diabetic nephropathy.
     2.PCBP1, HMGB1, Psma6, Psmb7, Prdx6, Rcn2 and Serpinb9 are newly found to be dynamically changed in the mesangial cells response to high glucose conditions. Through bioinformatics analysis, we found Proteasomes dysfunction might play an important role in proliferation and hypertrophy of mesangial cells in response to high glucose conditions which might provide new clues of the pathogenesis of diabetic nephropathy.
引文
[1]Organization W. H. Prevention of diabetes mellitus. Technical Report Series no. 844. [R]. W. H. Organization, Geneva:World Health Organization,1994.
    [2]West K. M. Diabetes in American Indians[J]. Adv Metab Disord,1978,9(2):29-48.
    [3]Zimmet P. Globalization, coca-colonization and the chronic disease epidemic:can the Doomsday scenario be averted?[J]. J Intern Med,2000,247(3):301-310.
    [4]全国糖尿病研究协作组调查研究组:全国14省30万人口中糖尿病调查报告[J].中华内科杂志,1981,20(4):5.
    [5]向红丁,吴纬,刘灿群.1996年全国糖尿病流行病学特点基线调查报告[J].中国糖尿病杂志,1998,6(3):131-133.
    [6]Pan X. R., Yang W. Y., Li G. W., et al. Prevalence of diabetes and its risk factors in China,1994. National Diabetes Prevention and Control Cooperative Group[J]. Diabetes Care,1997,20(11):1664-1669.
    [7]潘长玉,金文胜.2型糖尿病流行病学[J].中华内分泌代谢杂志,2005,21(05):增录5s-1-增录5s-5.
    [8]K/DOQI clinical practice guidelines for chronic kidney disease:evaluation, classification, and stratification[J]. Am J Kidney Dis,2002,39(2 Suppl 1):S1-266.
    [9]Zimmet P., Alberti K. G.Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature,2001,414(6865):782-787.
    [10]Karter A. J., Ferrara A., Liu J. Y, et al. Ethnic disparities in diabetic complications in an insured population[J]. Jama,2002,287(19):2519-2527.
    [11]Parving H. H., Lewis J. B., Ravid M., et al. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients:a global perspective[J]. Kidney Int,2006,69(11):2057-2063.
    [12]Thomsen O. F., Andersen A. R., Christiansen J. S., et al. Renal changes in long-term type 1 (insulin-dependent) diabetic patients with and without clinical nephropathy:a light microscopic, morphometric study of autopsy material[J]. Diabetologia,1984,26(5): 361-365.
    [13]Parving H. H., Smidt U. M., Friisberg B., et al. A prospective study of glomerular filtration rate and arterial blood pressure in insulin-dependent diabetics with diabetic nephropathy[J]. Diabetologia,1981,20(4):457-461.
    [14]Qian Y, Feldman E., Pennathur S., et al. From fibrosis to sclerosis:mechanisms of glomerulosclerosis in diabetic nephropathy[J]. Diabetes,2008,57(6):1439-1445.
    [15]Raptis A. E.Viberti G. Pathogenesis of diabetic nephropathy[J]. Exp Clin Endocrinol Diabetes,2001,109 Suppl 2(S424-437.
    [16]Lewis A. B.Chabot M. The effect of treatment with angiotensin-converting enzyme inhibitors on survival of pediatric patients with dilated cardiomyopathy[J]. Pediatr Cardiol,1993,14(1):9-12.
    [17]Remuzzi A., Perico N., Amuchastegui C. S., et al. Short-and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes[J]. J Am Soc Nephrol, 1993,4(1):40-49.
    [18]Singh R., Alavi N., Singh A. K., et al. Role of angiotensin Ⅱ in glucose-induced inhibition of mesangial matrix degradation[J]. Diabetes,1999,48(10):2066-2073.
    [19]Zhang S. L., Filep J. G., Hohman T. C., et al. Molecular mechanisms of glucose action on angiotensinogen gene expression in rat proximal tubular cells [J]. Kidney Int, 1999,55(2):454-464.
    [20]Ushio-Fukai M., Zafari A. M., Fukui T., et al. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin Ⅱ-induced hypertrophy in vascular smooth muscle cells[J]. J Biol Chem,1996,271(38): 23317-23321.
    [21]Jaimes E. A., Galceran J. M.Raij L. Angiotensin Ⅱ induces superoxide anion production by mesangial cells[J]. Kidney Int,1998,54(3):775-784.
    [22]Brasier A. R., Jamaluddin M., Han Y., et al. Angiotensin Ⅱ induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor[J]. Mol Cell Biochem,2000,212(1-2):155-169.
    [23]Ziyadeh F. N., Hoffman B. B., Han D. C., et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice[J]. Proc Natl Acad Sci U S A,2000,97(14):8015-8020.
    [24]Weigert C., Brodbeck K., Klopfer K., et al. Angiotensin Ⅱ induces human TGF-beta 1 promoter activation:similarity to hyperglycaemia[J]. Diabetologia,2002,45(6): 890-898.
    [25]Sharma K.Ziyadeh F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator[J]. Diabetes,1995,44(10):1139-1146.
    [26]Schleicher E.Nerlich A. The role of hyperglycemia in the development of diabetic complications[J]. Horm Metab Res,1996,28(8):367-373.
    [27]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [28]Korshunov S. S., Skulachev V. P.Starkov A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria[J]. FEBS Lett, 1997,416(1):15-18.
    [29]Nishikawa T., Edelstein D., Du X. L., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature,2000, 404(6779):787-790.
    [30]Sawa A., Khan A. A., Hester L. D., et al. Glyceraldehyde-3-phosphate dehydrogenase:nuclear translocation participates in neuronal and nonneuronal cell death[J]. Proc Natl Acad Sci U S A,1997,94(21):11669-11674.
    [31]Schmitz H. D. Reversible nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase upon serum depletion[J]. Eur J Cell Biol,2001,80(6):419-427.
    [32]Koya D., Haneda M., Nakagawa H., et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes[J]. Faseb J,2000,14(3):439-447.
