用户名: 密码: 验证码:
地磁导航关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地磁导航作为一种新兴的导航技术,具有不受地形、位置、气候等外部环境限制,可实现全地域、全天候导航的优点,能够有效弥补现有导航方法的不足,因而具有广阔的应用前景。地磁场的测量与测绘、对干扰磁场的分离与补偿、磁图匹配定位技术、以地磁场为参照的组合导航技术是地磁导航这一研究领域中的重要技术难点与热点。本文针对上述问题展开了研究,研究工作主要集中在以下几个方面:
     对传统航磁校正算法进行了研究和改进。针对经典航磁补偿方法中数学模型系数计算复杂、未考虑载体运动耦合、参数求解易陷入奇异等问题,对航磁补偿数学模型进行了重新推导,以姿态阵和角速度矩阵取代了原始模型中复杂的高阶三角函数来作为模型系数,获得了全姿态航磁校正模型,有效克服了载体运动耦合所带来的问题;在参数求解上,采用滤波的方式替代原始的线性方程求解方式,提高了抗干扰能力并更充分的利用了数据。
     针对水下磁场测绘载体难以经常上浮修正导航参数而造成的测绘误差过大问题,提出了一种边导航边测绘的地磁测绘新算法。该算法在对第一次测绘航行获得的初始图进行预处理,提取必要信息的基础上,进行二次测绘;在二次测绘中载体利用初始图中的信息,结合惯导输出与当前磁场测量值进行组合滤波,从而达到在校正自身运动参数的同时对初始图进行修正的目的。理论分析和仿真实验证明了该算法可以通过两次低精度测绘获得较高精度的测绘结果。低频电磁场干扰信号因难以通过磁场屏蔽以及带通滤波器等传统技术手段消除,是阻碍地磁导航最终实现的重要障碍。本文针对这个问题提出了一种信号分离与匹配算法。该算法对载体姿态进行了限制,并把复杂干扰源拆分成若干简单等效干扰源,从而将各种磁场信号的幅值叠加由非线性转换成了线性叠加,进而采用独立特征量分析法(ICA)对各种场源信号进行分离,最后用相关系数匹配来解决ICA的幅值与顺序不确定问题。
     针对传统MAGCOM以及ICCP算法的不足,提出了两个新的匹配算法。一个是基于等高线相交的地磁场、重力场组合定位方法,该方法有效克服了现有匹配方法依赖航迹累积的问题,在实时性方面有所提高。另一个是基于多级子图的磁场曲面线性化定位方法,该方法充分利用了在地磁异常微弱区域磁场空间分布平缓的特点,提出将磁场矢量分解后各自建立位置估测区域,通过各估测区域的交集来获取载体概率上最可能的位置;进而采用多级子方式图由粗到精进行定位;进一步又给出了该方法的适用条件。
     对基于滤波的地磁/惯性组合导航方法进行了研究和改进。针对标准方法在地磁场曲面缺乏起伏的平缓区域容易发散的问题,提出采用磁场矢量分解对观测方程进行改进以提高系统的局部能观性;针对标准方法在地磁场变化剧烈区线性化误差过大,导致系统性能下降的问题,提出采用UT变换取代随机线性化方法来改进系统性能;针对磁场测量误差统计量不确定问题,提出采用自适应滤波的方式对测量误差方差进行实时跟踪;将相关匹配算法的结果作为系统的观测量,构建组合导航系统,提升系统性能并避免偶然失配现象对系统造成的不良影响。
As a new technology the geomagnetic navigation system has several obvious advantages. The most important one is that its effectiveness is not affected by external factors such as weather, location and topographical factors, thus it is an ideal complement to traditional navigation systems and has a broad research and application prospects. The branches of this technology include the following research fields: geomagnetic survey and mapping, disturbance separation, geomagnetic matching algorithms and filtering technologies. This thesis covers several important techniques in the branches above, and its research results are summarized as follows:
     The traditional aeromagnetic compensation method is improved and a new method for underwater geomagnetic mapping and correction is developed. Focusing on the movement coupling problems in the traditional aeromagnetic compensation method, the compensation model is rebuilt based on rotation matrices and angular velocities, which is much simpler than the old model and can work in all attitudes. Filtering method is applied to substitute equation solving method, which guarantees the new algorithm to have stronger anti-interference ability. Underwater vehicles can’t float frequently to receive GPS signals, so mapping errors are often caused by their inertial navigation systems. Focusing on this problem, a new algorithm for GPS independent geomagnetic mapping method is developed. The algorithm is divided into three steps: Firstly, an inaccurate map is created with magnetic measurement data and position output from inertial navigation systems. Secondly, the map is analyzed and processed to extract shape information. Thirdly, another survey is conducted along the same route, and an extended Kalman filter is constructed with the shape information of the original map, the status of the inertial navigation system as well as the new measurement data, which helps to form a much more accurate map. The effectiveness of the new method is verified by both theoretical analysis and simulation results.
