用户名: 密码: 验证码:
纤维混凝土智能组合柱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构的耐久性损伤是当前世界范围内所面临的一大问题,严重威胁着桥梁的安全运营与使用寿命。纤维复合材料(Fiber reinforced polymer,简称FRP)是一种新型材料,FRP与混凝土复合组成的组合结构可以有效地解决桥梁结构的长期耐久性问题。本文以FRP管约束混凝土为研究对象,并首次提出FRP-钢复合管约束混凝土,系统地研究了它们的轴压力学性能、耐久性性能和抗震性能。同时,采用光纤光栅应变传感器预埋技术,使上述结构具有损伤自监测性能,并建立了基于监测信息的结构损伤评价方法。
     本文的主要研究内容包括:
     首先,针对FRP管约束混凝土轴压延性较差的缺点,本文首次提出了FRP-钢复合管约束混凝土。试验研究了FRP管/FRP-钢复合管约束混凝土的轴压力学性能,对影响FRP管结构性能的纤维缠绕方式、局部加强纤维管等进行了研究。提出了评价FRP管/FRP-钢复合管约束混凝土的轴压延性系数计算方法,并对其延性进行了分析。利用大量现有研究成果,回归分析得到了FRP管/FRP-钢复合管约束混凝土核心混凝土的受压本构关系模型下降段系数,并利用该模型较好地模拟了FRP管/FRP-钢复合管约束混凝土的轴压力学性能。
     其次,研究了FRP管/FRP-钢复合管约束混凝土的耐久性能。研究以对FRP管/FRP-钢复合管约束混凝土耐久性威胁最大的冻融循环为对象,对上述结构进行了56次冻融循环试验,同时量测了试验前后结构的轴压力学性能,对核心混凝土的相对动弹性模量进行了全程测试,并对试验前后试件表面的孔洞与缺陷进行了红外热成像分析。分析了结构的冻融耐久性损伤机理,并以菲克定律为基础模拟分析了溶液在FRP管内的扩散,计算了FRP管内的结冰压。试验研究了纤维混凝土的火灾爆裂性能,提出了FRP管约束混凝土火灾耐久性损伤评估与修复方法。
     第三,研究了FRP管/FRP-钢复合管约束混凝土的自监测性能。开发了具有自监测性能的FRP管/FRP-钢复合管约束混凝土的制备方法,分别研究了FRP管/FRP-钢复合管约束混凝土的力学性能损伤自监测性能和耐久性损伤自监测性能,提出了基于监测信息的力学性能损伤评价方法和耐久性损伤评价方法。
     最后,试验研究了FRP管/FRP-钢复合管约束混凝土的抗震性能,并与钢筋混凝土的抗震性能进行了比较分析;建立了适于抗震分析的FRP管/FRP-钢复合管约束混凝土的ABAQUS有限元模型,并利用该模型对上述结构的抗震性能进行了模拟分析。
The durability damage of bridge is one of the most concerned problems in allover the world. It is a great threat to the safety and life of bridge. Fiber reinforced polymer (FRP) is a new material, and the composite structure composed by the FRP and concrete can effectively solve the long term durability of bridge. In this thesis, the concrete-filled FRP tube (CFFT) was studied, and the concrete-filled FRP-steel composite tube (CFST) was presented firstly. The compressive properties, durability and earthquake-resistance were studies. The FBG strain sensors were firstly pre-embedded in the FRP tube or the interface of the FRP-steel composite tube. It makes the structure have the ability of self-sensing. Then, the monitoring based damage assessment was presented.
     The main research in this thesis includes:
     First, the axial compressive properties of the CFFT were studied experimentally, including the winding mode of fibers and locally-strengthened FRP tube. To improve the axial ductility of CFFT, the concrete-filled FRP-steel composite tube (CFST) was presented firstly. The axial compressive properties of the CFST were studied experimentally. The axial ductility coefficients of the CFFT and CFST were presented, and the ductility of CFFT and CFST was analyzed. The descending coefficient of the compressive stress-strain relationship of the core concrete was analyzed in regression through a large of existing research results. A finite element model of CFFT and CFST was established and the compressive properties of the CFFT were modeled well through the model.