    [33]Kolm-Litty V., Sauer U., Nerlich A., et al. High glucose-induced transforming growth factor betal production is mediated by the hexosamine pathway in porcine glomerular mesangial cells[J]. J Clin Invest,1998,101(1):160-169.
    [34]Sayeski P. P.Kudlow J. E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription[J]. J Biol Chem,1996,271(25):15237-15243.
    [35]Wells L.Hart G. W. O-GlcNAc turns twenty:functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar[J]. FEBS Lett,2003,546(1):154-158.
    [36]Wahab N. A., Harper K.Mason R. M. Expression of extracellular matrix molecules in human mesangial cells in response to prolonged hyperglycaemia[J]. Biochem J,1996, 316(Pt3)(985-992.
    [37]Kolm V., Sauer U., Olgemooller B., et al. High glucose-induced TGF-beta 1 regulates mesangial production of heparan sulfate proteoglycan[J]. Am J Physiol,1996, 270(5Pt2):F812-821.
    [38]van Det N. F., van den Born J., Tamsma J. T., et al. Effects of high glucose on the production of heparan sulfate proteoglycan by mesangial and epithelial cells[J]. Kidney Int,1996,49(4):1079-1089.
    [39]Han D. C., Isono M., Hoffman B. B., et al. High glucose stimulates proliferation and collagen type I synthesis in renal cortical fibroblasts:mediation by autocrine activation of TGF-beta[J]. J Am Soc Nephrol,1999,10(9):1891-1899.
    [40]Nakamura T., Miller D., Ruoslahti E., et al. Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor-beta 1[J]. Kidney Int,1992,41(5):1213-1221.
    [41]Humes H. D., Nakamura T., Cieslinski D. A., et al. Role of proteoglycans and cytoskeleton in the effects of TGF-beta 1 on renal proximal tubule cells[J]. Kidney Int, 1993,43(3):575-584.
    [42]Roberts A. B., McCune B. K.Sporn M. B. TGF-beta:regulation of extracellular matrix[J]. Kidney Int,1992,41(3):557-559.
    [43]Border W. A.Noble N. A. Transforming growth factor beta in tissue fibrosis[J]. N Engl J Med,1994,331(19):1286-1292.
    [44]Ziyadeh F. N., Sharma K., Ericksen M., et al. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta[J]. J Clin Invest,1994,93(2): 536-542.
    [45]Davies M., Thomas G. J., Martin J., et al. The purification and characterization of a glomerular-basement-membrane-degrading neutral proteinase from rat mesangial cells[J]. Biochem J,1988,251(2):419-425.
    [46]Marti H. P., Lee L., Kashgarian M., et al. Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase[J]. Am J Pathol,1994,144(1):82-94.
    [47]Eddy A. A. Molecular insights into renal interstitial fibrosis[J]. J Am Soc Nephrol, 1996,7(12):2495-2508.
    [48]Hall M. C., Young D. A., Waters J. G, et al. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1[J]. J Biol Chem,2003,278(12):10304-10313.
    [49]Rerolle J. P., Hertig A., Nguyen G., et al. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis[J]. Kidney Int,2000,58(5):1841-1850.
    [50]Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data[J]. Ann Intern Med,2001,134(5):370-379.
    [51]Parving H. H., Lehnert H., Brochner-Mortensen J., et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes[J]. N Engl J Med,2001,345(12):870-878.
    [52]Andersen S., Brochner-Mortensen J.Parving H. H. Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria[J]. Diabetes Care,2003,26(12):3296-3302.
    [53]Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic:The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)[J]. Jama,2002,288(23):2981-2997.
    [54]Casas J. P., Chua W., Loukogeorgakis S., et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes:systematic review and meta-analysis[J]. Lancet,2005,366(9502):2026-2033.
    [55]Suissa S., Hutchinson T., Brophy J. M., et al. ACE-inhibitor use and the long-term risk of renal failure in diabetes[J]. Kidney Int,2006,69(5):913-919.
    [56]Costantino L., Rastelli G., Vianello P., et al. Diabetes complications and their potential prevention:aldose reductase inhibition and other approaches[J]. Med Res Rev, 1999,19(1):3-23.
    [57]Hotta N., Akanuma Y., Kawamori R., et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy:the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial[J]. Diabetes Care, 2006,29(7):1538-1544.
    [58]Kahn P. From genome to proteome:looking at a cell's proteins[J]. Science,1995, 270(5235):369-370.
    [59]Abbott A. And now for the proteome[J]. Nature,2001,409(6822):747.
    [60]Fields S. Proteomics. Proteomics in genomeland[J]. Science,2001,291(5507): 1221-1224.
    [61]O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem,1975,250(10):4007-4021.
    [62]Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals[J]. Humangenetik,1975,26(3):231-243.
    [63]Klose J.Kobalz U. Two-dimensional electrophoresis of proteins:an updated protocol and implications for a functional analysis of the genome[J]. Electrophoresis,1995,16(6): 1034-1059.
    [64]Tilton R. G, Haidacher S. J., Lejeune W. S., et al. Diabetes-induced changes in the renal cortical proteome assessed with two-dimensional gel electrophoresis and mass spectrometry[J]. Proteomics,2007,7(10):1729-1742.
    [65]Thongboonkerd V., Barati M. T., McLeish K. R., et al. Proteomics and diabetic nephropathy[J]. Contrib Nephrol,2004,141(142-154.
    [66]Kawano K., Hirashima T., Mori S., et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain[J]. Diabetes,1992,41(11):1422-1428.
    [67]Veniant M., Heudes D., Clozel J. P., et al. Calcium blockade versus ACE inhibition in clipped and unclipped kidneys of 2K-1C rats[J]. Kidney Int,1994,46(2):421-429.
    [68]中国糖尿病防治指南[J].中国慢性病预防与控制,2004,12(6):283-285.
    [69]Funakoshi A., Miyasaka K., Jimi A., et al. Little or no expression of the cholecystokinin-A receptor gene in the pancreas of diabetic rats (Otsuka Long-Evans Tokushima Fatty= OLETF rats)[J]. Biochem Biophys Res Commun,1994,199(2): 482-488.