     The low-frequency electromagnetic interference is one of the major obstacles for geomagnetic navigation systems because it is hard to isolate, model or filter. A new method based on independent components analysis is developed to solve the problem. The features of magnetic field produced by different types of circuits are analyzed, and then the branches of a circuit are divided into several independent interference sources, the attitude of the carrier is also regulated. A linear superposition model of all magnetic compositions is built based on all efforts above, which guarantees the application prerequisites of ICA are fulfilled. A map matching method based on correlation coefficient is proposed to conquer the ambiguity drawbacks of ICA.
     Focusing on the deficiencies of traditional geomagnetic matching methods, two new algorithms are proposed. One is based on intersected contour lines of geomagnetic field and gravitational field, which doesn’t need the trajectory shape constraint, thus has better real-time performance. The other one is based on linear fitting of multi-level sub maps. This algorithm builds up location estimation areas and utilizes sub maps to perform coarse to fine locating strategy that works efficiently in areas with smooth geomagnetic surfaces. The application conditions of this algorithm are also given.
     A series of improvements for the traditional integrated geomagnetic navigation system based on EKF are made. To solve the divergence problem caused by flat geomagnetic terrain shapes, vector decomposition is implemented to improve the system’s local observability; To solve the performance degradation caused by big linearization errors, unscented transformation is utilized to replace linearization methods in areas with severe undulating geomagnetic terrains; An adaptive filtering method is carried out to detect and track the switches of disturbance variance, which helps to overcome the uncertainty of sensor noise in complex environment; The new map-matching algorithm 3proposed in this thesis is also used to improve the integrated navigation system’s performance.
引文
1.王安华,张继宏. GPS接收机信号捕获方法的改进与实现.数字通信. 2009, 2: 74~78.
    2. NESREEN1ZIEDAN. GNSS Receivers for Weak Signals. Artech House Publishers, 2006: 248~268.
    3.张国忠,沈林成,常文森.基于知识的景象适配性分析决策系统.计算机工程与应用. 2002, 28: 211~213.
    4. A. James, Van Allen. Basic Principles of Celestial Navigation. American Journal of Physics, 2004, 72(11): 1418~24.
    5.彭富清.地磁模型与地磁导航.海洋测绘. 2006, 26(2): 73~75.
    6. H. Rice, S. Kelmenson, L. Mendelsonhn. Geophysical navigation technologies and applications. IEEE PLANS, 2004: 618~624.
    7. Jiang Lingling, Li Xinran. Path Planning during the Geomagnetic Navigation. Progress in Electromagnetics Research Symposium, Hangzhou, China, 2008: 65~67.
    8.周军,葛致磊,施桂国,刘玉霞.地磁导航发展与关键技术.宇航学报. 2008, 29(5): 1467~1472.
    9. F. Goldenberg. Geomagnetic Navigation Beyond Magnetic Compass. PLANS 2006, San Diego, California: 684~694.
    10. C. Tyrén. Magnetic Anomalies As A Reference for Ground Speed and Map Matching navigation. Journal of Navigation, 1982, 35(2) : 242~254.
    11. C. Tyrén. Magnetic terrain navigation. Proceedings of the 5th Int Symp on Unmanned Untethered Submersible Tech-nology, 1987: 245~256.
    12.彭富清.地磁模型与地磁导航.海洋测绘. 2006, 26 (2): 73~75.
