用户名: 密码: 验证码:
适于惯性制导炸弹的捷联惯导关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制导炸弹在现代战争中应用越来越广泛,而导航与制导系统是其核心部件。随着卫星导航系统的发展,卫星/惯性组合导航成为导航领域的主要发展方向。但卫星导航系统易受到干扰而变得不可使用,过分依赖卫星导航系统存在隐患,“用而不靠”是比较妥善的方式。捷联惯导系统可以不受外部干扰、完全自主的工作,所以具有一定精度的捷联惯导系统可为制导炸弹提供可靠的导航与制导能力,具有非常重要的军事应用价值。
     本文的研究对象为适于惯性制导的中等精度捷联惯导系统,研究目的在于提高捷联惯导系统的精度,同时降低成本;研究的主要内容为捷联惯导系统的几项关键技术,包括数据采集技术、陀螺的标定与补偿技术、初始对准技术和磁航向系统的校正与补偿等。主要工作包括以下几个方面:
     (1)研究了捷联惯导系统的构成原理,采用国产挠性陀螺仪和石英挠性加速度计设计了惯性测量单元。研究了目前导航计算机的研制方案,设计了以DSP和CPLD为核心的导航计算机。研究了数据采集技术和惯性仪表的数据采集电路,分别设计了高精度、低成本的流水线A/D和Σ-Δ型A/D多路并行采集、并行滤波数据采集电路。
     (2)研究了陀螺刻度系数非线性问题,设计了分段非线性插值标定算法,提出了陀螺刻度系数神经网络标定方法和神经网络再训练方法。分段非线性插值标定算法在整个区间上细化陀螺的刻度系数,减小了非线性误差,与一次拟合法和分段法相比,非线性误差分别减小约6.2倍和2.4倍;实验结果表明神经网络与分段非线性插值算法的标定结果接近,说明神经网络标定方法是可行的。对神经网络模型进行再训练,非线性误差减小了约1.7倍,可提高神经网络对刻度系数非线性的逼近程度,进一步减小非线性误差。
     (3)研究了捷联惯导系统的自动化标定技术。利用转台系统,不增加硬件设备,通过设计监控计算机与导航计算机之间的通信协议,建立串口通信机制,实现了捷联惯导系统标定过程的流程控制、数据采集、数据记录、标定计算和标定参数装订的自动化,标定的中间过程不需要人员参与。
     (4)捷联惯导系统的测量信号中包含大量随机噪声,降低了初始对准的精度。提出将提升小波算法应用于惯性仪表测量信号去噪和初始对准中,实验结果表明该方法可以有效滤除信号中的随机噪声,能够提高初始对准的速度和精度;相比于小波算法,提升小波算法在测量信号滤波中能够缩短将近一半时间,更适于实时、在线应用。
     (5)研究了适用于捷联惯导系统的传递对准技术,提出了神经网络传递对准方法。用子惯导的速度和姿态信息作为输入,以主、子惯导的速度和姿态误差作为参考信号,训练神经网络补偿子惯导的速度和姿态。仿真实验表明,神经网络传递对准方法对子惯导速度和姿态均有很好的补偿效果;并且研究了不同神经元对子惯导补偿效果的影响,确定了具有6个神经元的最佳网络结构。通过跑车实验,验证了神经网络方法对速度和姿态均有比较好的补偿效果,速度补偿误差均值小于0.15m/s,俯仰角和滚动角补偿误差均值小于0.03°,对航向角的补偿误差均值小于0.03°,补偿的速度和姿态误差能够稳定,不会发散。经神经网络补偿后60s的位置误差小于8m,100s的位置误差小于17m,表明神经网络补偿能够起到抑制位置误差发散的效果。
     (6)研究了低成本磁航向系统的工作原理,设计了磁航向系统信号去噪和异常检测方法。针对其测量信号中包含大量噪声的问题,提出了应用提升小波去除磁航向系统测量噪声的方法;由于外部干扰磁场的存在,磁航向系统会出现测量异常情况,针对其测量异常,提出应用提升小波对异常进行检测的方法。实验结果表明,提升小波可有效地去除磁航向系统的测量噪声;并能有效的检测出磁航向系统的测量异常;校正后的数据可增加磁航向系统航向角的可用性。
     (7)研究了磁航向系统误差补偿技术,结合捷联惯导系统的特点,提出以捷联惯导系统的航向信息为参考,训练神经网络补偿磁航向系统的误差。实质上,神经网络的补偿作用是实现磁航向系统跟踪捷联惯导系统的航向,实现两者之间的映射。实验结果表明,神经网络补偿方法将磁航向系统的航向角误差由±15?减小到约±1?,取得了明显的效果。
     本文基于挠性陀螺集成的硬件系统,主要研究提高SINS精度方法,所研究的方法也适用于光纤陀螺等其他中等精度的SINS。
Guided munitions are increasing widely applied in high-tech modern wars. Navigation and guidance system is one of the keys of Guided munitions. With the development of satellite navigation system(SNS), SNS/SINS(strapdown inertial navigatoion system) integrated navigation has been the leading development direction. But SNS is likely to be unused because of outside disturbance. Toward SNS, the proper way is to use but not depend. SINS has undisturbed and autonomous navigation capacity. Therefore, SINS is very significant for military application with certain precision.