    [70]Funakoshi A., Miyasaka K., Shinozaki H., et al. An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor[J]. Biochem Biophys Res Commun,1995,210(3):787-796.
    [71]Shima K., Zhu M.Mizuno A. Pathoetiology and prevention of NIDDM lessons from the OLETF rat[J]. J Med Invest,1999,46(3-4):121-129.
    [72]Kawano K., Hirashima T., Mori S., et al. OLETF (Otsuka Long-Evans Tokushima Fatty) rat:a new NIDDM rat strain[J]. Diabetes Res Clin Pract,1994,24 Suppl(S317-320.
    [73]Hirashima T., Kawano K., Mori S., et al. A diabetogenic gene (ODB-1) assigned to the X-chromosome in OLETF rats[J]. Diabetes Res Clin Pract,1995,27(2):91-96.
    [74]李青,龚细礼,刘育进.血脂变化与2型糖尿病肾病的关系[J].医学临床研究.2006,23(2):184-187.
    [75]Yagi K., Kim S., Wanibuchi H., et al. Characteristics of diabetes, blood pressure, and cardiac and renal complications in Otsuka Long-Evans Tokushima Fatty rats[J]. Hypertension,1997,29(3):728-735.
    [76]Kawano K., Mori S., Hirashima T., et al. Examination of the pathogenesis of diabetic nephropathy in OLETF rats[J]. J Vet Med Sci,1999,61(11):1219-1228.
    [77]Eravci M., Mansmann U., Broedel O., et al. Strategies for a Reliable Biostatistical Analysis of Differentially Expressed Spots from Two-Dimensional Electrophoresis Gels[J]. J Proteome Res,2009.
    [78]Biron D. G, Brun C., Lefevre T., et al. The pitfalls of proteomics experiments without the correct use of bioinformatics tools[J]. Proteomics,2006,6(20):5577-5596.
    [79]Hunter T. Signaling--2000 and beyond[J]. Cell,2000,100(1):113-127.
    [80]Charbonneau H.Tonks N. K.1002 protein phosphatases?[J]. Annu Rev Cell Biol, 1992,8(463-493.
    [81]Craine J. E., Hall E. S.Kaufinan S. The isolation and characterization of dihydropteridine reductase from sheep liver[J]. J Biol Chem,1972,247(19):6082-6091.
    [82]Thony B., Auerbach GBlau N. Tetrahydrobiopterin biosynthesis, regeneration and functions[J]. Biochem J,2000,347 Pt 1(1-16.
    [83]Katusic Z. S., d'Uscio L. V.Nath K. A. Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects[J]. Trends Pharmacol Sci,2009,30(1):48-54.
    [84]Tayeh M. A.Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor[J]. J Biol Chem,1989, 264(33):19654-19658.
    [85]Kwon N. S., Nathan C. F.Stuehr D. J. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages[J]. J Biol Chem,1989,264(34): 20496-20501.
    [86]Mayer B., John M.Bohme E. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin[J]. FEBS Lett,1990,277(1-2):215-219.
    [87]Pollock J. S., Forstermann U., Mitchell J. A., et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells[J]. Proc Natl Acad Sci U S A,1991,88(23):10480-10484.
    [88]Schmidt T. S.Alp N. J. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease[J]. Clin Sci (Lond),2007,113(2):47-63.
    [89]Schulz E., Jansen T., Wenzel P., et al. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension[J]. Antioxid Redox Signal,2008, 10(6):1115-1126.
    [90]Ozaki M., Kawashima S., Yamashita T., et al. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice[J]. J Clin Invest,2002,110(3):331-340.
    [91]Bendall J. K., Alp N. J., Warrick N., et al. Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo:insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression[J]. Circ Res,2005,97(9):864-871.
    [92]Milstien S.Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function[J]. Biochem Biophys Res Commun,1999, 263(3):681-684.
    [93]Vasquez-Vivar J., Martasek P., Whitsett J., et al. The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase:an EPR spin trapping study[J]. Biochem J, 2002,362(Pt 3):733-739.
    [94]Satoh M., Fujimoto S., Arakawa S., et al. Angiotensin Ⅱ type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy[J]. Nephrol Dial Transplant,2008,23(12):3806-3813.
    [95]Kaufman S. Some metabolic relationships between biopterin and folate: implications for the "methyl trap hypothesis"[J]. Neurochem Res,1991,16(9): 1031-1036.
    [96]Okumura M., Masada M., Yoshida Y, et al. Decrease in tetrahydrobiopterin as a possible cause of nephropathy in type Ⅱ diabetic rats[J]. Kidney Int,2006,70(3): 471-476.
    [97]Marco G S., Colucci J. A., Fernandes F. B., et al. Diabetes induces changes of catecholamines in primary mesangial cells[J]. Int J Biochem Cell Biol,2008,40(4): 747-754.
    [98]Newman J. W., Morisseau C.Hammock B. D. Epoxide hydrolases:their roles and interactions with lipid metabolism[J]. Prog Lipid Res,2005,44(1):1-51.
    [99]Arand M., Grant D. F., Beetham J. K., et al. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis[J]. FEBS Lett,1994,338(3):251-256.
    [100]Morisseau C.Hammock B. D. Epoxide hydrolases:mechanisms, inhibitor designs, and biological roles[J]. Annu Rev Pharmacol Toxicol,2005,45(311-333.
    [101]Hammock B. D., Pinot F., Beetham J. K., et al. Isolation of a putative hydroxyacyl enzyme intermediate of an epoxide hydrolase[J]. Biochem Biophys Res Commun,1994, 198(3):850-856.
    [102]Borhan B., Jones A. D., Pinot F., et al. Mechanism of soluble epoxide hydrolase. Formation of an alpha-hydroxy ester-enzyme intermediate through Asp-333 [J]. J Biol Chem,1995,270(45):26923-26930.
    [103]Arand M., Wagner H.Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase[J]. J Biol Chem,1996,271(8):4223-4229.
    [104]Cronin A., Mowbray S., Durk H., et al. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase[J]. Proc Natl Acad Sci U S A,2003,100(4): 1552-1557.
    [105]Newman J. W., Morisseau C., Harris T. R., et al. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity[J]. Proc Natl Acad Sci U S A,2003,100(4):1558-1563.