    13.蔡兆云,魏海平,任志新.水下地磁导航技术研究综述.尖端科技, 2007(3): 28~30.
    14.李刚.非晶丝传感器研究.哈尔滨工业大学硕士论文, 2009: 1~4.
    15.高军科.基于巨磁阻抗效应的地磁导航研究.哈尔滨工业大学硕士论文. 2007: 1~7.
    16.章复中,周树平,陈效真.微磁传感器在无源导航及导引技术中的应用前景.红外与激光工程. 2006, 35(增刊): 35~40.
    17. M. L. Psiaki, L. Huang, S. Fox. Ground Tests of Magnetometer-Based Autonomous Navigation (MAGNAV) for Low-Earth-Orbiting Spacecraft.Journal of Guidance. 1993, 16 (1) : 206~ 214.
    18. M. L. Psiaki. Autonomous Low-Earth Orbit Determination from Magne- tometer and Sun Sensor Data. Journal of Guidance, Control, and Dynamics. 1999, 22 (2) : 296~304.
    19. Hee Jung, M. L. Psiaki. Tests of Magnetometer/Sun Sensor Orbit Determination Using Flight Data. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, CA, 2001: 1~14.
    20. G. Shorshi, I. Bar-Itzhack. Satellite Autonomous Navigation Based on Magnetic Field Measurements. Journal of Guidance, Control, and Dynamics. 1995, 18 (4): 843~850.
    21. J. Deutschmann, I. Bar-Itzhack. Attitude and Trajectory Estimation Using Earth Magnetic Field Data. AIAA/AAS Astrodynamics Conf.,San Diego, CA, 1996: 134~151.
    22. J. Deutschmann, I. Bar-Itzhack. Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data. Journal of Guidance, Control and Dynamics. 2001, 24 (3): 616~626.
    23. J. Deutschmann, I. Bar-Itzhack. An Innovative Method for Low Cost, Autonomous Navigation for Low Earth Orbit Satellites. Proc. of the1998 AIAA/AAS Astrodynamics Specialist Conf., Boston, Massachusetts, 1998: 279~301.
    24. J. K. Thienel, R. R. Harma. Results of the Magnetometer Navigation (MAGNAV) in Flight Experiment. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, 2004:1164~1182.
    25. Kim Soohong, Chun Joohwan. Bayesian Bootstrap Filtering for the LEO Satellite Orbit Determination. Proceedings of IEEE 51st Vehicular Technology Conference, 2000: 1611~1615.
    26. Cho sangwoo, Bae Jinho, Chun Joohwan. A Low-cost Orbit Determination Method for Mobile Communication Satellites. AIAA International Communications Satellite Systems Conference and Exhibit, 18th, Oakland, CA, 2000: 951~956.
    27.余天荣,孙秋菊,冯顺和.全国航磁数据库的建设.铀矿地质. 2003, 19(5): 269~303.
    28.徐冠雷,吉春生,葛德宏.基于定点磁标的水下导航定位方法研究.天津航海. 2004, 14(2): 57~62.
    29.杨云涛,石志勇,关贞珍,李豫泽.地磁场在导航定位系统中的应用.中国惯性技术学报. 2007, 15(6): 686~692.
    30.左文辑,宋福香.微小卫星磁测自主导航方法.宇航学报. 2000, 21(2):100~104.
    31.赵敏华,石萌,曾雨莲等.基于磁强计的卫星自主定轨算法.系统工程与电子技术. 2004, 26 (9): 1236~1238.
    32.高长生,荆武兴,张燕.基于Unscented卡尔曼滤波器的近地卫星磁测自主导航.中国空间科学技术. 2006, 2: 27~32.
    33.高金田,安振昌.地磁正常场的选取与地磁异常场的计算.地球物理学报, 2005, 48(1): 56~62.
    34.安振昌.中国地磁测量、地磁图和地磁场模型回顾.地球物理学进展. 2002, 45(增刊): 189~196.
    35.安振昌,徐元芳. 1950—1980年中国地区主磁场模型的建立及分析. 1991, 34(5): 585~593.
    36.安振昌. 2000年中国地磁场及其长期变化冠谐分析.地球物理学报, 2003, 46(1): 68~72.
