用户名: 密码: 验证码:
月球资源探测小型质谱仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质谱技术是一种靠获得未知物的分子量信息和分子结构信息对物质进行鉴别的方法,是和分析化学领域中的光谱技术、核磁共振并列的一种重要谱学方法。大型质谱仪目前已经广泛应用于食品安全、生命科学、药物、化工、军事和国防等各种微量或痕量物质检测领域。随着人类航天技术的发展,该技术又被小型化后装备到地外星球探测器上,目前小型质谱仪是国外航天探测的标配仪器。随着我国综合国力的提高,载人航天、探月工程等项目的逐步实施,对质谱仪的小型化技术提出了迫切的需求。论文以“月球资源探测小型质谱仪”项目为背景,对质谱仪的小型化关键技术进行研究。
     首先,对离子阱质谱仪进行了理论研究,从离子能量角度、赝势两个角度解释了怎样才能提高仪器灵敏度的问题。在此基础上针对离子阱分析小质量分子很困难的问题进行研究,发现离子阱内的非谐振势对二十以下小质量离子的影响是导致该问题的根本原因,而离子阱尺寸偏小是导致非谐振势很大的重要原因,从而提出了离子阱的设计思路:适当增大离子阱尺寸、提高射频频率。
     其次,讨论了离子阱优化设计的基本原则。在保证信号灵敏度的前提下保证体积小、低功耗、低质量。并利用该准则结合前期的实验结果,对CIT离子阱进行优化设计。针对离子阱尺寸参数较多,而仿真又非常耗时的特点,结合cooks教授优化理论和实际工程需要,得出仅对参数z0进行优化设计的结论,从而大大减少优化参数,节省了计算时间。在优化准则上,众多文献根据由经验得到的“高极场占四极场-10%”作为离子阱设计的优化准则,理由是可以提高系统分辨力。针对具体实验结果,和分析物质分子量偏小的特点,本文提出了高极场最小的优化准则。最后,结合目前实际工艺水平,给出了实用的优化方法。
     之后,针对传统商业质谱仪的电路体积、功耗比较大,重量较高的问题,结合小型质谱仪的性能指标,采用各种替代技术方案,在电路设计上,降低其体积、功耗和质量并保证其高可靠性,主要包括:利用磁环变压器损耗小的特点,对商业质谱仪的空心变压器进行替代,在功耗和体积上达到令人满意的效果;采用频率合成技术产生任意参数可调的射频调幅小信号,取带功耗较大的NI卡生成信号的方案;同时针对频率合成的压缩技术进行研究,在理论上提出了新的压缩方法,并在FPGA中实现,解决了目前没有航天级频率合成芯片的问题;在实验的基础上,对微弱电流放大电路进行优化设计,将其体积和功耗减小;通过合理的优化设计,将质谱仪的整个控制系统综合到一块电路板上,实现了数据采集、数据传输、信号产生、功率放大等功能,使得系统控制电路的体积、功耗和重量大大减小。
     最后,对实验平台进行了构建。利用本文设计的离子阱和电路结合相关设备,在该平台上进行水杨酸甲酯、甲烷、氢气、氦气以及氢气和氦气的混合气进行测量,并解释了相关实验现象。针对前面相关理论中讨论的赝势大小和qz对仪器灵敏度影响问题,用氦气进行了验证,为工程应用提供了较好的实验参数。
Mass spectrometry is an approach to identify unknown substance by obtaining the information of molecular weight and molecular structure. It is a major spectroscopic method in analytical chemistry and parallels with optical spectrum and nuclear magnetic resonance. Large-scale mass spectrometer is now widely used in food safety, life science, pharmaceutical, chemical industry, military affairs, national defense, and other trace or trace substance detection applications. With the development of space technology, it has been miniaturized and used in the extraterrestrial planets detector. Miniaturized mass spectrometer is now the standard instrument in foreign aerospace detector. With the increase of China’s overall strength and the gradual implementation of man-made space flight and lunar exploration projects, the need for miniaturized mass spectrometers is extremely urgent. This paper is based on the project‘The Miniaturized Lunar resource exploration mass spectrometry’and will research on the key techniques of mass spectrometer’s miniaturization.
     First, the basic theory of ion trap mass spectrometer has been studied. How to improve the instrument sensitivity is explained from perspectives of ion energy and pseudo-potential. On this basis, the research on the problem of the difficulty to analyse the small molecule in the trap has found that the root problem is the impact of anharmonicity oscillator potential within the ion trap on the instability of low mass ions below 20. It is the smaller ion trap size that causes the stronger anharmonicity oscillator potential. Therefore, a view to design ion trap is put forward.that is, to increase the size of the ion trap and improve radio frequency.