    [106]Armstrong R. N.Cassidy C. S. New structural and chemical insight into the catalytic mechanism of epoxide hydrolases[J]. Drug Metab Rev,2000,32(3-4):327-338.
    [107]Steinreiber A.Faber K. Microbial epoxide hydrolases for preparative biotransformations[J]. Curr Opin Biotechnol,2001,12(6):552-558.
    [108]Szeliga J.Dipple A. DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides[J]. Chem Res Toxicol,1998,11(1):1-11.
    [109]Zheng J., Cho M., Jones A. D., et al. Evidence of quinone metabolites of naphthalene covalently bound to sulfur nucleophiles of proteins of murine Clara cells after exposure to naphthalene[J]. Chem Res Toxicol,1997,10(9):1008-1014.
    [110]Fang X., Kaduce T. L., VanRollins M., et al. Conversion of epoxyeicosatrienoic acids (EETs) to chain-shortened epoxy fatty acids by human skin fibroblasts[J]. J Lipid Res,2000,41(1):66-74.
    [111]Fang X., Weintraub N. L., Oltman C. L., et al. Human coronary endothelial cells convert 14,15-EET to a biologically active chain-shortened epoxide[J]. Am J Physiol Heart Circ Physiol,2002,283(6):H2306-2314.
    [112]Oliw E. H. Oxygenation of polyunsaturated fatty acids by cytochrome P450 monooxygenases[J]. Prog Lipid Res,1994,33(3):329-354.
    [113]Spector A. A.Norris A. W. Action of epoxyeicosatrienoic acids on cellular function[J]. Am J Physiol Cell Physiol,2007,292(3):C996-1012.
    [114]Argiriadi M. A., Morisseau C., Hammock B. D., et al. Detoxification of environmental mutagens and carcinogens:structure, mechanism, and evolution of liver epoxide hydrolase[J]. Proc Natl Acad Sci U S A,1999,96(19):10637-10642.
    [115]Beetham J. K., Grant D., Arand M., et al. Gene evolution of epoxide hydrolases and recommended nomenclature[J]. DNA Cell Biol,1995,14(1):61-71.
    [116]Collet J. F., Stroobant V.Van Schaftingen E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases[J]. J Biol Chem,1999,274(48): 33985-33990.
    [117]Ndubuisil M. I., Kwok B. H., Vervoort J., et al. Characterization of a novel mammalian phosphatase having sequence similarity to Schizosaccharomyces pombe PHO2 and Saccharomyces cerevisiae PHO13[J]. Biochemistry,2002,41(24):7841-7848.
    [118]Dimmeler S., Fleming I., Fisslthaler B., et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation[J]. Nature,1999,399(6736): 601-605.
    [119]Fang X., Kaduce T. L., Weintraub N. L., et al. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition[J]. J Biol Chem,2001,276(18):14867-14874.
    [120]Yamada T., Morisseau C., Maxwell J. E., et al. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase[J]. J Biol Chem,2000,275(30):23082-23088.
    [121]Burdon K. P., Lehtinen A. B., Langefeld C. D., et al. Genetic analysis of the soluble epoxide hydrolase gene, EPHX2, in subclinical cardiovascular disease in the Diabetes Heart Study[J]. Diab Vasc Dis Res,2008,5(2):128-134.
    [122]Lee S. H., Lee J., Cha R., et al. Genetic variations in soluble epoxide hydrolase and graft function in kidney transplantation[J]. Transplant Proc,2008,40(5):1353-1356.
    [123]Liu B. C., Sun J., Chen Q., et al. Role of connective tissue growth factor in mediating hypertrophy of human proximal tubular cells induced by angiotensin Ⅱ[J]. Am J Nephrol,2003,23(6):429-437.
    [124]Luo P., Zhou Y, Chang H. H., et al. Glomerular 20-HETE, EETs, and TGF-betal in diabetic nephropathy[J]. Am J Physiol Renal Physiol,2009,296(3):F556-563.
    [125]Chishti A. H. Function of p55 and its nonerythroid homologues[J]. Curr Opin Hematol,1998,5(2):116-121.
    [126]Ruff P., Speicher D. W.Husain-Chishti A. Molecular identification of a major palmitoylated erythrocyte membrane protein containing the src homology 3 motif[J]. Proc Natl Acad Sci U S A,1991,88(15):6595-6599.
    [127]Jing-Ping Z., Tian Q. B., Sakagami H., et al. p55 protein is a member of PSD scaffold proteins in the rat brain and interacts with various PSD proteins[J]. Brain Res Mol Brain Res,2005,135(1-2):204-216.
    [128]Nunomura W., Takakuwa Y, Parra M., et al. Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane[J]. J Biol Chem,2000, 275(32):24540-24546.
    [129]Walensky L. D., Blackshaw S., Liao D., et al. A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1 [J]. J Neurosci,1999,19(15): 6457-6467.
    [130]Alloisio N., Dalla Venezia N., Rana A., et al. Evidence that red blood cell protein p55 may participate in the skeleton-membrane linkage that involves protein 4.1 and glycophorin C[J]. Blood,1993,82(4):1323-1327.
    [131]Gregersen N., Kolvraa S.Mortensen P. B. Acyl-CoA:glycine N-acyltransferase:in vitro studies on the glycine conjugation of straight-and branched-chained acyl-CoA esters in human liver[J]. Biochem Med Metab Biol,1986,35(2):210-218.
    [132]Kanavin O. J., Woldseth B., Jellum E., et al.2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation:a case report[J]. J Med Case Reports,2007,1(98.
    [133]Barlowe C. K.Appling D. R. In vitro evidence for the involvement of mitochondrial folate metabolism in the supply of cytoplasmic one-carbon units[J]. Biofactors,1988,1(2):171-176.
    [134]Cook R. J., Lloyd R. S.Wagner C. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase[J]. J Biol Chem,1991,266(8): 4965-4973.
    [135]Krupenko S. A.Oleinik N. V.10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells[J]. Cell Growth Differ,2002,13(5):227-236.