    37.董昆,周军,葛致磊.基于地磁场的新型导航方法研究.火力与指挥控制. 2009, 34(3): 153~155.
    38.赵敏华,吴斌,石萌.基于三轴磁强计与雷达高度计的融合导航算法.宇航学报. 2004, 25(4): 411~415.
    39.赵敏华,吴斌,石萌.基于GPS与三轴磁强计的联合导航算法.天文学报. 2006, 47 (1): 93~99.
    40.王淑一,杨旭,杨涤.近地卫星磁测自主定轨及原型化.飞行力学. 2004, 22 (2): 89~93.
    41.李素敏,张万清.地磁场资源在匹配制导中的应用研究.制导与引信. 2004, 25 (3): 19~21.
    42.郭庆,魏瑞轩,胡明朗,周炜.基于投影寻踪的自适应地磁/地形匹配导航.仪器仪表学报. 2008, 29(12):2663~2667.
    43.张金生,王仕成.地磁异常匹配制导在巡航导弹中制导段应用的可行性分析. 2005中国地球物理学会第二十一届学术年会,2005.
    44.乔玉坤,王仕成,张琪.地磁异常匹配制导技术应用于导弹武器系统的制约因素分析[J] .飞航导弹. 2006, 8: 39~41.
    45.乔玉坤,王仕成,张琪.地磁异常匹配特征量的选择.地震地磁观测与研究. 2007, 28 (1): 42~47.
    46.晏登洋,任建新,宋永军.惯性/地磁组合导航技术研究.机械与电子. 2007, 25 (1): 19~22.
    47.刘颖,吴美平,胡小平.基于等值线约束的地磁匹配方法.空间科学学报. 2007, 27 (6): 505~511.
    48.吴美平,刘颖,胡小平. ICP算法在地磁辅助导航中的应用.航天控制. 2007, 25 (6): 17~21.
    49.穆华,任治新,胡小平.船用惯性/地磁导航系统信息融合策略与性能.中国惯性技术学报. 2007, 15 (3):322~326.
    50.涂有瑞.飞速发展的磁传感器.传感器技术. 1999, 18(4): 5~8.
    51. K. Mohri, L. V. Panina, T. Uchiyama, K. Bushida, M. Noda. Sensitive and Quick Response Micro Magnetic Sensor Utilizing Magneto-Impedance in Co-rich Amorphous Wires. IEEE Trans. on Magnetics.1995, 31(2): 1266~1275.
    52. Horia Chairiac, Tibor-Adrian. Giant Magnetoimpedance Effect in Soft Magnetic Wire Families. IEEE Trans. on Magnetics. 2002, 38(5): 3057~3058.
    53. Hans Hauser, Ludek Kraus, Pavel Ripka. Giant Magneto-Impedance Sensors. IEEE Instrumentation and Measurement Magazine. 2001, (7): 28~32.
    54. L. V. Panina, S. I. Sandacci, D. P. Makhnovskiy. Stress Effect on Magneto-Impedance in Amorphous Wires at Gigahertz Frequencies and Application to Stress-Tunable Microwave Composite Materials. J. Appl. Phys.. 2005, 97: 701~707.
    55. K. Inada, K. Mohri, K. Inuzuka. Quick Response Large Current Sensor Using Amor-phous MI Element Resonant Multivibrator. IEEE Transaction on Magnetics. 2000, 30(6): 4623~4625.
    56. Henryk K. Lachowicz, Karin L. Garcia, Arcady Zhukov. Skin-effect and Circum-Ferential Permeability in Micro-Wires Utilized in GMI-Sensors. Sensors and Ac-tuators A. 2005, (119): 384~389.
    57. V. Raposo, J. I. Iniguez, D. García, A. G. Flores. Internal Magneto-Impedance of Amorphous Wires. IEEE Trans. on Magnetics. 2003, 39(5): 3094~3096.
    58.王星,杨元政,龙红军,谢致薇.钴基软磁非晶合金的巨磁阻抗效应研究进展.材料导报. 2007, 21(5): 115~117.
    59.林春生,向前,龚沈光.三轴磁强计正交误差分析与校正.探测与控制学报. 2005, 27(2): 9~12.