     Second, the basic principle of ion trap design has been discussed. Under the premise of ensuring the signal sensitivity, small size, low power and low weight are needed. Following this guidelines, the design of CIT ion trap is optimized along with previous experimental results. Ion trap has six size parameters, which leads to a time consuming simulation. Combined with Prof. COOKs’optimization theory and practical engineering needs, conclusion of optimizing parameters z0 is arrived. This can significantly reduce computing time. Many documents take‘the percentage of four pole field in high-pole field is -10%’as the optimization criterion by experience, because it can improve the system resolution. Combined with experimental results and the characteristics that the molecular analysed is too small, the optimization criterion of minimizing high pole field is proposed. Finally, combined with the current technological level, a practical optimization method is given.
     Later, as the circuit size and power consumption of the traditional commercial mass spectrometer are relatively large and the weight is also relatively high, a variety of alternative technical solutions combineds with performance index of miniature mass spectrometer used for lunar exploration are used to reduce the size, power consumption and weight in the design of circuits, which include the following methods: As the magnetic ring transformer is of small transformer loss, the air core transformer of commercial mass spectrometers could be replaced by it to achieve satisfactory results in power dissipation and size. Using the frequency synthesis technology produces the arbitrary adjustable parameters of the RF small signal to replace the method of generating signal by NI card with high power consumption. At the same time, research on ROM table’s compression method in frequency synthesis provides a better compression method in theory and this new method is implemented in the FPGA to solve the problem of no space-level frequency synthesizer chip. According to the experiment, the micro-current amplification circuit is optimized to reduce the size and power consumption. By the rational optimization design, the whole control system of the mass spectrometer are integrated in a circuit board, which includes data acquisition, data transmission, signal generation, power amplification and other functions, and substantially reduces the volume, power consumption and weight of the whole system.
     Finally, the experimental platform is built with pre-designed circuit, ion trap and associated with relevant equipment. Methyl salicylate, methane, hydro- gen, helium and the mixture of hydrogen and helium gas have been measured on the platform, and the relevant experimental phenomena have been explained. The related theories are verified by helium that pseudo-potential and q z have impact to the sensitivity of the apparatus. And this experiment provides a set of good experimental parameters for engineering applications.
引文
1 Christopher C.Mulligan, Dina R.Justes, Robert J.Noll, Nathaniel L.Sanders, Brian C.Laughlin and R.GrahamCooks. Direct monitoring of toxic compounds in air using a portable mass spectrometer. The Analyst. 2006,(2): 556~567