     Second, the durability of the CFFT and CFST was studied. 56 freeze-thaw cycles were conducted on those specimens. At the same time, the residual mechanical properties of the specimens after the freeze-thaw cycles, the relative dynamic modulus of elasticity of the core concrete with the freeze-thaw cycles, and the infrared thermography analysis on the pores and flaws on the surfaces of the specimens after the freeze-thaw cycles were studied. The damage mechanism of CFFT and CFST during the freeze-thaw cycles was analyzed. The diffusing of solution in the FRP tube was analyzed based on the Fick's law. The icing pressures in the FRP tube were calculated. The spalling of fiber reinforced concrete was tested, and the assessment and repair of CFFT after fire was presented.
     Third, the self-sensing of the CFFT and CFST was studied. The preparation of the CFFT and CFST having the self-sensing was introduced. The self-sensing in mechanical properties and durability was studied. Based on the monitoring information, the damage assessment methods on mechanical properties and durability were presented respectively.
     At last, the earthquake resistance of the CFFT and CFST was studied experimentally, and then compared with the RC structure. The ABAQUS finite element model applicable to earthquake resistance analysis was established on the CFFT and CFST. In using the model, the earthquake resistance of the CFFT and CFST was modeled respectively.
引文
1 V.M. Karbhari, L. Zhao. Use of Composites for 21st Century Civil Infrastructure. Computer Methods in Applied Mechanics and Engineering. 2000, 185: 433~454
    2 P. Virmani, J.M. Hooks. Mitigation of Corrosion in Concrete Bridges. American Federal Highway Administration Report. McLean, V.A., 2000
    3 Committee on Cost of Corrosion in Japan. Survey of Corrosion Cost in Japan. Japan Society of Corrosion Engineering. Tokyo, 1999
    4中华人民共和国交通部.第二次全国公路普查主要数据.交通世界. 2003, 6: 66
    5任红伟.公路旧桥检测评定与加固技术研究及推广应用.公路交通科技. 2006, 23(4): 6~9
    6 K.T. Lau, L.M. Zhou, P.C. Tse, and L.B. Yuan. Applications of Composites, Optical Fibre Sensors and Smart Composites for Concrete Rehabilitation: An Overview. Applied Composite Materials. 2002, 9: 221~247
    7 A. Hejll, B. Taljsten, and M. Motavalli. Large Scale Hybrid FRP Composite Girders for Use in Bridge Structures-Theory, Test and Field Application. Composites Part B: Engineering. 2005, 36:573~585
    8 C.E. Bakis, L.C. Bank, V.L. Brown, E. Cosenza, J.F. Davalos, J.J. Lesko, A. Machida, S.H. Rizkalla, and T.C. Triantafillou, Fiber-reinforced Polymer Composites for Construction– State-of-the-art Review. Journal of Composites for Construction. 2002, 6(2): 73~87
    9 L.C. Hollaway. The Evolution of and the Way Forward for Advanced Polymer Composites in the Civil Infrastructure. Construction and Building Materials. 2003, 17: 365~378
    10 L.V.D. Einde, L. Zhao, and F. Seible. Use of FRP Composites in Civil Structural Applications. Construction and Building Materials. 2003 17: 389~403
    11 S.S. Pendhari, T. Kant, and Y.M. Desai. Application of Polymer Composites in Civil Construction: A General Review. Composite Structures. 2008, 84: 114~124
    12 G.V. Erp, C. Cattell, and T. Heldt. Fibre Composite Structures in Australia'sCivil Engineering Market: An Anatomy of Innovation. Progress in Structural Engineering and Materials. 2005, 7: 150~160
    13 V.C. Li. Large Volume, High-performance Applications of Fibers in Civil Engineering. Journal of Applied Polymer Science. 2002, 83: 660~686