    60.吴德会.基于SVR的三轴磁通门传感器误差修正研究.传感器与微系统. 2008, 27(6): 43~46.
    61.张琦,潘孟春,陈棣湘,吴美平.从潜艇磁测数据中分离地磁场的研究.探测与控制学报. 2008, 30(增刊): 1~4.
    62. P. Pin-anong. The Electromagnetic Field Effects Analysis which Interfere to Environment near the Overhead Transmission Lines and Case Study of Effects Reduction. M. Eng. Thesis, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand, 2002: 21~37.
    63. A. V. Kildishev, J. A. Nyenhuis. External Magnetic Characterization of Marine vehicles. OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000: 1145~1147.
    64. Pinheiro J C A. Vectorial magnetic field of a vessel from the vertical field[J].OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.'Proceedings, 1994,3:519~521.
    65. M. Weiner. Electromagnetic Analysis Using Transmission Line Variables. World Scientific Publishing, 2001: 75~103.
    66. G. Ioannidis. Identification of a Ship or Submarine from its Magnetic Signature. IEEE. Transactions on Aerospace and Electronic Systems. 1997, (3): 327-329.
    67.张琦,潘孟春,吴美平.地磁辅助导航中的潜艇干扰磁场.中国关系技术学报. 2009, 17(3): 293~296.
    68.袁雪平,潘加明,颉晨.电磁屏蔽中的难题——磁场屏蔽.电子质量, 2006, 10: 70~72
    69. Y. Du, T.C. Cheng and A.S. Farag, Principles of Power-Frequency Magnetic Field Shielding with Flat Sheets in a Source of Long Conductors. IEEE Transactions on Electromagnetic Compatibility. 1996, 38(3): 450~459.
    70.徐文耀,白春华,康国发.地壳磁异常的全球模型.地球物理学报. 2008, 23(3): 641~651.
    71. R. Smith, M. Self, P. Cheeseman. Estimating Uncertain Spatial Relationships in Robotics. Autonomous Robot Vehicles, I.J. Cox and G.T. Wilfon, Eds, New York: Springer Verlag, 1990:167~193.
    72. U. Frese, P. Larsson, and T. Duckett. A Multilevel Relaxation Algorithm for Simultaneous Localization and Mapping, IEEE Trans. Robotics, 2005, 21(2): 196~207.
    73.王亶文.地磁场模型研究.国际地震动态. 2001, 4: 1~3.
    74.金际航,边少峰.世界地磁模型进展WMM2005.国家安全与军事地球物理研究——国家安全地球物理学术研讨会论文集. 2005:58~64.
    75. R. A. Langel, M. E. Purucker. Magnetic Anomaly Maps of Earth Derived from POGO and Magsat Data. J. geophys. Res., 1994, 99(24): 75~90.
    76. R. Olsen. Orsted initial field model. Geophys. Res. Lett., 2000, 27(22): 3607~3610.
    77. T. J. Sabaka, N. Olsen, R. A. Langel. A Comprehensive Model of the Quit-Time Near Earth Magnetic Field: Phase Geophys. J.Int.,2002,151: 32-68.
    78. http://www.ngdc.noaa.gov/seg/EMM/emm.shtmlJHJcoef.
    79.张昌达.世界磁异常图.物探与化探, 2008, 32(6): 581~585.
    80. D. Ravat, M. Ghidella, S. Maus. Toward the World Digital Magnetic AnomalyMap (WDMAM). Eos Trans AGU. 2003, 84 (46):112~135.
    81. K. Hemant, E. Thebauh, M. Mandea. World Digital Magnetic Anomaly Map : Progress Report. Geophysical Research Abstracts. 2006, 8: 360~369.
    82. S. Maus, T. Sazonova, K. Hemant. National Geophysical Data Center Candidate for the World Digital Magnetic Anomaly Map. Geochem Geophys Geosyst, 8, 2007, Q06017, doi: 10, 1029/ 2007GC001643.
    83. J. V. Korhonen and the WDMAM 1.0-team. World Digital Magnetic Anomaly Map ( WDMAM ), First Edition. Geophysical Research Abstracts. 2007, 9: 10406.