     Taking medium-precision SINS suitable for inertial guidance as object, this dissertation intends to improve navigation precision and reduce the cost of SINS. Main contents are about the key technologies of SINS, including data-sampling, gyro’s calibration and compensation, SINS alignment, compensation of magnetic heading system(MHS). The details of main contents are the following aspects:
     (1) Based on the introduced principles and developments of SINS, inertial instrument, navigation computer and data-sampling technology, we design a SINS including an inertial measurement unit(IMU) with domestic flexibility gyroscopes and quartz accelerometers, a navigation computer system with the core of digital signal processor(DSP) and complex programmable logical device(CPLD), and two high-precision and low-cost data-sampling systems with pipeline A/D chips and sigma-delta A/D chips respectively.
     (2) Toward SINS, the calibration methods of piecewise nonlinear interpolating(PNIP) and multilayer feedforward neural network(MLFN) are put forward to compensate the nonlinear error of gyroscope’s scale factor. The PNIP can subdivide the scale factor and minish nonlinear error about 6.2 times and 2.4 times compared with least square fitting and piecewise compensation method respectively. Experiment results show that the calibration result of scale factor using MLFN is close to that of PNIP, and also indicate that MLFN is feasible. A retraining method is proposed to improve the performance of the trained MLFN. Results show that the retrained MLFN can much more approach the real scale factor and minish the nonlinear error about 1.7 times compared with the unrestrained MLFN.
     (3) In order to meet the requirement of SINS’batch production, an automatic calibration and test method is designed. Considering SINS’characters, we design the communication protocol and realize serial communication mechanism between monitor computer and SINS. Based on a turntable system and utilizing the serial communication mechanism, the calibration process of SINS is automatically realized without adding any hardware equipment. The automatic process includes calibration flow control, data record, calibration result computation and parameters storage.
     (4) Considering noisy data of inertial instruments which could depress SINS alignment precision, lifting wavelet is applied into the signal de-noising of inertial instruments and SINS coarse alignment. Results show that lifting wavelet algorithm is effective to the signal de-noising of inertial instruments. Also it can improve the alignment precision of SINS. Compared with classic wavelet, lifting wavelet can save almost half computation time and is more suitable to real-time and online application.
     (5) Based on the introduction of transfer alignment methods, a neural network(NN) transfer alignment method is put forward to compensate the errors of salve inertial navigation system(INS). In the NN model, NN inputs are the velocity and attitude of salve INS, and NN output references are the errors of velocity and attitude between master INS and slave INS. Simulation results show that the NN model can make satisfactory compensation to the velocity and attitude of slave INS. Also NN models with deferent neurons could have deferent compensation effect, and we ascertain the best NN architecture with 6 neurons by simulation experiments. Vehicle test results show that NN transfer alignment method has effective compensation to velocity and attitude of slave INS with average of velocity error below 0.15m/s, averages of pitch error and roll error below 0.03°, and average of yaw error below 0.03°. And errors of compensated velocity and attitude are stable and convergent. Unaided navigation position error compensated by the NN is below 8m in 60s and below 17m in 100s, which shows that the NN model can effectively restain the divergence of position error.
     (6) The principle of MHS is studied. A de-noising method and an anomaly detector are presented respectively to de-noise and detect the signal of a low-cost MHS. Considering the problem of MHS measurements including a lot of noises, lifting Wavelet is used in de-noising MHS measurements. MHS measurements could be anomaly due to magnetic disturbance from external interferences. Toward the anomaly measurements of MHS, lifting Wavelet is applied into detecting the anomaly signal. Experiment results show that lifting Wavelet could effectively de-noise the MHS measurements and detect the anomaly signal. After eliminating the anomaly measurements, the revised measurements could improve the usability of MHS heading.
     (7) According to the characters of integrated navigation, a neural network is bringed forward to compensate the error of a low-cost MHS. The error sources of MHS are studied and the compensation methods are analyzed. When the Global Positioning System(GPS) is available, a multilayer feedforward neural network is trained to compensate MHS by the learning method of kalman filter and with the reference of SINS/GPS integrated navigation result. Experiment results show that the neural network can make a significant effect and reduce the heading error of MHS from±15? to±1?.
     Baesd on the integration hardware system of flexible gyroscopes, this dissertation majors in researching the way to improve SINS’precision and to reduce system cost. And also the methods of this dissertation are suitable for other medium-precision SINS, such as the SINS based on fiber optical gyros.
引文
[1] Titterton D H, Weston J L(.张天光等译)捷联贯性导航技术[M],北京:国防工业出版社,2007.