    14 X.L. Zhao, L. Zhang. State-of-the-art Review on FRP Strengthened Steel Structures. Engineering Structures. 2007, 29: 1808~1823
    15 T. Uomoto, H. Mutsuyoshi, F. Katsuki, and S. Misra. Use of Fiber Reinforced Polymer Composites as Reinforcing Material for Concrete. Journal of Materials in Civil Engineering. 2002, 14(3): 191~209
    16 B.J. Tang. FRP Composites Technology Bridges Advantages to the American Bridge Building Industry. Proceedings of the 2nd International Workshop on Structural Composites for Infrastructure Applications. Cario, Egypt, 2003
    17 A. Carolin. Carbon Fiber Reinforced Polymers for Strengthening of Structural Elements. PhD Dissertation of Lulea University of Technology, Sweden, 2003
    18 K. Fukuyama, Y. Higashibata, and Y. Miyauchi. Studies on Repair and Strengthening Methods of Damaged Reinforced Concrete Columns. Cement and Concrete Composites. 2000, 22: 81~88
    19 F. Seible, M.J.N. Priestley, G.A. Hegemier, and D. Innamorato. Seismic Retrofit of RC Columns with Continuous Carbon Fiber Jackets. Journal of Composites for Construction. 1997, 1(2): 52~62
    20 Y. Xiao, R. Ma. Seismic Retrofit of RC Circular Columns Using Prefabricated Composite Jacketing. Journal of Structural Engineering. 1997, 123(10): 1357~1364
    21 F. Colomb, H. Tobbi, E. Ferrier, and P. Hamelin. Seismic Retrofit of Reinforced Concrete Short Columns by CFRP Materials. Composite Structures. 2008, 82:475~487
    22张新越. FRP筋及其加筋混凝土桥梁体系的性能与设计研究.哈尔滨工业大学博士学位论文, 2006
    23 D. Gsell, M. Motavalli. Indoor Cable-stayed GFRP bridge at EMPA, Switzerland. Proceedings of 4th International Conference on Advanced Composite Materials in Bridges and Structures. Calgary, Alberta, Canada, 2004: 1~7
    24 N. Deskovic, T.C. Triantafillou, and U. Meier. Innovative Design of FRP Combined with Concrete: Short-term Behavior. Journal of StructuralEngineering. 1995, 121(7): 1069~1078
    25 A. Mirmiran, M. Shahawy. A Novel FRP-concrete Composite Construction for the Infrastructure. Proceeding of 13th Structural Congress, ASCE. New York, 1995: 1663~1666
    26 Y. Xiao, W.H. He, and K.K. Choi. Confined Concrete-filled Tubular Columns. Journal of Structural Engineering. 2005, 131(3): 488~497
    27 J.F. Berthet, E. Ferrier, and P. Hamelin. Compressive Behavior of Concrete Externally Confined by Composite Jackets Part A: Experimental study. Construction and Building Materials. 2005, 19: 223~232
    28 G. Campione. Influence of FRP Wrapping Techniques on the Compressive Behavior of Concrete Prisms. Cement & Concrete Composites. 2006, 28: 497~505
    29 M. Karantzikis, C.G. Papanicolaou, C.P. Antonopoulos, and T.C. Triantafillou. Experimental Investigation of Nonconventional Confinement for Concrete Using FRP. Journal of Composites for Construction. 2005, 9(6): 480~487
    30 S. Pessiki, K.A. Harries, J.T. Kestner, R. Sause, and J.M. Ricles. Axial Behavior of Reinforced Concrete Columns Confined with FRP Jackets. Journal of Composites for Construction. 2001, 5(4): 237~245
    31 C. Au, O. Buyukozturk. Effect of Fiber Orientation and Ply Mix on Fiber Reinforced Polymer-confined Concrete. Journal of Composites for Construction. 2005, 9(5): 397~407
    32 M.H. Harajli. Axial Stress-strain Relationship for FRP Confined Circular and Rectangular Concrete Columns. Cement & Concrete Composites. 2006, 28: 938~948
    33 Y.L. Wong, T. Yu, J.G. Teng, and S.L. Dong. Behavior of FRP-confined Concrete in Annular Section Columns. Composites: Part B. 2008, 39:451~466