    84.吴信才.地理信息系统[M].电子工业出版社, 2002: 172~173
    85.邬伦,刘瑜,张晶.地理信息系统原理方法和应用.科学出版社, 2001: 184~185
    86.黄健全,罗高明,胡雪涛.实用计算机地质制图.地质出版社, 1998:120~131
    87.李新,程国栋,卢玲.青藏高原期望分布的空间插值方法比较.高原气象. 2003, 22(6): 565~573.
    88. Noel A.C. Cressie. Statistics for Spatial Data. A Wiley-Interscience publication, 1991: 38~91.
    89. Briggs C. Machine Contouring Using Minimum Curvature. Geophysics, 1979, 39(1): 39
    90. Barnett V. Interpreting multivariate data. John Wiley and Sons, 1981:147~174.
    91.彭仪普,刘文熙. Delaunay三角网与Voronoi图在GIS中的应用研究.测绘工程. 2002, 11(3): 39~41.
    92.王小兵,张金生,王哲,王仕成.地磁匹配中位场频率域延拓方法研究.探测与控制学报. 2009, 31(增刊): 29~33.
    93. H. R. Burger. Exploration Using the Magnetic Method in Exploration Geophysics of the shallow Subsurface. Prentice Hall, 1992: 289~452.
    94. S. Chernicoff, D. Whitney. Geology– An Introduction to Physical Geology. Pearson Education, 2007:146~210.
    95.梁锦文.位场向下延拓的正则化方法.地球物理学报. 1989, 32(5): 600~608.
    96.王兴涛,夏哲仁,石磐等.航空重力测量数据向下延拓方法比较.地球物理学报. 2004, 47(6): 1017~1022.
    97.宁津生,汪海洪,罗志才.基于多尺度边缘约束的重力场信号的向下延拓.地球物理学报. 2005, 48(1): 63~68.
    98. R. S. Pawlowski. Preferential Continuation for Potential-Field Anomaly Enhancement. Geophysics. 1995, 60 (2) : 390~398.
    99. M. Fedi, G. Florio. A Stable Downward Continuation by Using the ISVD Method. Geophys. J. Int. 2002, 151(1): 146~156.
    100.徐世浙.位场延拓的积分-迭代法.地球物理学报. 2006, 49(4): 1176~1182.
    101.徐世浙.迭代法与FFT法位场向下延拓效果的比较.地球物理学报. 2007, 50(1): 285~287.
    102.周贤高,李士心,杨建林,张良通.地磁匹配导航中的特征区域选取.中国惯性技术学报. 2008, 16(6): 694~698.
    103. T. R. Thomas. Rough surfaces. Longman Press, 1982: 24~37.
    104. T. Wang, R. L. McClintock. Terrain Correlation Suitability. Proc of SPIE. 1994, 2220(4): 50~58.
    105. A. Bar-Gill, P. Ben-Ezra, I. Y. Bar-Itzhack. Improvement of Terrain-Aided Navigation via Trajectory Optimization. IEEE Transactions on Control Systems Technology,1994, (4): 336~342.
    106. A. Papoulis, S. U. Pillai. Probability random variables and stochastic processes. Polytechnic University, 2004:511~561.
    107.张国忠,王征,蒋秀峰,朱华勇.基于离散分数布朗随机场模型的景象适配性分析方法.宇航学报. 2004, 25(1): 19~23.
    108. G.C. Bishop. Gravitational Field maps and Navigational errors. IEEE Journal of Oceanic Engineering. 2002,(3): 726~737.
    109.胡正东,郭才发,张士峰,蔡洪. Unscented卡尔曼滤波在飞航导弹地磁导航中的应用.宇航学报. 2009, 30(4): 1443~1448.
    110.于平,刘淼.战斧导弹的五大不足[J].中国航天. 2000, 11: 44~45.
    111.王向磊,孙付平,陈坡.地磁匹配导航算法研究.测绘工程. 2009, 18(3): 37~39.
    112.谢仕民,李邦清,李文耀,王黎斌.地磁匹配技术及其基本匹配算法仿真研究.航天控制. 2008, 26(5): 55~59.