    2 Huanwen Chen, Andre Venter and R.Granam Cooks. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem.Commun. 2006:2042~2044
    3 Igor A.Popov, Hao Chen, Oleg N.Kharybin, Eugene N.Nikolaev and R.Graham Cooks. Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions. Chem Commun. 2005, (3):1953~1955
    4 Eduardo C. Meurer, Hao Chen, Leah Riter, Ismael Cotte-Rodriguez, Marcos N. Eberlin and R.G.Cooks. Gas-phase reactions for selective detection of the explosives TNT and RDX. Chem.Commun. 2004:40~41
    5冯焱,李得天.四极质谱计在真空检漏中的应用.真空. 2006,(5):45~47
    6 R.Graham Cooks, Zheng Ouyang, Zoltan Takats, Justin M. Wiseman. Ambient Mass Spectrometry. Science. 2006,3(311):1566~1570
    7 R.Graham Cooks. Connecting Health, Environment and Security: The Analyst and The Science of Detection. Analyst, 2006, 131, 865~866
    8 Yishu Song, Nari Talaty, W. Andy Tao, Zhengzheng Pan, R. Graham Cooks. Rapid ambient mass spectrometric profiling of intact, untreated bacteria using desorption electrospray ionization. Chemical Communication. 2007,61~63
    9程广河.浅析航天器的污染及其控制.航天器环境工程. 2003,(3):35~37
    10郭玉华,黄良安.磁质谱分析系统的研究.武汉大学学报. 1996,(42): 337~340
    11季欧,何坚,周振.一种小型磁偏转式质谱计.仪器仪表学报. 1997,(4):16 6~169
    12陈有鸿,季欧,茅乃丰.小型双向聚焦质谱计磁分析器的CAD.厦门大学学报. 1989,(3):148~152
    13 R. S. Gohlke. Time of flight mass spectrometry and gas-liquid partition chromatography. Anal. Chem. 1959,(31):535~541
    14 Weickhardt C, Moritz F, and Grotemeyer.J. Time of Flight Mass Spectromet ry:state of the art in chemical analysis and molecular science. Mass Spect rometry Reviews. 1996,(3):139~162
    15陈焕文,李明,金钦汉.质谱仪器及其发展.大学化学. 2004,(6):9~15
    16韦韬,徐国宾,姚均.高效液相色谱检测器——高分辨飞行时间质谱仪的研制.质谱学报. 2006,(8):129~134
    17方向,覃莉莉,白岗.四极杆质量分析器的研究现状及进展.质谱学报. 2005,(11): 234~242
    18高克林,李交美,罗学立,施磊,冯芒,朱熙文.离子阱物理的研究进展.原子与分子物理学报. 1998,(7):315~316
    19李爱军,张代辉,马书民等.液相色谱-串联质谱法测定饲料中三聚氰胺残留.分析化学, 2008,(5):699~701
    20 Ismael Cotte-Rodriguez, R. Graham Cooks. Non-proximate Detection of Explosives and Chemical Warfare Agent Simulants by Desorption Electrospray Ionization Mass Spectrometry. Chemical Communication. 2006: 2968~2970
    21 Huanwen Chen, Shuiping Yang, Wortmann Arno, Renato Zenobi. Neutral Desorption Sampling of Living Objects for Rapid Analysis by Extractive Electrospray Ionization Mass Spectrometry. 2007,(46):7591~7594
    22 Huanwen Chen, Renato Zenobi. Neutral desorption sampling of biological surfaces for rapid chemical characterization by extractive electrospray ionization mass spectrometry. Nature Protocols. 2008,(3): 1467~1475
    23 Amy M. Tabert, Jens Griep-Raming, Andrew J. Guymon and R.Graham Cooks. High Throughput Miniature Cylindtical Ion Trap Array Mass Spectrometer. Analytical Chemistry. 2003:5656~5664
    24 Zheng Ouyang, Guangxiang Wu, Yishu Song, Hongyan Li, Wolfgang R. Plass, and R. Graham Cooks. Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Analytical Chemistry. 2004,(76): 4595~4605
    25 Meng Yu, Miriam Fico, Sameer Kothari, Zheng Ouyang, and William J.Chappell. Polymer-Based Ion Trap Chemical Sensor. IEEE Sensors. 2006, (6):1429~1434
    26 Marcela Nefliu,Andre Venter and R.Graham Cooks. Desorption electrospray ionization and electrosonic spray ionization for solid and solution phase analysis of industrial polymers. Chem. Commun. 2006,(1):888~890