    [2]范金荣.制导炸弹发展综述[J].现代防御技术, 2004, 32(3): 27-31.
    [3]董杨彪.风修正弹药尾翼组件机理研究及性能分析[D].国防科技大学, 2006.
    [4] Klotz H A, Derbak C B. GPS-aided navigation and unaided navigation on the Joint Direct Attack Munition [C]. IEEE Position Location and Navigation Symposium, Palm Spring, USA, 1998: 412-419.
    [5]张纯学,晗旭.欧美的自主精确弹药[J].飞航导弹, 2006, 6: 1-6.
    [6]简氏防务周刊:精确制导武器现状与发展[J], 2004.9.8.
    [7]张洋.世界精确制导炸弹现状[J].海陆空天惯性世界, 2005, 5M: 24-49.
    [8]吴思.中国精确制导炸弹的发展与最新动向[J].现代兵器, 2006, 12: 44-49.
    [9]卡普兰. GPS原理与应用[M].北京:电子工业出版社,2007.
    [10]李俊锋.“北斗”卫星导航定位系统与全球定位系统之比较分析[J].北京测绘. 2007,1: 51-53.
    [11]汤勇刚.载波相位时间差分/捷联惯导组合导航方法研究[D].国防科技大学博士论文,2007.
    [12]程立斌,李珊珊.透析伊拉克战争GPS干扰与反干扰[J].电光与控制. 2004, 11(1):18-21.
    [13]秦永元.惯性导航[M].北京:科学出版社, 2006
    [14]孟祥谦,董有亮,包小林.发展我国制导炸弹的思考[J].航空兵器, 2001,2:37-38.
    [15]李保平.航空制导炸弹的发展技术途径与关键技术[J].弹箭与制导学报. 2006, 26(3):100-103.
    [16]毛凯,赵荣.武器装备现代化改造的途径选择[J].国防科技. 2004,10:11-13.
    [17]姜明远,胡英俊.关于空军武器装备“跨越式”发展的几点思考[J].航空科学技术. 2003, 5:7-10.
    [18]郭秀中.惯性系统陀螺仪理论[M].北京:国防工业出版社. 1996:29-33.
    [19]杨培根,龚智炳,等编着.光电惯性技术[M].北京:兵器工业出版社, 1999.
    [20] Gaiffe T. From R&D brassboards to navigation grade FOG-based INS: the experience of Photonetics/Ixsea [J]. In Proc. of IEEE 2002: 1-4.
    [21]许国祯.惯性技术手册[M].北京:宇航出版社: 1995.
    [22] Hanse J. Honeywell MEMS inertial technology & product status [A]. In Proc. of Position Location and Navigation Symposium (PLANS’2004) [C], 2004:43-48.
    [23] Karnick D, Ballas G, Koland L, Secord M, Braman T. Honeywell gun-hard inertial measurement unit (IMU) development [A]. In Proc. of Position Location and Navigation Symposium (PLANS’2004) [C], 2004: 49-55.
    [24]王轲,陈效真,杨雨.激光陀螺及其发展[J].导航与控制, 2004, 3(4): 28-31.
    [25]王巍,何胜.微固态惯性器件的研究与发展[J].导航与控制, 2003, 2(3): 73-78.
    [26]李宏生.基于DSP的主从式紧耦合捷联导航计算机[J].中国惯性技术学报, 2001, 9(3): 35-38.
    [27]王其,徐晓苏.基于浮点DSP的SINS/GPS舰船导航计算机设计[J].舰船电子工程, 2007, 27(2): 73-75.
    [28]黄丽斌,周百令,单茂华.基于DSP的嵌入式导航计算机分布式系统设计[J].中国惯性技术学报, 2003, 11(4): 16-19.
    [29]孙科,刘刚,房建成.基于ARM和DSP的嵌入式导航计算机方案设计[J].山东大学学报, 2007, 37(1): 23-25.
    [30]刘育浩,黄新生.基于DSP和FPGA的导航计算机系统设计[A].中国航空学会控制与应用第十一届学术年会[C].山东烟台, 2004: 652-655.
    [31]曾庆化,刘建业,赖际舟等. DSP硬件算法在捷联惯性AHRS系统中的实现[J].中国惯性技术学报, 2006, 14(6): 1-4.
    [32]贾苹,李志宏.一种新型光纤陀螺仪信号采集方法(IF+AD)[J].中国惯性技术学报, 2003, 11(2): 57-60.
    [33]孟俊芳.弹载惯导系统中的加速度计I/F变换电路[J].航空兵器. 1998, (3): 13-16.
    [34]牛海燕,孙永刚,田亮等. VFC在捷联惯导数据采集系统中的应用[J].航天控制. 2005, 23(6): 85-88.
    [35] D.J.Goodman. The application of delta modulation to obtain robust analog-to-digital encoding[J]. Bell Sys. Tech.J. 1969, 48: 321-343.