    34 T.H. Almusallam. Behavior of Normal and High-strength Concrete Cylinders Confined with E-glass/epoxy Composite Laminates. Composites: Part B. 2007, 38: 629~639
    35 K.T. Lau, L.M. Zhou. The Mechanical Behavior of Composite-wrapped Concrete Cylinders Subjected to Uniaxial Compression Load. Composite Structures. 2001, 52: 189~198
    36 R. Kumutha, R. Vaidyanathan, and M.S. Palanichamy. Behavior of Reinforced Concrete Rectangular Columns Strengthened Using GFRP. Cement & ConcreteComposites. 2007, 29: 609~615
    37 B. Binici. Design of FRPs in Circular Bridge Column Retrofits for Ductility Enhancement. Engineering Structures. 2008, 30: 766~776
    38 G. Li, D. Maricherla, K. Singh, S.S. Pang, and M. John. Effect of Fiber Orientation on the Structural Behavior of FRP Wrapped Concrete Cylinders. Composite Structures. 2006, 74: 475~483
    39 A. Parvin, A.S. Jamwal. Effects of Wrap Thickness and Ply Configuration on Composite-confined Concrete Cylinders. Composite Structures. 2005, 67: 437~442
    40 M. Theriault, K.W. Neale, and S. Claude. Fiber-reinforced Polymer-confined Circular Concrete Columns: Investigation of Size and Slenderness Effects. Journal of Composites for Construction. 2004, 8(4): 323~331
    41 A. Llki, O. Peker, E. Karamuk, C. Demir, and N. Kumbasar. FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns. Journal of Materials in Civil Engineering. 2008, 20(2): 169~188
    42 O. Chaallal, M. Shahawy, and M. Hassan. Performance of Axially Loaded Short Rectangular Columns Strengthened with Carbon Fiber-reinforced Polymer Wrapping. Journal of Composites for Construction. 2003, 7(3): 200~208
    43 K.T. Lau, L.M. Zhou. Mechanical Performance of Composite-strengthened Concrete Structures. Composites: Part B. 2001, 32: 21~32
    44 A. Parvin, A.S. Jamwal. Performance of Externally FRP Reinforced Columns for Changes in Angle and Thickness of the Wrap and Concrete Strength. Composite Structures. 2006, 73: 451~457
    45 B. Cole, A. Fam. Flexural Load Testing of Concrete-filled FRP Tubes with Longitudinal Steel and FRP Rebar. Journal of Composites for Construction. 2006, 10(2): 161~171
    46 L.P. Ye, Q.R. Yue, S.H. Zhao, and Q.W. Li. Shear Strength of Reinforced Concrete Columns Strengthened with Carbon-fiber-reinforced Plastic Sheet. Journal of Structural Engineering. 2002, 128(12): 1527~1534
    47 R. Burgueno, K.M. Bhide. Shear Response of Concrete-filled FRP Composite Cylindrical Shells. Journal of Structural Engineering. 2006, 132(6): 949~960
    48 M.N.S. Hadi. Behavior of FRP Wrapped Normal Strength Concrete Columns under Eccentric Loading. Composite Structures. 2006, 72: 503~511
    49 B. Shan, Y. Xiao, and Y.R. Guo. Residual Performance of FRP-retrofitted RC Columns after Being Subjected to Cyclic Loading Damage. Journal of Composites for Construction. 2006, 10(4): 304~312
    50 F. Colomb, H. Tobbi, E. Ferrier, and P. Hamelin. Seismic Retrofit of Reinforced Concrete Short Columns by CFRP Materials. Composite Structures. 2008, 82: 475~487
    51 Y. Shao, Z. Zhu, and A. Mirmiran. Cyclic Modeling of FRP-confined Concrete with Improved Ductility. Cement & Concrete Composites. 2006, 28: 959~968
    52 A. Belarbi, S.W. Bae. An Experimental Study on the Effect of Environmental Exposures and Corrosion on RC Columns with FRP Composite Jackets. Composites: Part B. 2007, 38: 674~684
    53 M.A.G. Silva. Aging of GFRP Laminates and Confinement of Concrete Columns. Composites Structures. 2007, 79: 97~106
    54 P. Purnell, J. Beddows. Durability and Simulated Ageing of New Matrix Glass Fiber Reinforced Concrete. Cement & Concrete Composites. 2005, 27: 875~884