    27 Christopher C.Mulligan, Nari Talaty and R.Graham Cooks. Desorptionelectrospray ionization with a portable mass spectrometer: in situ-analysis of ambient surfaces. Chem. Commun. 2006,(12):1709~1711
    28 Wieland P. O. Living in Space: The Design and Operation of the Life Support Systems on the International Space Station NASA/TM-1998-206956. NASA Washington DC. 1998(1):1~10
    29 Wieland P. O. Living in Space: The Design and Operation of the Life Support Systems on the International Space Station NASA/TM-1998-206956. NASA Washington DC. 1998(2):21~23
    30 Palmer P. T., Belisle W. Analysis of Volatile Organic Compounds on Mir Space Station-Final Report. San Francisco State University. 2000:1~74
    31 Apollo-17 Preliminary Science Report. National Aeronautics and Space Administration. 1973, SP-330:338~340
    32 L.colin and D.M.Hunten. Pioneer Venus Experiment Descriptions. IEEE Transactions on Geoscience and Remote Sensing. 1980: 463~464, 489~491
    33 Hasso B.Niemann, J.R.Booth, J.E.Cooley. Pioneer Venus Orbiter Netural Gas Mass Spectrometer Experiment. IEEE Transactions on Geoscience and Remote Sensing. 1980:60~64
    34 H.J.Hoffmann, K.Pelka, U.Von Zahn, D.Krankowsky. The Pioneer Venus Bus Neutral Gas Mass Spectrometer. 1980:122~126
    35 H.B.Niemann, D.N.Hapold, S.Feng, W.T.Kasprzak. The Planet-B Neutral Gas Mass Spectrometer. Earth Planets Space. 1998,(50):785~792
    36 H.B.Niemann, S.K.Atreya, S.J.Bauer. The Gas Chromatograph Mass Spect- rometer For The Huygens Probe. Space Science Reviews. 2002:553~591
    37 J.H.Waite, W.S.Lewis, W.T.Kasprzak, V.G.Anicich. The Cassiniion and Neutral Mass Spectrometer(INMS) Investigation. Space Science Reviews. 2004,(114): 113~231
    38 S. Scherer, K.Altwegg, H.Balsiger. Prototype of a Reflectron Time of Flight Mass Spectrometer for the Rosetta Comet Rendezvous Mission. Proc.46th ASMS Conference. Mass Spectrometry and Allied Topics. 1998,(5): 1238~ 1284
    39 John F.J.Todd, Simeon J.Barber, Ian P. Wright. Ion Trap Mass Spectrometry on a Comet Nucleus: the Ptolemy Insrument and the Rosetta Space Mission. Journal of Mass Spectrometry. 2007,(42):1~10
    40郭长娟,黄正旭,陈华勇,周振.飞行时间质谱仪国内研究状况及发展趋势.现代仪器. 2007,(4):1~5
    41黄荣夫.小型激光溅射电离飞行时间质谱仪的研制.厦门大学博士论文. 2009, (7):14~26
    42田晓宇.激光溅射电离飞行时间质谱仪(LAI-TOF-MS)用于地质样品直接分析的初步研究.厦门大学硕士论文. 2008,(6):19~22
    43李燕,梁汉东,韦妙,李良.离子阱质谱计的研究现状及其进展.质谱学报. 2006,(11): 249~256
    44王伟,蔡文生,邵学广.傅立叶变换离子回旋共振质谱及其研究进展.化学进展. 2005,(3):336~342
    45林丙涛,孔德义.高场强不对称波形迁移谱原理与性能探讨.传感器与微系统. 2008,(2):35~38
    46周涛,李金英,赵墨田.质谱的无机痕量分析进展.分析测试学. 2004,(3): 110~115
    47段宜武.外场中少体库仑系统的量子与经典动力学行为.中科院武汉物理与数学研究所博士论文. 1999:80~85
    48罗学立. Paul阱中高温离子自云若干动力学特性的研究.中国科学院武汉物理研究所博士论文. 1995:4~7, 23
    49海文华,段宜武,朱熙文,施磊,罗学立,何春山.控制离子云混沌运动中的不稳定性.物理学报. 1997,(11):2117~2123
    50高印寒,吴保军,江游,方向.四极质谱数据采集控制技术的设计及FPGA的实现.吉林大学学报. 2009,(3):206~209
    51高印寒,吴保军,江游,方向.高性能四极质谱仪数据采集系统设计与实现.吉林大学学报. 2009,(5):628~633
    52江游,吴保军,穰瑜,田地,方向.四极质谱仪通用数字控制系统结构的研究.质谱学报. 2008,(3):65~69
    53黄泽建,白岗,江游,张小华,熊行创,方向.气相色谱矩形离子阱质谱联用仪的设计与性能.分析化学-仪器装置与实验技术. 2008,(3): 413~418
    54许峰,王海龙.离子迁移谱研究进展.化学进展. 2005,(5):515~522
    55时迎国,劭士勇,李安林,姚琏,王宾,李芳.迁移管的电场强度对真空紫外电离-离子迁移谱仪性能的影响.分析化学-仪器装置与实验技术. 2006, (9): 1353~1356
    56侯可勇,董璨,张娜珍,徐秀明,王俊德,姚琏,柴志平,李海洋.一种新型光电离/微型正交加速飞行时间质谱仪的设计和性能测试.分析化学-仪器装置与实验技术. 2006,(12):1807~1812