    [36] Candy J C, Temes G C. Over-sampling methods for A/D and D/A conversion [J]. IEEE Transactions on Cir2cuits and Systems, 1987(6): 32-39.
    [37]魏本富,袁国顺.Σ-Δ模数转换器研究进展[J].微电子学. 2002, 32(5): 366-373.
    [38]于光平,张昕.过采样方法与提高ADC分辨率的研究[J].沈阳工业大学学报, 2006,28(2): 137-139.
    [39]徐盛友,蒙建波,陈清洪.高精度ADS1256转换器及其在捷联惯导系统中的应用[J].自动化与仪器仪表, 2006(2): 31-33.
    [40]张晞,王夏霄,许文渊.高精度光纤陀螺过采样技术分析与应用[J].宇航学报, 2006, 27(5): 935-938.
    [41]徐盛友,蒙建波,陈清洪.高精度ADS1256转换器及其在捷联惯导系统中的运用[J].自动化与仪器仪表, 2006, 2: 31-33.
    [42]徐伟,王建理,陈涛.过采样技术在光纤陀螺数据采集中的应用[J].微型计算机信息. 2007, 23(3-1): 75-76.
    [43]杨胜,房建成,盛蔚.光纤捷联惯性测量单元设计与实现[J].中国惯性技术学报, 2006, 14(4): 77-79.
    [44] Tom Hendrick.使用Σ-Δ转换器进行同步采样(上) [J].电子产品世界. 2006, 17: 154-155.
    [45] Tom Hendrick.使用Σ-Δ转换器进行同步采样(下) [J].电子产品世界. 2006, 19: 152-153.
    [46]严正国,张家田.高分辨同步数据采集处理系统设计[J].中国计量学院学报. 2006, 17(3): 192-195.
    [47] TEXAS INSTRUMENTS INCORPRATED. Synchronizing the ADS1271[EB/OL]. (2005-10-28)[2006-03-15]. http://focus.ti.com/lit/an/sbas355/sbas355.pdf.
    [48]牛清红,张春熹,宋凝芳.用A/D和FPGA实现的加速度计数据读出系统[J].中国惯性技术学报. 2006, 14(1): 63-66.
    [49]梅硕基.惯性仪器测试与数据分析[M].西北工业大学出版社,西安, 1991: 82-84.
    [50] Grewal M S, Henderson V D, Miyasako R S. Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems[J]. IEEE Trans. on Automatic Control, 1991, 36(1): 4-13.
    [51] Joglekar H K, Venkateswarlu A. Gyro Scale-factor Error and Misalignment Estimation for a Spacecraft [A]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit[C], Providence, Rhode Island, 2004.
    [52] Bar-Itzhack I Y, Harman R R. Implicit and Explicit Spacecraft Gyro Calibration [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004.
    [53] Lam Q M, Hunt T, Sanneman P, Underwood S. Analysis and Design of a Fifteen State Stellar Inertial Attitude Determination System [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Austin, Texas, 2003.
    [54]祁家毅,任顺清,王常虹.用三轴转台辨识陀螺仪误差模型系数时的速率实验设计[J].宇航学报, 2006, 27(3): 565-570.
    [55]白朝晖,李立新.利用导航信息标定捷联惯导系统误差系数的方法[J].战术导弹控制技术, 41(2), 2003: 20-25.
    [56]何昆鹏,吴简彤,曾建辉.挠性陀螺系统不对称性误差研究[J].中国惯性技术学报. 2006, 14(6): 76-77.
    [57] Titterton D H, Weston J L. Strapdown inertial navigation technology[M]. Co-published by the American institute of Aeronautics and Astronautics and the Institution of Electrical Engineers, 1997: 242-244.
    [58]杨金显,袁赣南,徐良臣.微机械陀螺测试与标定技术研究[J].仪器仪表学报, 2006, 19(5): 2264-2267.
    [59]谭红利,黄新生,岳冬雪.低成本捷联惯导不对称动态误差的神经网络补偿[J].航空学报. 2008, 29(2): 443-446.
    [60]刘波,李学锋.速率捷联惯导系统陀螺仪误差分段补偿技术研究[J].航天控制, 2005, 23(1): 72-75.
    [61]黄海,王雪梅,刘光斌等.单速率捷联陀螺仪标定技术研究[J].电光与控制, 2005, 12(5): 70-72.
    [62]宋丽君,张英敏,付强文.光纤陀螺刻度系数的精确标定与补偿[J].机械与电子, 2006, 12: 27-30.
    [63]卞鸿巍,李安,汪人定.用灰色理论和神经网络理论建立陀螺漂移模型初探[J].中国惯性技术学报, 1997, 5(4): 38-41.
    [64]徐丽娜,邓正隆.陀螺仪启动漂移特性的神经网络建模研究[J].中国惯性技术学报, 1999, 7(1): 49-51.