    [136]Champion K. M., Cook R. J., Tollaksen S. L., et al. Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice[J]. Proc Natl Acad Sci U S A,1994,91(24):11338-11342.
    [137]Assaraf Y. G Molecular basis of antifolate resistance[J]. Cancer Metastasis Rev, 2007,26(1):153-181.
    [138]Stanger O. Physiology of folic acid in health and disease[J]. Curr Drug Metab, 2002,3(2):211-223.
    [139]Blom H. J., Shaw G. M., den Heijer M., et al. Neural tube defects and folate:case far from closed[J]. Nat Rev Neurosci,2006,7(9):724-731.
    [140]Stover P. J. Physiology of folate and vitamin B12 in health and disease[J]. Nutr Rev, 2004,62(6 Pt 2):S3-12; discussion S13.
    [141]Glynn S. A.Albanes D. Folate and cancer:a review of the literature[J]. Nutr Cancer, 1994,22(2):101-119.
    [142]Blount B. C., Mack M. M., Wehr C. M., et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage:implications for cancer and neuronal damage[J]. Proc Natl Acad Sci U S A,1997,94(7):3290-3295.
    [143]Jhaveri M. S., Wagner C.Trepel J. B. Impact of extracellular folate levels on global gene expression[J]. Mol Pharmacol,2001,60(6):1288-1295.
    [144]Kruman, Ⅱ, Kumaravel T. S., Lohani A., et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease[J]. J Neurosci,2002,22(5): 1752-1762.
    [145]Borman L. S.Branda R. F. Nutritional folate deficiency in Chinese hamster ovary cells. I. Characterization of the pleiotropic response and its modulation by nucleic acid precursors[J]. J Cell Physiol,1989,140(2):335-343.
    [146]Chu E., Grem J. L., Johnston P. G, et al. New concepts for the development and use of antifolates[J]. Stem Cells,1996,14(1):41-46.
    [147]Huang R. F., Ho Y. H., Lin H. L., et al. Folate deficiency induces a cell cycle-specific apoptosis in HepG2 cells[J]. J Nutr,1999,129(1):25-31.
    [148]Moat S. J., Lang D., McDowell I. F., et al. Folate, homocysteine, endothelial function and cardiovascular disease[J]. J Nutr Biochem,2004,15(2):64-79.
    [149]Rock C. L., Lampe J. W.Patterson R. E. Nutrition, genetics, and risks of cancer[J]. Annu Rev Public Health,2000,21(47-64.
    [150]Choi S. W.Mason J. B. Folate and carcinogenesis:an integrated scheme[J]. J Nutr, 2000,130(2):129-132.
    [151]Oleinik N. V., Krupenko N. I., Priest D. G., et al. Cancer cells activate p53 in response to 10-formyltetrahydrofolate dehydrogenase expression[J]. Biochem J,2005, 391(Pt3):503-511.
    [152]Tephly T. R. The toxicity of methanol[J]. Life Sci,1991,48(11):1031-1041.
    [153]Anguera M. C., Field M. S., Perry C., et al. Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydro folate dehydrogenase[J]. J Biol Chem, 2006,281(27):18335-18342.
    [154]Home D. W., Patterson D.Cook R. J. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver[J]. Arch Biochem Biophys,1989,270(2):729-733.
    [155]Bianchetti R., Lucchini G, Crosti P., et al. Dependence of mitochondrial protein synthesis initiation on formylation of the initiator methionyl-tRNAf[J]. J Biol Chem, 1977,252(8):2519-2523.
    [156]Spencer A. C.Spremulli L. L. Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA[J]. Nucleic Acids Res,2004,32(18):5464-5470.
    [157]Tibbetts A. S., Oesterlin L., Chan S. Y, et al. Mammalian mitochondrial initiation factor 2 supports yeast mitochondrial translation without formylated initiator tRNA[J]. J Biol Chem,2003,278(34):31774-31780.
    [158]Pizzorno G., Davis S. J., Hartigan D. J., et al. Enhancement of antineoplastic activity of 5-fluorouracil in mice bearing colon 38 tumor by (6R)5,10-dideazatetrahydrofolic acid[J]. Biochem Pharmacol,1994,47(11):1981-1988.
    [159]Epperson L. E., Dahl T. A.Martin S. L. Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel[J]. Mol Cell Proteomics,2004,3(9):920-933.
    [160]Leonard J. F., Courcol M., Mariet C., et al. Proteomic characterization of the effects of clofibrate on protein expression in rat liver[J]. Proteomics,2006,6(6): 1915-1933.
    [161]McCormick C. P., Konen J. C.Shihabi Z. K. Microtransferrinuria and microalbuminuria. I. In the diabetic human[J]. Clin Physiol Biochem,1990,8(2):53-58.
    [162]Gromer S., Eubel J. K., Lee B. L., et al. Human selenoproteins at a glance[J]. Cell Mol Life Sci,2005,62(21):2414-2437.
    [163]Behne D.Kyriakopoulos A. Mammalian selenium-containing proteins[J]. Annu Rev Nutr,2001,21(453-473.
    [164]Tham D. M., Whitin J. C., Kim K. K., et al. Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract[J]. Am J Physiol,1998,275(6 Pt 1): G1463-1471.
    [165]Comhair S. A., Bhathena P. R., Farver C., et al. Extracellular glutathione peroxidase induction in asthmatic lungs:evidence for redox regulation of expression in human airway epithelial cells[J]. Faseb J,2001,15(1):70-78.
    [166]Chu F. F., Esworthy R. S., Doroshow J. H., et al. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents[J]. Blood,1992,79(12):3233-3238.
    [167]Avissar N., Slemmon J. R., Palmer I. S., et al. Partial sequence of human plasma glutathione peroxidase and immunologic identification of milk glutathione peroxidase as the plasma enzyme[J]. J Nutr,1991,121(8):1243-1249.
    [168]Avissar N., Eisenmann C., Breen J. G, et al. Human placenta makes extracellular glutathione peroxidase and secretes it into maternal circulation[J]. Am J Physiol,1994, 267(1 Pt 1):E68-76.
    [169]Maeda K., Okubo K., Shimomura I., et al. Analysis of an expression profile of genes in the human adipose tissue[J]. Gene,1997,190(2):227-235.