    113.李晓禄,蔡文良.运五飞机上航磁梯度测量系统的安装与补偿.物探与化探. 2006, 30(3): 224~228.
    114.何敬礼.飞行器磁场的自动补偿方法. 1993, 9(6): 464~469.
    115. Paul Leliak. Identification and Evaluation of Magnetic Field Sources of Magnetic Airborne Detector Equipped Aircraft. IRE Trans. Aerosp. Navig. Electron. 1961:95~105
    116. S. H. Bickel. Small Signal Compensation of Magnetic Fields Resulting from Aircraft Maneuvers. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, AES-15(4): 518~525
    117. B. Vijay Gopal, V. N. Sarma and H. V. Rambabu. Real Time Compensation forAircraft Induced Noise during High Resolution Airborne Magnetic Surveys. J. Ind. Geophys. 2004, 8(3): 185~189
    118. John Jia, Petros EiKon. A New Aircraft Compensation System for Magnetic Terrains. Ontario Mineral Exploration Technology Program: Project#P02-03-043, 2007: 23~50.
    119.刘晓杰.航磁补偿技术研究.吉林大学硕士学位论文. 2009: 5.
    120.邓正隆.惯性导航原理.哈尔滨工业大学出版社, 1994: 105~116.
    121. M. W. M. Gamini Dissanayake, Paul Newman, Steven Clark. A Solution to the Simultaneous Localization and Map Building (SLAM) Problem. IEEE Transactions on Robotics and Automation. 2001, 17(3): 229~241.
    122.蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策. 2002, 17(4): 385~390.
    123.王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展.机器人. 2004, 26(4): 380~384.
    124. M. Montemerlo, S. Thrun. Simultaneous Localization and Mapping with Unknown Data Association Using Fast SLAM. Proceedings of the IEEE International Conference on Robotics and Automation, Taiper, 2003: 1985~1991.
    125.漆进,莫智文. LATD快速拟合的改进.四川师范大学学报(自然科学版). 2002, 25(5): 445~446.
    126. L. Ljung. System Identification: Theory for the User. Prentice-Hall, 1987: 278~280.
    127. Lowe, G. David. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision. 2004, 60(2): 91~110.
    128. Lowe, David G. Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision.1999: 1150~1157.
    129.杨映新,吴献文.地图数据的误差与校正.中国科技信息, 2005, 14: 107.
    130. J. V. Korhonen, J. D. Fairhead, M. Hamoudi, K. Hemant, V. Lesur,M. Mandea, S. Maus, M. Purucker, D. Ravat, T. Sazonova, E. Thebault. Magnetic Anomaly Map of theWorld ( and associated DVD) , Scale: 1∶50 000 000, 1 st edition, Commission for the Geological. Map of theWorld. Paris, France, 2007.
    131. G. Bertin, B. Piovano, L. Accatino, R. Tebano. A Novel Rounded-Patch Dual-mode HTS Microstrip filter. 2004 IEEE MTT-S Int. Micro. Symp. Dig, 2004: 1113~1116.
    132. Antonio Cassinese, Mario Barra, Walter Ciccognani, Matteo Cirillo, Marco De Dominicis. Miniaturized Superconducting Filter Realized by Using Dual-Modeand Stepped Resonators. IEEE Trans. On Microwave Theory and Techniques, 2004, s52: 97.
    133. A. Mansour, A. K. Barros, N. Ohnishi. Blind Separation of Sources: Methods, Assumptions and Applications. IEICE Trans. on Fundamentals, 2000, 8: 1498~1512.
    134. E. Weinstein, M. Feder, and A. V. Oppenheim. Multichannel Signal Separation by Decorrelation. IEEE Trans. on Speech, and Audio Processing, 1993, 1(4): 405~414.
    135. A. Hyvarinen. Fast and Robust Fixed-point Algorithm for Independent Component Analysis. IEEE Trans. on Neural Network, 1999, 10(3): 626~634.
    136.张建明,林亚平.独立成分分析的研究进展.系统仿真学报. 2006, 18(4): 992~1001.
    137. Jean-Francois Cardoso. Blind Signal Separation: Statistical Principles. Proceedings of IEEE, 1998, 86(10): 2009~2024.