    [65]李战,孙枫,高伟,熊芝兰. RBF网络在光纤陀螺动态误差模型辨识中的应用[J].弹箭与制导学报, 2005, 25(3): 135-137.
    [66] Pethel S J. Test and evaluation of high performance micro electro-mechanical system based inertial measurement units[J]. Position, Location and Navigation Symposium, 2006 IEEE/ION: 405-414.
    [67]李星海,李华容,刘勇等.基于双轴转台的惯性器件自动标定系统研制[J].压电与声光, 2004, 26(4): 272-275.
    [68]程传浩,刘勇志,路德信.一种新型基于VXI总线的导弹惯性平台自动测试系统[J].计算机测量与控制, 2002, 10(1): 55-67.
    [69]余红.惯性仪器通用测试技术应用研究.工业控制计算机[J]. 2005, 18(11): 19-20.
    [70]杨建业,汪立新,钱培贤.基于PXI的捷联惯组自动测试系统设计[J].计算机测量与控制, 2006, 14(11): 1468-1470.
    [71]杨亚非,谭久彬,邓正隆.惯导系统初始对准技术综述[J].中国惯性技术学报, 2002, 10(2): 68-72.
    [72]谭红力.航弹族低成本惯导系统关键技术研究[D].国防科技大学博士论文,长沙, 2007.
    [73] Kong X Y, Nebot E M, D-Whyte H. Development of a nonlinear psi-angle model for large misalignment errors and its application in INS alignment and calibration[A]. Proceedings of the 1999 IEEE Int. conf. on Robotics & Automation[C], Detroit, Michigan.1999:1430-1435.
    [74] Hong H S, Lee J G, Park C G. Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error [J]. IEE Proc. Radar Sonar Navigation, 2004, 151(1): 57-62.
    [75] Van der Merwe R, Wan E A, Julier S J. Sigma-point Kalman filters for nonlinear estimation and sensor-fusion– applications to integrated navigation [A]. AIAA Guidance Navigation and Control Conference[C], Providence, USA. 2004: 1-30.
    [76] Shin E H, El-Sheimy N. An unscented Kalman filter for in-motion alignment of low-cost IMUs [A]. In Proc. of IEEE Position Location and Navigation Symposium (PLANS’2004) [C], 2004: 273-279.
    [77]邱宏波.捷联惯导系统在飞行中的快速传递对准研究[D].哈尔滨工业大学硕士论文, 1999.
    [78] Kim K, Park C G. In-flight alignment algorithm based on non-symmetric unscented transformation [A]. In Proc. of SICE-ICASE Int. Joint Conference 2006 [C]. Bexco Korea: 4916-4920.
    [79] Xiong Z, Hao Y, Sun F. SINS rapid in-motion alignment based on nonlinear filter [A]. Position Location and Navigation Symposium[C], 2006 IEEE/ION: 86-93.
    [80] Baziw J.J, Leondes C.T. In-Flight alignment and calibration of inertial measurement units part I: General Formulation, part II: Experimental results[J]. IEEE Trans AES, 1972, 8(4):450-465.
    [81]王司,邓正隆.惯导系统动基座传递对准技术综述[J].中国惯性技术学报. 2003, 11(2): 61-67.
    [82] Farrell J.L. Transfer alignment for precisiaon pointing applications. NAECON, Daytaon Ohio, 1979.
    [83] Bar-Itzhack I.K. Minimal order time sharing filters for INS in-Flight alignment[J]. Journal of Guidance, Control and Dynamics. 1982, 5(4): 396-402.
    [84] Schneider A.M. Kalman filter formulations for transfer alignment of strapdwn inertian units[J]. NAVIGATION, 1983, 30(1):
    [85] Ross C C, Elbert T F. A transfer alignment algorithm study based on actual flight test data from a tactical air-to-ground weapon launch [A]. In Proc. of Position Location and Navigation Symposium [C]. 1994: 431-438.
    [86] Klotz H A, Derbak C B. GPS-aided navigation and unaided navigation on the Joint Direct Attack Munition [A]. IEEE Position Location and Navigation Symposium[C], Palm Spring, USA, 1998: 412-419.
    [87] Kain J E, Cloutier J R. Rapid transfer alignment for tactical weapon applications [A]. In Proc. of the AIAA Guidance, Navigation and Control Conference [C]. 1989: 1290-1300.
    [88] Shortelle K J, Graham W R, Rabourn C. F-16 flight tests of a rapid transfer alignment procedure [A]. In Proc. of Position Location and Navigation Symposium [C]. 1998: 379–386.
    [89] Chun Yang, Ching-Fang Lin, Tarrant D. Transfer alignment design and evaluation[R]. AIAA-93-3892.
    [90] Spalding K, Missouri S L. An efficient rapid transfer alignment filter[R]. AIAA-92-4598.
    [91] Rogers R M. Velocity-plus-rate matching for improved tactical weapon rapid transfer alignment[A]. AIAA Guidance, Navigation and Control Conference[C]. 1991: 1580-1588.