    57徐松云.基质辅助激光解吸离子化飞行时间质谱的新基质及其应用.中国科学院大连化学物理研究所博士论文. 2006:1~8
    58朱学梅,疏天民,成云飞,朱丽英,吴轶轩.基于IMS技术的多功能爆炸物/毒品探测仪的研制.自动化与仪器仪表. 2009,(5):107~109
    59朱弘.离子迁移谱探测仪技术的研究.自动化与仪器仪表. 2006,(3):65~67
    60吕勇杰,朱学梅,郑健,陈扬骎.应用离子迁移率谱仪技术快速检测毒品的研究.核技术. 2007,(10):818~822
    61范茜,金伟,金钦汉. ESI离子阱质谱仪真空系统设计.真空. 2009,(5):73~ 76
    62费强,金伟,姜杰,周建光等.电喷雾矩形离子阱的初步研制.现代科学仪器. 2008,(4):57 ~59
    63姜杰,费强,金伟,李明,庞晓东,李彬,范志勇,许晓宇,周建光,金钦汉.小型矩形离子阱质谱仪的研制.分析化学-仪器装置与实验技术. 200 7,(9): 1387~1390
    64费强,姜杰,周建光,金伟,范茜.基于LabVIEW的离子阱质谱仪研发软件科学仪器与装置.科学仪器与装置. 2008,(5):82~84
    65张莹,陆豪杰,杨芃原.基质辅助激光解吸电离质谱用于生物组织的质谱成像应用进展. 2009,(7):250~256
    66李晓旭,蒋公羽,罗蝉,杨鹏,丁传凡,汪源源. PCB离子阱质最分析器.生命科学仪器. 2009,(7):47~51
    67李梅.电喷雾解吸电离质谱技术在大气气溶胶分析中的应用研究.复旦大学博士论文. 20 09:1~2
    68黄超,单琪,徐国宾,赵学玒,韩文念,清江,许生蛟,李钧,杨芃原.一种用于高分辨飞行时间质谱仪的锯齿状一体化电极阵列.质谱学报. 2007,(3):136~140
    69褚桂柏,张熇.月球探测器技术.中国科学技术出版社, 2007:41~42
    70 Feldman W.C, Barraclough B L, Maurice S. Major Compositional Units of the Moon: Lunar Prospector Thermal and Fast Neutrons. Science. 1998, (281): 1489~1493
    71 Feldman W.C, Lawrence D J, Elphic R C. Chemical Information Content of Lunar Thermal and Epithermal Neutrons. Journal of Geophysical Research. 2000,(105):20347~20363
    72 Grant Heiken, David Vaniman, Bevan M French. Lunar Sourcebook, A User’s Guide to the Moon. New York Cambridge Uni2 Verity Press. 1991: 287~305,342~351
    73 Feldman WC, Maurice S, Binder A B. Fluxes of fast and epithermal neutrons from Lunar Prospector. Science. 1998:281~282
    74 Apollo-11 Preliminary Science Report. National Aeronautics and Space Adm- inistration. 1969, SP-214:124~133
    75 Apollo-12 Preliminary Science Report. National Aeronautics and Space Adm- inistration. 1970, SP-235:107~110
    76 Apollo-14 Preliminary Science Report. National Aeronautics and Space Adm-inistration. 1971, SP-272:125~128
    77 Apollo-15 Preliminary Science Report. National Aeronautics and Space Adm-inistration. 1972, SP-289:327~330
    78 Apollo-16 Preliminary Science Report. National Aeronautics and Space Adm-inistration. 1972, SP-315:322~326
    79邹永廖,欧阳自远,徐琳等.月球表面的环境特征.第四纪研究. 2002,(2 2): 533~539
    80中国科学院地球化学研究所编.月质学研究进展.北京科学出版社, 1977: 41~53, 172~187
    81 Paul, H. Steinwedel. Apparatus for Separating Charged Particles of Different Specific Charges. German Patent 1956:944900. U.S. Patent 1960: 2939952
    82 H. G. Dehmelt. Radio Frequency Spectroscopy of Stored Ions I: Storage. Adv-ances in Atomic and Molecular Physics. 1967,(3):53~72
    83 Raymond E.March, John F.J.Todd. Quadrupole Ion Trap Mass Spectrometry Second Edition. 2005:37~125
    84 Raymond E.March. Quadrupole Ion Traps. Mass Spectrometry Reviews. 2009, (28):961~989
    85 Raymond E. March. Quadrupole Ion Trap Mass Spectrometry: a View at the Turn of the Century. International Journal of Mass Spectrometry. 2000:285~ 312
    86 Raymond E.March. An Introduction to Quadrupole Ion Trap Mass Spectrom-etry. 1997,(32):351~369
    87 W. McLachan. Theory and Applications of Mathieu Functions. Clarendon, O-xford. 1947:100~119
    88 R. F. Wuerker, H. Shelton, R. V. Langmuir. Electrodynamic Containment of Charged Particles. Applied Physics. 1959,(30):342~349
    89 C.A.Dartora, K.Z.Nobrega, H.E.Hernandez Figueroa. New analytical approx-imateons for the Mathieu Funcitons. Applied Mathematics and Computation. 2005,(165):447~458