    138. Aapo Hyvarinen, Erkki Oja. Independent Component Analysis: Algorithms and Applications. Neural Networks (S0893-6080).2000, 13(4-5): 411~430.
    139.杨竹青,李勇.独立成分分析方法综述.自动化学报. 2002, 28(5): 762~771.
    140.杨英华,吴英华.基于独立源分析的过程监测方法.控制与决策. 2006,
    21(10): 1190~1196.
    141. Aapo Hyv?rinen, Juha Karhunen, Erkki Oja. Independent Component Analysis [M]. New York :JOHN WILEY & SONS, 2001: 147~272
    142.郝燕玲,赵亚凤,胡峻峰.地磁匹配用于水下载体导航的初步分析.地球物理学进展. 2008, 23(3): 594~598.
    143.刘冰,张立.浅谈毕奥-萨伐尔定律的简单推证.物理与工程. 2004, 14(2): 30~31.
    144.魏东.重力匹配定位方法研究.哈尔滨工程大学硕士学位论文. 2004: 28~43.
    145.任治新,李欣,张桂敏,杨功流.地磁导航系统中等值线的提取及应用.中国惯性技术学报. 2008, 16(5): 605~608.
    146.孙桂茹,马亮,路登平.等值线生成与图形填充算法.天津大学学报. 2000, 33(6): 816~818.
    147. W. R. Baker, R. W. Clem.Terrain Contour Matching Primer. Aeronautical Systems Division. 1997, 5:23~30.
    148. S. J. Julier. The scaled unscented transformation. Proceedings of American Control Conference. Jefferson City, 2002: 4555~4559.
    149. F. Trochu. A Contouring Program Based on Dual Kriging interpolation.Engineering with Computers. 1993(3): 160~177.
    150.袁信,俞济详.导航系统.航空工业出版社, 1993: 217~224.
    151.黄俊钦.静、动态数学模型的实用建模方法.北京机械工业出版社, 1988: 88~90
    152.卢鸿谦. SINS/GPS组合导航性能增强技术研究.哈尔滨工业大学博士学位论文. 2006: 5.
    153.杨功流,李士心.地磁辅助惯性导航系统的数据融合算法.中国惯性技术学报. 2007, 15(1): 47~50.
    154. Hua Mu, Meiping Wu. Geomagnetic Surface Navigation Using Adaptive EKF. 2007 IEEE Conference on Industrial Electronics and Applications, Harbin, 2007:864~870.
    155. D. Larry, Hostetler. Nonlinear Kalman Filtering Techniques for Terrain-Aided Navigation. IEEE Transactions on Automatic Control. 1983, 28(3): 318~319.
    156.张有为.维纳与卡尔曼滤波理论导论.人民教育出版社, 1980: 162.
    157.秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社, 1998: 142~153.
    158. Chen Zhe. Local Observability and Its Application to Multiple Measurement Estimation. IEEE Transaction on Industrial Electronics. 1991, IE-38(6): 431~435.
    159.潘泉,杨峰,叶亮等.一类非线性滤波器——UKF综述. 2005, 20(5): 481~489.
    160. Simon Juler, Jeffrey K. Uhlmann. A General Method for Approximating Nonlinear Transformations of Probability Distributions. Robotics Research Group, Department of Engineering Science, University of Oxford, 1996:19~25
    161. Simon Juler, Jeffrey K. Uhlmann. A New Extension of the Kalman Filter to Nonlinear Systems. The Proceedings of AeroSense: The 1 1th International Symposi um on Aerospace/Defense Sensing. Simulation and Controls, (Orlando, Florida), 1997: 7~9.
    162. P. J. Escamilla-Ambrosio, N. Mport. Multisensor Data Fusion Architecture Based on Adaptive Kalman Filters and Fuzzy Logic Performance Assessment. Proceedings of the Fifth International Conference on Information Fusion, FUSION 2002.Annapolis, USA, 2002:1542~1549.
    163. J. Z. Sasiakek, Q. Wang, M. B. Zeremba. Fuzzy Adaptive Kalman Filtering For INS/GPS Data Fusion. Proceedings of the 15th IEEE Intelligent Control, GREECE, 2000: 181~186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700