    [92] Wendel J, Metzger J, Trommer G F. Rapid transfer alignment in the presence of time correlated measurement and system noise [A]. In Proc. of AIAA Guidance, Navigation and Control Conference and Exhibit [C]. 2004: 1-12.
    [93] Tekinalp O, Ozemre M. Artificial Neural Networks for Transfer Alignment and Calibration of Inertial Navigation Systems [R]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001.
    [94] You-Chol Lim, Joom Lyou. An error compensation method for transfer alignment[A]. Proceedings of IEEE Conference onElectrical and Electronic Technology[C]. TENCON, 2001: 850-855.
    [95] Boaz Porat, Bar-Itzhack I Y. Effect of acceleration switching during INS in-flight alignment[J]. AIAA Journal of Guidance, Control and Dynamics. 1981, 4(4): 385-389.
    [96]俞济祥.惯性导航系统各种传递对准方法讨论[J].航空学报. 1988, 9 (5): 211-217.
    [97]王司,邓正隆.一种新的动基座快速传递对准方案及其仿真研究[J].宇航学报, 2005, 26(3): 321-325.
    [98]岳晓奎,袁建平,卢松华.精确制导炸弹传递对准算法与仿真[J].系统仿真学报, 2006, 18(6): 1419-1421.
    [99] Hao Y, Xiong Z, Wang W, Sun F. Rapid transfer alignment based on unscented Kalman Filter [A]. In Proc. of the 2006 American Control Conference [C], Minneapolis, USA. 2006: 2215-2220.
    [100]陈凯,鲁浩,闫杰.传递对准姿态匹配的优化算法[J].航空学报. 2008, 29(4): 981-987.
    [101]傅群忠,薛晓中.基于改进Elman神经网络的SINS动基座传递对准研究[J].现代防御技术. 2008, 36(2): 61-65.
    [102]王希彬,赵国荣,高青伟. BP神经网络在惯导系统传递对准中的应用[J].海军航空工程学院学报. 2008, 23(5):489-492.
    [103]陈璞,雷宏杰.弹载捷联惯性制导系统传递对准技术试飞验证[J].中国惯性技术学报, 15(1), 2007: 9-11.
    [104]张永学,陈丽霞,钟正斌.提升小波在信号去噪中的应用[J].石油仪器. 2007, 21(1): 80-82.
    [105] El-Sheimy, Nassar S. Wavelet De-Noising for IMU Alignment[J], IEEE Aerospace and Electronic Systems Magazine(0885-8985), 2004, 19(10): 32-39.
    [106]胡健,周百令. MIMU信号去噪方法的对比研究[J].中国惯性技术学报. 2006, 14(5): 17-20.
    [107]王有隆.航空仪表[M].南京:东南大学出版社. 2001.
    [108] H.F.Storm. Magnetic amplifiers[M]. John wiley. 1955.
    [109] A.Alfred. Magntic compass and magnetiometers[M]. Adam Hilger LTD London, 1968.
    [110] P.H. Savet. Gyroscopes: theory and design[M]. Mcgraw - Hill, 1961.
    [111] Gai E. The century of inertial navigation technology [J]. Aerospace Conference Proceedings. 2000 IEEE: 59-60.
    [112] Foster N.R. Unmanned Aircraft Navigation Using the Plessey Adaptive Compass[J]. IEE Colloquium on Unmanned Aircraft Avionic Systems ' 74 111/1-3 ORFS 1987.
    [113]高彦辉.捷联式航向测量系统的实验研究[D].西北工业大学硕士论文, 1987.
    [114]刘诗斌.微型智能磁航向系统研究[D].西北工业大学博士论文. 2001.
    [115]熊剑,刘建业,孙永荣等.数字磁罗盘的研制[J].传感器技术. 23(8), 2004:46-48.
    [116] Jau-Hsiung Wang. Intelligent MEMS INS/GPS Integration For Land Vehicle Navigation[D]. Calgary: Department of Geomatics Engineering, Univ. of Calgrary, 2006.
    [117] Caruso J. Application of magnetoresistive sensors in navigation systems[J] . In Sensors and Actuators, 1997, SAE SP–1220: 15-21.
    [118] M.J.Caruso, T.Bratland, C.H.Smith, R.Schneider. A New Perspective on Magnetic Field Sensing[J]. SensorsExpo Proceedings, October 1998: 195-213.
    [119] M.J.Caruso. Applications of magnetic sensors for low cost compass systems[J]. IEEE Position Location and Navigation Symposium. 2000: 177-184.
    [120] M.J.Caruso, L.S. Withanawasam. Vehicle Detection and Compass Applications using AMR Magnetic Sensors[J]. Sensors Expo Proceedings. 1999: 477-489.
    [121] C.A. Lund. Compasses in Small Craft[M]. Glasgow, Scotland: Brown, Son & Ferguson Ltd.1983: 39-62.