    [170]Oshima G, Kunimoto M.Nakagawa Y. Appearance of extracellular glutathione peroxidase (eGPx) in the ascite fluid of casein-elicited rats[J]. Biol Pharm Bull,2000, 23(5):532-536.
    [171]Haung W., Koralewska-Makar A., Bauer B., et al. Extracellular glutathione peroxidase and ascorbic acid in aqueous humor and serum of patients operated on for cataract[J]. Clin Chim Acta,1997,261(2):117-130.
    [172]Avissar N., Finkelstein J. N., Horowitz S., et al. Extracellular glutathione peroxidase in human lung epithelial lining fluid and in lung cells[J]. Am J Physiol,1996, 270(2 Pt1):L173-182.
    [173]Whitin J. C., Bhamre S., Tham D. M., et al. Extracellular glutathione peroxidase is secreted basolaterally by human renal proximal tubule cells[J]. Am J Physiol Renal Physiol,2002,283(1):F20-28.
    [174]Ren B., Huang W., Akesson B., et al. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution[J]. J Mol Biol,1997,268(5):869-885.
    [175]Avissar N., Kerl E. A., Baker S. S., et al. Extracellular glutathione peroxidase mRNA and protein in human cell lines[J]. Arch Biochem Biophys,1994,309(2): 239-246.
    [176]Freedman J. E., Frei B., Welch G. N., et al. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols[J]. J Clin Invest,1995,96(1):394-400.
    [177]Freedman J. E., Loscalzo J., Benoit S. E., et al. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis[J]. J Clin Invest,1996, 97(4):979-987.
    [178]Kenet G, Freedman J., Shenkman B., et al. Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke[J]. Arterioscler Thromb Vasc Biol,1999,19(8):2017-2023.
    [179]Haneda M., Koya D., Isono M., et al. Overview of glucose signaling in mesangial cells in diabetic nephropathy[J]. J Am Soc Nephrol,2003,14(5):1374-1382.
    [180]Floege J., Topley N.Resch K. Regulation of mesangial cell proliferation[J]. Am J Kidney Dis,1991,17(6):673-676.
    [181]Steffes M. W., Osterby R., Chavers B., et al. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients[J]. Diabetes,1989,38(9): 1077-1081.
    [182]Davis L. K., Rodgers B. D.Kelley K. M. Angiotensin Ⅱ-and glucose-stimulated extracellular matrix production:mediation by the insulin-like growth factor (IGF) axis in a murine mesangial cell line[J]. Endocrine,2008,33(1):32-39.
    [183]Zhang X., Chen X., Wu D., et al. Downregulation of connexin 43 expression by high glucose induces senescence in glomerular mesangial cells[J]. J Am Soc Nephrol, 2006,17(6):1532-1542.
    [184]Troyer D. A.Kreisberg J. I. Isolation and study of glomerular cells[J]. Methods Enzymol,1990,191(141-152.
    [185]Marshall C. B.Shankland S. J. Cell cycle and glomerular disease:a minireview[J]. Nephron Exp Nephrol,2006,102(2):e39-48.
    [186]Masson E., Lagarde M., Wiernsperger N., et al. Hyperglycemia and glucosamine-induced mesangial cell cycle arrest and hypertrophy:Common or independent mechanisms?[J]. IUBMB Life,2006,58(7):381-388.
    [187]Wolf G New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology[J]. Eur J Clin Invest,2004,34(12):785-796.
    [188]Nagai K., Matsubara T., Mima A., et al. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy[J]. Kidney Int,2005,68(2):552-561.
    [189]Mahimainathan L., Das F., Venkatesan B., et al. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN[J]. Diabetes, 2006,55(7):2115-2125.
    [190]Jiang X. S., Tang L. Y., Cao X. J., et al. Two-dimensional gel electrophoresis maps of the proteome and phosphoproteome of primitively cultured rat mesangial cells[J]. Electrophoresis,2005,26(23):4540-4562.
    [191]Farr G W., Scharl E. C., Schumacher R. J., et al. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms[J]. Cell,1997,89(6):927-937.
    [192]Frydman J.Hartl F. U. Principles of chaperone-assisted protein folding:differences between in vitro and in vivo mechanisms [J]. Science,1996,272(5267):1497-1502.
    [193]Tian G., Vainberg I. E., Tap W. D., et al. Specificity in chaperonin-mediated protein folding[J]. Nature,1995,375(6528):250-253.
    [194]Kato A., Kurita S., Hayashi A., et al. Critical roles of actin-interacting protein 1 in cytokinesis and chemotactic migration of mammalian cells[J]. Biochem J,2008,414(2): 261-270.
    [195]Perret E., Moudjou M., Geraud M. L., et al. Identification of an HSP70-related protein associated with the centrosome from dinoflagellates to human cells[J]. J Cell Sci, 1995,108 (Pt2)(711-725.
    [196]Tokumoto T., Kondo A., Miwa J., et al. Regulated interaction between polypeptide chain elongation factor-1 complex with the 26S proteasome during Xenopus oocyte maturation[J]. BMC Biochem,2003,4(6.
    [197]Leffers H., Dejgaard K.Celis J. E. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains[J]. Eur J Biochem,1995,230(2):447-453.
    [198]Meng Q., Rayala S. K., Gururaj A. E., et al. Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1[J]. Proc Natl Acad Sci U S A,2007,104(14):5866-5871.
    [199]Kiledjian M., DeMaria C. T., Brewer G., et al. Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the alpha-globin mRNA stability complex[J]. Mol Cell Biol,1997,17(8):4870-4876.
    [200]Vander Jagt D. L., Robinson B., Taylor K. K., et al. Aldose reductase from human skeletal and heart muscle. Interconvertible forms related by thiol-disulfide exchange[J]. J Biol Chem,1990,265(34):20982-20987.
    [201]Kicic E.Palmer T. N. Is sorbitol dehydrogenase gene expression affected by streptozotocin-diabetes in the rat?[J]. Biochim Biophys Acta,1994,1226(2):213-218.