    55 T.C. Rousakis, A.I. Karabinis, and P.D. Kiousis. FRP-confined Concrete Members: Axial Compression Experiments and Plasticity Modeling. Engineering Structures. 2007, 29: 1343~1353
    56 V.C. Rougier, B.M. Luccioni. Numerical Assessment of FRP Retrofitting Systems for Reinforced Concrete Elements. Engineering Structures. 207, 29: 1664~1675
    57 R. Perera. A Numerical Model to Study the Seismic Retrofit of RC Columns with Advanced Composite Jacketing. Composites: Part B. 2006, 37: 337~345
    58 A. Fam, S.H. Rizkalla. Behavior of Axially Loaded Concrete-filled Circular Fiber-reinforced Polymer tubes. ACI Structural Journal. 2001, 98(3): 280~289
    59 Mirmiran, M. Shahawy, M. Samaan, H.E. Echary, J.C. Mastrapa, and O. Pico. Effect of Column Parameters on FRP-confined Concrete. Journal of Composites of Construction. 1998, 2(4): 175~185
    60 M. Saafi, H.A. Toutanji, and Z.J. Li. Behavior of Concrete Columns Confined with Fiber Reinforced Polymer Tubes. ACI Materials Journal. 1999, 96(4): 500~509
    61 A. Fam, S.H. Rizkalla. Flexural Behavior of Concrete-filled Fiber-reinforced Polymer Circular Tubes. Journal of Composites for Construction. 2002, 6(2):123~132
    62 Fam, D. Schnerch, and S.H. Rizkalla. Rectangular Filament-wound Glass Fiber Reinforced Polymer Tubes Filled with Concrete under Flexural and Axial Loading: Experimental Investigation. Journal of Composites for Construction. 2005, 9(1): 25~33
    63 Mirmiran, M. Shahawy, and M. Samaan. Strength and Ductility of Hybrid FRP-concrete Beam-columns. Journal of Structural Engineering. 1999, 125(10): 1085~1093
    64 Mirmiran, M. Shahawy, C.E. Khoury, and W. Naguib. Large Bema-column Tests on Concrete-filled Composite Tubes. ACI Structural Journal. 2000, 97(2): 268~276
    65 Fam, B. Flisak, and S.H. Rizkalla. Experimental and Analytical Modeling of Concrete-filled Fiber-reinforced Polymer Tubes Subjected to Combined Bending and Axial Loads. ACI Structural Journal. 2003, 100(4): 499~509
    66 Y. Shao, A. Mirmiran. Nonlinear Cyclic Response of Laminated Glass FRP Tubes Filled with Concrete. Composite Structures. 2004, 65: 91~101
    67 T. Ozbakkaloglu, M. Saatcioglu. Seismic Behavior of High-strength Concrete Columns Confined by Fiber-reinforced Polymer Tubes. Journal of Composites for Construction. 2006, 10(6): 538~549
    68 Z.Y. Zhu, I. Ahmad, and A. Mirmiran. Seismic Performance of Concrete-filled FRP Tube Columns for Bridge Substructure. Journal of Bridge Engineering. 2006, 11(3): 359~370
    69 A. Mirmiran, Y. Shao, and M. Shahawy. Analysis and Field Tests on the Performance of Composite Tubes under Pile Driving Impact. Composite Structures. 2002, 55: 127~135
    70 H.E. Chabib, M. Nehdi, and M.H.E. Naggar. Behavior of SCC Confined in Short GFRP Tubes. Cement and Concrete Composites. 2005, 27: 55~64
    71 J.G. Teng, J. Yao. Self-weight Buckling of FRP Tubes Filled with Wet Concrete. Thin-Walled Structures. 2000, 38: 337~353
    72 J.G. Teng, L. Lam. Behavior and Modeling of Fiber Reinforced Polymer-confined Concrete. Journal of Structural Engineering. 2004, 130(11): 1713~1723
    73 A. Nanni, N.M. Bradford. FRP Jacketed Concrete under Uniaxial Compression. Construction and Building Materials. 1995, 9(2): 115~124
    74 V.M. Karbhari, Y.Q. Gao. Composite Jacketed Concrete under Uniaxial Compression Verification of Simple Design Equations. Journal of Materials in Civil Engineering. 1997, 9(4): 185~193