    [122] W. Denne. Magnetic Compass Deviation and Correction[M] Glasgow, Scotland: Brown, Son & Ferguson Ltd. 1998.
    [123]奚普周,汪珍熙,汪叔华.磁方向测量的一种实用系统[J].数据采集与处理. 1995, 10 (3): 239 -244.
    [124]袁智荣.磁航向传感器使用中的误差补偿[J].测控技术. 2001, 20(1): 58 - 59.
    [125]袁智荣.三轴磁航向传感器的全姿态误差补偿[J].传感器技术. 2003, 22(9): 34-36.
    [126] Jurman David, Jankovec Marko, Kamnik Roman, et.al. Calibration and data fusion solution for the miniature attitude and heading reference system[J]. Sensors and Actuators. 2007, 138(2): 411-420.
    [127]徐金华,许江宁,朱涛. GPS /磁罗经导航系统应用研究[J].海洋测绘2006, 26(3):42-44.
    [128] Yun JaeMu, Ko Jae-Pyung, Lee JangMyung. An inexpensive and accurate absolute position sensor for driving assistance[J]. IEEE Transactions on Instrumentation and Measurement. 2008, 57(4): 864-873.
    [129]王璐,赵忠,邵玉梅等.磁罗盘误差分析及补偿[J].传感技术学报. 2007, 20(2):439-441.
    [130]王璐.组合式航向系统关键技术研究[D].西北工业大学硕士论文, 2007.
    [131]杨新勇,黄圣国.智能磁航向传感器的研制及误差补偿算法分析[J].北京航空航天大学学报. 2004, 30 (3):244-248.
    [132]陈帅,管雪元,薛晓中等.航空制导炸弹SINS/GPS组合导航系统的设计[J].航天控制,2007, 25(1): 13-17.
    [133]王念旭等. DSP基础与应用系统设计[M].北京:北京航空航天大学出版社, 2001.
    [134]刘建军.航空炸弹低成本制导组件研究[D].国防科技大学硕士论文,长沙, 2004
    [135]刘育浩.挠性捷联惯导系统的标定、计算及调试方法研究[D].国防科技大学硕士论文,长沙, 2004.
    [136]张昌凡等.可编程逻辑器件及VHDL设计技术[M].广州:华南理工大学出版社, 2002.
    [137]刘育浩,黄新生,谭红力.基于高性能DSP和高精度AD的导航计算机系统[J].中国惯性技术学报. 2008, 16(2):140-143.
    [138] Brown A K, Lu Y. Performance test results of an integrated GPS/MEMS inertial navigation package [A]. Proceedings of ION GNSS 2004[C]. Long Beach, USA, 2004: 1-8.
    [139]杨金显,袁赣南,徐良臣等.基于微机械陀螺的MIMU关键技术[J].中国惯性技术学报. 20007, 15(1): 28-30.
    [140]李绪友,梁辉,邹继斌.光纤陀螺捷联惯导系统数据采集系统的研究[J].弹箭与制导学报. 2005, 25(3): 12-15.
    [141]王新国,郭所利,李爱华等.多线程的光陀螺信号采集系统设计[J].电光与控制. 2005, 12(5): 50-53.
    [142]郭秀中,于波,陈云相.惯性技术[M].北京:航空工业出版社, 1987: 248-250.
    [143]钱卫忠,万德钧,李成嘉.捷联系统中陀螺仪数据采集器的设计[J].东南大学学报. 1999, 29(4): 22-25.
    [144]蒋臻.模数转换技术的分析与应用[J].电子与封装. 2007, 7(3): 38-42.
    [145] Nahata S, Kyusun Choi, Jincheol Yoo. A high - speed power and resolution adaptive flash analog-to-digital converter [J] .IEEE Solid - State Circuits, 2004, 36(18): 1308 - 1314.
    [146]《中国电子设计工程丛书》编辑办公室.数据转换器选型手册[M].西安:西安电子科技大学出版社, 2006: 225-226.
    [147] Lewis S H. 10b 20MS/s analog to digital converter [J] . IEEE Solid - Stage Circuits, 2005 , 7(12) :351 - 358.
    [148]李冬梅,高文焕,张鸿远等.用于过采样Σ-ΔA/D转换器的Σ-Δ调制器[J].微电子学. 2000, 30(2): 72-75.
    [149] Stephen H Lewis, Gray Paul R. A Pipelined 5M samples 9bit Analog to Digital Converter[J] . IEEE Solid - State Cir2cuits, 1987, 22(6): 954 - 961.
    [150] Groza V Z. High-resolution floating-point ADC[J] . IEEE Solid - State Circuits, 2004, 50(6): 1822 - 1829.
    [151]毕查德拉扎维.模拟CMOS集成电路设计[M] .西安:西安交通大学出版社, 2003: 330 - 359.
    [152]臧荣春,崔平远.陀螺随机漂移时间序列建模方法研究[J].系统仿真学报. 2005, 17(8): 1845-1847.