    [202]Ghahary A., Chakrabarti S., Sima A. A., et al. Effect of insulin and statil on aldose reductase expression in diabetic rats[J]. Diabetes,1991,40(11):1391-1396.
    [203]Drel V. R., Pacher P., Stevens M. J., et al. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells[J]. Free Radic Biol Med,2006,40(8): 1454-1465.
    [204]Kikkawa R., Umemura K., Haneda M., et al. Evidence for existence of polyol pathway in cultured rat mesangial cells[J]. Diabetes,1987,36(2):240-243.
    [205]Connors B., Lee W. H., Wang G., et al. Aldose reductase and IGF-I gene expression in aortic and arteriolar smooth muscle during hypo-and hyperinsulinemic diabetes[J]. Microvasc Res,1997,53(1):53-62.
    [206]MacDonald N., Easson A. M., Mazurak V. C., et al. Understanding and managing cancer cachexia[J]. J Am Coll Surg,2003,197(1):143-161.
    [207]Lindsten K.Dantuma N. P. Monitoring the ubiquitin/proteasome system in conformational diseases[J]. Ageing Res Rev,2003,2(4):433-449.
    [208]Chen J. W., Dodia C., Feinstein S. I., et al.1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities[J]. J Biol Chem, 2000,275(37):28421-28427.
    [209]Hodgkinson A. D., Bartlett T., Oates P. J., et al. The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy[J]. Diabetes,2003,52(3):846-851.
    [210]Eaton D. L.Bammler T. K. Concise review of the glutathione S-transferases and their significance to toxicology[J]. Toxicol Sci,1999,49(2):156-164.
    [211]Townsend D. M.Tew K. D. The role of glutathione-S-transferase in anti-cancer drug resistance[J]. Oncogene,2003,22(47):7369-7375.
    [212]Kim S. K., Abdelmegeed M. A.Novak R. F. Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes[J]. J Pharmacol Exp Ther,2006,316(3):1255-1261.
    [213]Goto S., Kawakatsu M., Izumi S., et al. Glutathione S-transferase pi localizes in mitochondria and protects against oxidative stress[J]. Free Radic Biol Med,2009,46(10): 1392-1403.
    [214]Johnsen J. I., Aurelio O. N., Kwaja Z., et al. p53-mediated negative regulation of stathmin/Op18 expression is associated with G(2)/M cell-cycle arrest[J]. Int J Cancer, 2000,88(5):685-691.
    [215]Manceau V., Gavet O., Curmi P., et al. Stathmin interaction with HSC70 family proteins[J]. Electrophoresis,1999,20(2):409-417.
    [216]DeRubertis F. R., Craven P. A.Melhem M. F. Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse:effects of tempol[J]. Metabolism,2007, 56(9):1256-1264.
    [217]Muller S., Scaffidi P., Degryse B., et al. New EMBO members' review:the double life of HMGB1 chromatin protein:architectural factor and extracellular signal [J]. Embo J, 2001,20(16):4337-4340.
    [218]Taguchi A., Blood D. C., del Toro G, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases[J]. Nature,2000,405(6784): 354-360.
    [219]Ludwig H., Khayat D., Giaccone G., et al. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies[J]. Cancer,2005, 104(9):1794-1807.
    [220]Kuan C. J., al-Douahji M.Shankland S. J. The cyclin kinase inhibitor p21WAF1, CIP1 is increased in experimental diabetic nephropathy:potential role in glomerular hypertrophy[J]. J Am Soc Nephrol,1998,9(6):986-993.
    [221]Wolf G., Schroeder R., Ziyadeh F. N., et al. High glucose stimulates expression of p27Kipl in cultured mouse mesangial cells:relationship to hypertrophy[J]. Am J Physiol, 1997,273(3 Pt 2):F348-356.
    [222]Fan Y. P.Weiss R. H. Exogenous attenuation of p21(Wafl/Cipl) decreases mesangial cell hypertrophy as a result of hyperglycemia and IGF-1[J]. J Am Soc Nephrol, 2004,15(3):575-584.
    [223]Portero-Otin M., Pamplona R., Ruiz M. C., et al. Diabetes induces an impairment in the proteolytic activity against oxidized proteins and a heterogeneous effect in nonenzymatic protein modifications in the cytosol of rat liver and kidney[J]. Diabetes, 1999,48(11):2215-2220.
    [224]Sitek B., Potthoff S., Schulenborg T., et al. Novel approaches to analyse glomerular proteins from smallest scale murine and human samples using DIGE saturation labelling[J]. Proteomics,2006,6(15):4337-4345.
    [1]Osterby R., Tapia J., Nyberg G, et al. Renal structures in type 2 diabetic patients with elevated albumin excretion rate[J]. Apmis,2001,109(11):751-761.
    [2]Osterby R., Hartmann A., Nyengaard J. R., et al. Development of renal structural lesions in type-1 diabetic patients with microalbuminuria. Observations by light microscopy in 8-year follow-up biopsies[J]. Virchows Arch,2002,440(1):94-101.
    [3]Chen X. M., Qi W.Pollock C. A. CTGF and chronic kidney fibrosis[J]. Front Biosci (Schol Ed),2009,1(132-141.
    [4]White K. E.Bilous R. W. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease[J]. J Am Soc Nephrol, 2000,11(9):1667-1673.
    [5]Stokes M. B., Holler S., Cui Y., et al. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease[J]. Kidney Int,2000,57(2):487-498.
    [6]Luo P., Zhou Y., Chang H. H., et al. Glomerular 20-HETE, EETs, and TGF-betal in diabetic nephropathy[J]. Am J Physiol Renal Physiol,2009,296(3):F556-563.
    [7]Weigert C., Brodbeck K., Klopfer K., et al. Angiotensin Ⅱ induces human TGF-beta 1 promoter activation:similarity to hyperglycaemia[J]. Diabetologia,2002,45(6):890-898.
    [8]Nakamura T., Fukui M., Ebihara I., et al. mRNA expression of growth factors in glomeruli from diabetic rats[J]. Diabetes,1993,42(3):450-456.
    [9]Hong S. W., Isono M., Chen S., et al. Increased glomerular and tubular expression of transforming growth factor-betal, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse[J]. Am J Pathol,2001,158(5):1653-1663.