    75 M. Samaan, A. Mirmiran, and M. Shahawy. Model of Concrete Confined by Fiber Composites. Journal of Structural Engineering. 1998, 124(9): 1025~1031
    76 H.A. Toutanji. Stress-strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composite Sheets. ACI materials Journal. 1999, 96(3): 397~404
    77 Y. Xiao, H. Wu. Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets. Journal of Materials in Civil Engineering. 2000, 12(2): 139~146
    78 L. Lam, J.G. Teng. Strength Models for Fiber-reinforced Plastic-confined Concrete. Journal of Structural Engineering. 2002, 128(5): 612~623
    79 O. Chaallal, M. Hassan, and M. Shahawy. Confinement Model for Axially Loaded Short Rectangular Columns Strengthened with Fiber-reinforced Polymer Wrapping. ACI Structural Journal. 2003, 100(2): 215~221
    80 F.E. Richart, A. Brandtzaeg, and R.L. Bown. A Study of Failure of Concrete under Combined Compressive Stresses. Bulletin No. 190, Engineering Experiment Station, University of Illinois. Urbana, Ill, 1928
    81 M. Shahawy, A. Mirmiran, and T. Beitelman. Tests and Modeling of Carbon-wrapped Concrete Columns. Composites Part B: Engineering. 2000, 31: 471~480
    82 L.D. Lorenzis, R. Tepfers. Comparative Study of Models on Confinement of Concrete Cylinders with Fiber-reinforced Polymer Composites. Journal of Composites for Construction. 2003, 7(3): 219~237
    83 L.A. Bisby, A.J.S. Dent, and M.F. Green. Comparison of Confinement Models for Fiber-reinforced Polymer-wrapped Concrete. ACI Structural Journal. 2005, 102(1): 62~72
    84 M.R. Spoelstra, G. Monti. FRP-confined Concrete Model. Journal of Composites for Construction. 1999, 3(3): 143~150
    85 D.A. Moran, C.P. Pantelides. Stress-strain Model for Fiber-reinforced Polymer-confined Concrete. Journal of Composites for Construction. 2002, 6(4): 233~240
    86 D.A. Moran, C.P. Pantelides. Damage-based Stress-strain Model for Fiber-reinforced Polymer-confined Concrete. ACI Structural Journal. 2005, 102(1): 54~61
    87 K. Fujikake, S. Mindess, and H.F. Xu. Analytical Model for Concrete Confined with Fiber Reinforced Polymer Composite. Journal of Composites for Construction. 2004, 8(4): 341~351
    88 L.J. Malvar, K.B. Morrill, and J.E. Crawford. Numerical Modeling of Concrete Confined by Fiber-reinforced Composites. Journal of Composites for Construction. 2004, 8(4): 315~322
    89 S.P.C. Marques, D.C.S.C. Marques, J.L.S. Silva, and M.A.A. Cavalcante. Model for Analysis of Short Columns of Concrete Confined by Fiber-reinforced Polymer. Journal of Composites for Construction. 2004, 8(4): 332~340
    90 S.J. Pantazopoulou, R.H. Mills. Microstructural Aspects of the Mechanical Response of Plain Concrete. ACI Materials Journal. 1995, 92(6): 605~616
    91 J.B. Mander, M.J.N. Priestley, and R. Park. Theoretical Stress-strain Model for Confined Concrete. Journal of Structural Engineering. 1988, 114(8): 1804~1826
    92 A. Fam, S.H. Rizkalla. Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-reinforced Polymer Tubes. ACI Structural Journal. 2001, 98(4): 451~461
    93 J. Becque, A.K. Patnaik, and S.H. Rizkalla. Analytical Models for Concrete Confined with FRP Tubes. Journal of Composites for Construction. 2003, 7(1): 31~38
    94 K.H. Gerstle. Simple Formulation of Triaxial Concrete Behavior. ACI Journal. 1981, 78(5): 382~387
    95 K.H. Gerstle. Simple Formulation of Biaxial Concrete Behavior. ACI Journal. 1981, 78(1): 62~68
    96 S.W. Tsai, E.M. Wu. A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials. 1971, 5(1): 58~80