    [153]黎蕾蕾,潘英俊,刘宇等.压电陀螺随机漂移的建模与补偿[J].压电与声光. 2007, 29(3): 270-272.
    [154]王昊,王俊璞,田蔚风等.梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用[J].中国惯性技术学报. 2006, 14(4): 44-48.
    [155] Gray R M. Quantization noise spectra[J], IEEE Trans. on Inform. Theory, 36(6), 1990: 1220-1244.
    [156]刘益成,罗维炳.信号处理与过抽样转换器[M].北京:电子工业出版社, 1997: 69-71.
    [157] R.M.Gray. Spectral analysis of quantization noise in a single-loop sigma-delta modulation with input[J]. IEEE Trans.Commun., vol.COM-37: 956-968.
    [158]徐士良. C语言常用算法集(第二版)[M].清华大学出版社, 1998: 111-112.
    [159] H.C.S Rughooputh, S.D.D.V Rughooputh. Extended Kalman filter learning algorithm for hyper-complex multilayer neural networks[J]. Neural Networks, 1999, 3(1): 1824-1828.
    [160] Y.Iiguni, H.Sakai and H.Tokumaru. A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter[J]. IEEE Trans.On Signal Process(1053-587X), 1992,40(4): 959-966
    [161]万德钧,房建成.惯性导航系统初始对准[M].南京:东南大学出版社, 1998.
    [162]练军想.捷联惯导动基座对准新方法及导航误差抑制技术研究[D].国防科技大学博士论文, 2007.
    [163] K. R. Britting, Inertial navigation systems analysis: Wiley-Interscience, 1971.
    [164] Y. F. Jiang, Error analysis of analytic coarse alignment methods[J].IEEE Transactions on Aerospace and Electronic Systems. l998, 34(1): 334-337.
    [165] Schimelevich L, R.Naor. New Approach to Coarse Alignment[J]. PLANS’94, 324-327.
    [166]魏春岭,张洪钺.捷联惯导系统粗对准方法比较[J].航天控制. 2000(3): 16-20.
    [167] Guo Chuang, Wang Jian, Fan Rong. Application of the Wavelet Packet Analysis in the RLG Strapdown INS [A]. IEEE International Conference on information Acquisition[C]. 2006: 926-930.
    [168] Li Qiang, Teng Jianfu, Wang Xin. Research of gyro signal de-noising with stationary wavelets transform [A]. IEEE CCECE 2003[C]. 2003: 1989-992.
    [169] W.Sweldens. The lifting scheme: A custom - design construction of biorthogonal wavelets[R]. Technical Report 1994: Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1994.
    [170] W.Sweldens. The lifting scheme: A construction of second generation wavelets[R]. Technical Report 1995: Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995.
    [171] W.Sweldens. The lifting scheme: A construction of second generation wavelets[J]. SIAMJ. MATH. ANAL. 1998, 29(2): 511-546.
    [172] Daubechies I, Swenldens W. Factoring wavelet transform into lifting steps [J]. Journal of J. Math Anal App l, 1998, 4 (3): 247-269.
    [173]陈令刚,刘建业等.微小型捷联惯导系统解析式对准方法研究[J].航天控制. 2005, 23(4): 9-12.
    [174]顾冬晴.机载战术武器的传递对准及其精度评估技术研究[D].西北工业大学, 2004.
    [175] Y.Iiguni, H.Sakai and H.Tokumaru. A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter[J]. IEEE Trans.On Signal Process(1053-587X), 1992, 40(4): 959-966.
    [176] Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems [A]. In Proc. of the American Control Conference [C], Seattle, Washington, 1995: 1628-1632.
    [177] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation [J]. Proceeding of the IEEE, 2004, 92(3): 401-422.
    [178] Wan E A, Van der Merwe R. The unscented Kalman filter for nonlinear estimation [A]. InProc. of IEEE Symposium 2000 (AS-SPCC) [C] Lake Louise, Canada. 2000: 153-158.
    [179] Zhan.R, J.W. Neural network-aided adaptive Unscented Kalman filter for nonlinear state Estimation[J]. Signal Processing Letters, IEEE, 2006, 13(7):445-448.
    [180]钟万登.液浮惯性器件[M].北京:宇航出版社. 1992.
    [181] Jun Lv, Xing Li. A New Algorithm for Network Anomaly Detection. International Multi-Conference on Computing in the Global Information Technology, 2006: 54-59.
    [182]成礼智,王红霞,罗勇.小波的理论和应用[M].北京:科学出版社. 2004: 271-272.
    [183]刘育浩,黄新生,张志强.磁航向系统信号去噪及异常检测算法[A].中国惯性技术学会第六届学术年会[C]. 2008, 11: 131-135..
    [184]刘育浩,黄新生,徐婉莹.组合导航中低成本磁航向系统的神经网络补偿[J].传感技术学报. 2008, 21(11): 1848-1852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700