    [10]Sharma K., Ziyadeh F. N., Alzahabi B., et al. Increased renal production of transforming growth factor-betal in patients with type II diabetes[J]. Diabetes,1997, 46(5):854-859.
    [11]Humes H. D., Nakamura T., Cieslinski D. A., et al. Role of proteoglycans and cytoskeleton in the effects of TGF-beta 1 on renal proximal tubule cells[J]. Kidney Int, 1993,43(3):575-584.
    [12]Hall M. C., Young D. A., Waters J. G., et al. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1[J]. J Biol Chem,2003,278(12):10304-10313.
    [13]Bottinger E. P.Bitzer M. TGF-beta signaling in renal disease[J]. J Am Soc Nephrol, 2002,13(10):2600-2610.
    [14]Brasier A. R., Jamaluddin M., Han Y., et al. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor[J]. Mol Cell Biochem,2000,212(1-2):155-169.
    [15]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [16]Di Paolo S., Gesualdo L., Ranieri E., et al. High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells[J]. Am J Pathol,1996, 149(6):2095-2106.
    [17]Graness A., Cicha I.Goppelt-Struebe M. Contribution of Src-FAK signaling to the induction of connective tissue growth factor in renal fibroblasts[J]. Kidney Int,2006, 69(8):1341-1349.
    [18]Chen Y., Blom I. E., Sa S., et al. CTGF expression in mesangial cells:involvement of SMADs, MAP kinase, and PKC[J]. Kidney Int,2002,62(4):1149-1159.
    [19]Comper W. D., Osicka T. M.Jerums G High prevalence of immuno-unreactive intact albumin in urine of diabetic patients[J]. Am J Kidney Dis,2003,41(2):336-342.
    [20]Nosadini R., Velussi M., Brocco E., et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate[J]. Diabetes,2000,49(3):476-484.
    [21]Caramori M. L., Fioretto P.Mauer M. The need for early predictors of diabetic nephropathy risk:is albumin excretion rate sufficient?[J]. Diabetes,2000,49(9): 1399-1408.
    [22]Clarkson M. R., Murphy M., Gupta S., et al. High glucose-altered gene expression in mesangial cells. Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly[J]. J Biol Chem,2002,277(12):9707-9712.
    [23]Ji P., Xuan J. W., Onita T., et al. Correlation study showing no concordance between EPAS-1/HIF-2alpha mRNA and protein expression in transitional cellcancer of the bladder[J]. Urology,2003,61(4):851-857.
    [24]Mauer S. M., Sutherland D. E.Steffes M. W. Relationship of systemic blood pressure to nephropathology in insulin-dependent diabetes mellitus[J]. Kidney Int,1992,41(4): 736-740.
    [25]Drews J. Drug discovery:a historical perspective[J]. Science,2000,287(5460): 1960-1964.
    [26]Abbott A. And now for the proteome[J]. Nature,2001,409(6822):747.
    [27]Fields S. Proteomics. Proteomics in genomeland[J]. Science,2001,291(5507): 1221-1224.
    [28]Yan J. X., Devenish A. T., Wait R., et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli[J]. Proteomics,2002,2(12):1682-1698.
    [29]Rao P. V., Lu X., Standley M., et al. Proteomic identification of urinary biomarkers of diabetic nephropathy[J]. Diabetes Care,2007,30(3):629-637.
    [30]Merchant M. L.Klein J. B. Proteomics and diabetic nephropathy[J]. Semin Nephrol, 2007,27(6):627-636.
    [31]Samanidou V. F., Demetriou C. E.Papadoyannis I. N. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC[J]. Anal Bioanal Chem,2003,375(5):623-629.
    [32]Zhou H., Yuen P. S., Pisitkun T., et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery[J]. Kidney Int,2006, 69(8):1471-1476.
    [33]Christensen E. I. Pathophysiology of protein and vitamin handling in the proximal tubule[J]. Nephrol Dial Transplant,2002,17 Suppl 9(57-58.
    [34]Pisitkun T., Shen R. F.Knepper M. A. Identification and proteomic profiling of exosomes in human urine[J]. Proc Natl Acad Sci U S A,2004,101(36):13368-13373.
    [35]Thongboonkerd V., Chutipongtanate S.Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics:quantity, quality, and variability[J]. J Proteome Res,2006,5(1):183-191.
    [36]Khan A.Packer N. H. Simple urinary sample preparation for proteomic analysis[J]. J Proteome Res,2006,5(10):2824-2838.
    [37]Oh J., Pyo J. H., Jo E. H., et al. Establishment of a near-standard two-dimensional human urine proteomic map[J]. Proteomics,2004,4(11):3485-3497.
    [38]Lafitte D., Dussol B., Andersen S., et al. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples[J]. Clin Biochem,2002,35(8):581-589.
    [39]Marshall T.Williams K. M. Electrophoresis indicates protein loss on centrifugation of urine[J]. Clin Chem,1986,32(11):2105-2106.
    [40]Rossing K., Mischak H., Parving H. H., et al. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns[J]. Kidney Int,2005, 68(1):193-205.
    [41]Pieper R., Gatlin C. L., McGrath A. M., et al. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots[J]. Proteomics, 2004,4(4):1159-1174.
    [42]Thongboonkerd V., McLeish K. R., Arthur J. M., et al. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation[J]. Kidney Int,2002,62(4):1461-1469.
    [43]Sharma K., Lee S., Han S., et al. Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy[J]. Proteomics,2005,5(10):2648-2655.
    [44]Kim H. J., Cho E. H., Yoo J. H., et al. Proteome analysis of serum from type 2 diabetics with nephropathy[J]. J Proteome Res,2007,6(2):735-743.
    [45]Thongboonkerd V., Barati M. T., McLeish K. R., et al. Proteomics and diabetic nephropathy[J]. Contrib Nephrol,2004,141(142-154.
    [46]Sitek B., Potthoff S., Schulenborg T., et al. Novel approaches to analyse glomerular proteins from smallest scale murine and human samples using DIGE saturation labelling[J]. Proteomics,2006,6(15):4337-4345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700