    97 N.J. Gardner. Triaxial Behavior of Concrete. ACI Journal, Proceedings. 1969, 66(2): 136~146
    98 V.M. Karbhari, J.W. Chin, D. Hunston, B. Benmokrane, T. Juska, R. Morgan, J.J. Lesko, U. Sorathia, and D. Reynaud. Durability Gap Analysis for Fiber-reinforced Polymer Composites in Civil infrastructure. Journal of Compositesfor Construction. 2003, 7(3): 238~247
    99 H. Toutanji. Durability Characteristics of Concrete Columns Confined with Advanced Composite Materials. Composite Structures. 1999, 44: 155~161
    100 H. Toutanji, M. Saafi. Durability Studies on Concrete Columns Encased in PVC-FRP Composite Tubes. Composite Structures. 2001, 54: 27~35
    101 H. Toutanji, Y. Deng. Strength and Durability Performance of Concrete Axially Loaded Members Confined with AFRP Composites Sheets. Composites Part B: Engineering. 2002, 33: 255~261
    102 M.A. Abanilla, V.M. Karbhari, and Y. Li. Interlaminar and Intralaminar Durability Characterization of Wet Layup Carbon/epoxy Used in External Strengthening. Composites Part B: Engineering. 2006, 37(7-8): 650~661
    103 L.A. Bisby, M.F. Green, V.K.R. Kodur. Modeling the Behavior of Fiber Reinforced Polymer-confined Concrete Columns Exposed to Fire. Journal of Composites for construction. 2005, 9(1): 15~24
    104 D. Richard, T. Hong, M. Hastak, A. Mirmiran, and O. Salem. Life-cycle Performance Model for Composites in Construction. Composites Part B: Engineering. 2007, 38(2): 236~246
    105 Einde, L.V.D., Zhao, L., and Seible, F. (2003). Use of FRP composites in civil structural applications. Construction and Building Materials, 17: 389-403
    106 F. Seible. Advanced Composites Materials for Bridges in the 21st Century. Proceeding of the First International Conference on Composites in Infrastructure (ICCI’96). Tucson, Arizona, 1996: 17~30
    107 S. Rizkalla, A. Fam. State of the Art of Concrete-filled FRP Tubular Structural Members. 3rd Middle East Symposium on Structural Composites for Infrastructure Applications, MESC-3. Aswan, 2002: 13~25
    108《普通混凝土力学性能试验方法标准》(GB/T 50081-2002). 2002
    109 M.D. O′Shea, R.Q. Bridge. Design of Circular Thin-walled Concrete Filled Steel Tubes. Journal of Structural Engineering, ASCE. 2000, 126(11): 1295~1303
    110 H.T. Hu, C.S. Huang, M.H. Wu, and Y.M. Wu. Nonlinear Analysis of Axially Loaded Concrete-filled Tube Columns with Confinement Effect. Journal of Structural Engineering, ASCE. 2003, 129(10): 1322~1329
    111 K. Sakino, H. Nakahara, S. Morino, and I. Nishiyama. Behavior of Centrally Loaded Concrete-filled Steel-tube Short Columns. Journal of StructuralEngineering, ASCE. 2004, 130(2): 180~188
    112王传志,腾志明.钢筋混凝土结构理论.中国建筑工业出版社. 1985
    113过镇海.钢筋混凝土原理.清华大学出版社. 1999
    114范立础.桥梁延性抗震设计.人民交通出版社. 2001
    115崔海琴. FRP约束混凝土柱的增强、增韧性能研究.重庆交通大学硕士学位论文. 2007
    116 E. Hognestad. A Study of Combined Bending and Axial Load in Reinforced Concrete Members. Bulletin Series No. 399. Engineering Experiment Station, University of Illinois. Urbana, Ill, 1951
    117 American Concrete Institute (ACI). Building Code Requirements for Structural Concrete and Commentary. ACI 318-2005
    118 S.H. Ahmad, S.P. Shah. Stress-strain of Concrete Confined by Spiral Reinforcement. American Concrete Institute (ACI) Journal. 1982, 79(6): 484~490
    119 A. Mirmiran, M. Shahawy. Behavior of Concrete Columns Confined by Fiber Composites. Journal of Structural Engineering. 1997, 123(5): 583~590
    120 Belarbi, T.T.C. Hsu. Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete. ACI Structural Journal. 1994, 91(4): 465~474.