    90张虹.再论二阶变系数线形常微分方程通解公式.高等数学研究. 2007, (10):45~46
    91 J.C.Gutierrez Vega, R.M.Rodriguez Dagnino, M.A.Meneses Nava. Mathieu Functions a Visual Approach. 2003,(3):233~242
    92 Mathematica 6.0帮助文档的Mathieu函数部份.
    93 Maple 11帮助文档的Mathieu函数部份.
    94梁家荣,张棣. Floquet理论在研究周期解中的应用.广西师院学报. 1995, (1): 15~18
    95 Daniel E. Austin, Dolores Cruz and Matthew G. Blain. Simulations of Ion Trapping in a Micrometer-Sized Cylindrical Ion Trap. J Am Soc Mass Spectrom. 2006,(17): 430~441
    96 D. Cruz, J. P. Chang, M. Fico and A. J. Guymon, D. E. Austina, M. G. Blain. Design, Microfabrication, and Analysis of Micrometer-sized Cylindrical Ion Trap Arrays. Rev. Sci. Insrum. 2007,(78):1~9
    97 Amy M. Tabert, Alexander S. Misharin, R. Graham Cooks. Performance of a multiplexed chemical ionization miniature cylindrical ion trap array mass spectrometer. The Analyst. 2004,129:323~330
    98高克林,黄贵龙,朱熙文,罗学立.射频阱中离子云运动的非线性特征的实验观察.科学通报. 1994,(3):405~407
    99徐进林.离子阱中原子团簇离子的研究.中国科学院武汉物理研究所博士论文. 1996: 6,21~30
    100 Rajanbabu. Nonlinear Dynamics of Resonanc in, and Ejection from, Paul Trap. Thesis of Doctor of Philosophy of Indian of Institute of Science. 2006, (9):32~40,83,86
    101 Y. Wang, J. Franzena. The Non-linear Resonance Quistors Part 1. Potential Distribution in Hyperboloidal Quistors. International Journal of Mass Spectrometry and Ion Processes. 1992,(112):167~178
    102 Y. Wang, J. Franzen, K. P. Wanczek. The Non-linear Resonance Ion Trap Part 2. A general theoretical analysis. International Journal of Mass Spectr-ometry and Ion Processes. 1993,(124):125~144
    103 Y. Wang, J. Franzena. The non-linear Ion Trap. Part 3. Multipole Compone-ntsin Three Types of Practical Ion Trap. International Journal of Mass Spectr-ometry and Ion Processes. 1994,(132):155~172
    104 J. Mitchell Wells, Ethan R. Badman, and R. Graham Cooks. A Quadrupole Ion Trap with Cylindrical Geometry Operated in the Mass-Selective Instabi-lity Mode. Analytical Chemistry. 1998,70(3):438~444
    105 Guangxiang Wu, R. Graham Cooks, Zheng Ouyang. Geometry optimization for the cylindrical ion trap:field calculations, simulations and experiments. Internation Journal of Mass Spectrometry. 2005,(1):119~132
    106 Annie Moradian. New Methods of Mass Analysis with Quadrupoles with Added Octopole Fields. A Thesis of Doctor of Philosopy of The University of British Columbia. 2007:2~5
    107 J.Tierney, C.M.Rader, B.Gold. A Digital Frequency Synthesizer. IEEE Tr-ans. Audio Electroacoust. 1971,(19):48~57
    108 D.A Sunderland, R.A.Strauch, S.S.Wharfiled. CMOS/SOS Frequency Syn-thesizer LSI Circuit For SpectrumCommunications. IEEE Solid State Circuit. 1984,(19):497~505
    109 H.T.NicholasIII, H.Samueli, B.Kim. The Optimization of Direct Digital Fr-equency Synthesizer Performance in the Presence of Finite Word Length Eff-ect. IEEE 42nd Annual Frequency Control Symposium. 1988:357~363
    110 Shyuan Liao, Liang-Gee Chen. A Low-Power Low-Voltage Direct Digital Frequency Synthesizer. VLSI Systems Technology and Application. 1997:2 65~296
    111 F.Curticapean, K.i.Palomaki, J.Naiittylahti. Direct Digital Frequency Synthesizer With High Compression Ratio. Electronics Letters. 2001,(11):127 5~1276
    112 Maoliu Lin, Qinghua Xu, Xiaohui Qi. Quadrature Direct Digital Frequency Sythesizers with Super High Memory Compression Ratio and its Parameter Optimization. Proceedings of ISCIT. 2005:1134~1137
    113吴保军,江游,高印寒,方向.四极质谱检测中复合放大器的低噪声高带宽设计.光学精密工程. 2008,(9):206~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700