    121 Z. Hashin, A. Rotem. A Fatigue Criterion for Fiber-Reinforced Materials. Journal of Composite Materials. 1973, 7: 448~464
    122 Z. Hashin. Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics. 1980, 47: 329~334
    123 RILEM TC 176. Test Methods of Frost Resistance of Concrete. 2002
    124 H.K. Liu, N.H. Tai, and W.H. Lee. Effect of Seawater on Compressive Strength of Concrete Cylinders Reinforced by Non-adhesive Wound Hybrid Polymer Composites. Composites Science and Technology. 2002, 62: 2131~2141
    125 H.C. Wu, G.K. Fu, R.F. Gibson, A. Yan. K. Warnemuende, and V. Anumandla. Durability of FRP Composite Bridge Deck Materials under Freeze-thaw and Low Temperature Conditions. Journal of Bridge Engineering. 2005, 11(4): 443~451
    126 P. Bonniau, A.R. Bunsell. A Comparative Study of Water Absorption Theories Applied to Glass Epoxy Compostes. Journal of Composite Materials. 1981, 30(6): 27~49
    127 W. Wang, M. Sain, and P.A. Cooper. Study of Moisture Absorption in Natural Fiber Plastic Composites. Composite Science and Technology. 2006, 66: 379~386
    128 Q.B. Yang. Mechanisms of Deicer-frost Scaling of Concrete. Journal of Building Materials. 2007, 10(5): 522~527.
    129 P. Kalifa, F.D. Menneteau, and D. Quenard. Spalling and Pore Pressure in HPC at High Temperatures. Cement and Concrete Research. 2000, 30: 1915~1927
    130 L.T. Phan, J.R. Lawson, and F.L. Davis. Effects of Elevated Temperature Exposure on Heating Characteristics, Spalling, and Residual Properties of High Performance Concrete. Materials and Structures. 2001, 34: 83~91
    131 F.A. Ali, D. O’Connor, and A. Abu-Tair. Explosive Spalling of High-Strength Concrete Columns in Fire. Magazine of Concrete Research. 2001, 53(3): 197~204
    132 D. Bentz. Fibers, Percolation and Spalling of High-Performance Concrete. ACI Materials Journal. 2000, 97(3): 351~359
    133 BS 476-20: 1987. Fire Tests on Building Materials and Structures– Method for Determination of the Fire Resistance of Elements of Construction (General Principles)
    134 U. Sorathia, T. Dapp, and C. Deck. Fire Performance of Composites. Materials Engineering. 1992, 9: 10~12
    135 C.E. Bakis. FRP Reinforcement: Materials and Manufacturing. Fibre-Reinforced-Plastic (FRP) Reinforcements for Concrete Structures: Properties and Applications. Elsevier Science Publishers B.V. 1993: 13~58
    136 H. Blontrock, L. Taerwe, and S. Matthys. Properties of Fiber-Reinforced Plastics at Elevated Temperatures with Regard to Fire Resistance of Reinforced Concrete Members. Fibre Reinforced Polymer Reinforcement for Reinforced Concrete Structures. ACI, Detroit, Michigan. 1999: 43~54
    137 J.M. Plecnik, J.H. Fogarty, and J.R. Kurfees. Behavior of Epoxy Repaired Beams under Fire. Journal of Structural Engineering. 1986, 112(4): 906~922
    138 Y.I. Dimitrienko. Thermomechanics of Composites under High Temperatures. Klewer Academic Publishers, London. 1999: 347
    139 G. Rehm, and L. Franke. Kunstharzgebundene Glasfaserstabe als Bewehrung im Betonbau Deutscher Ausschuss fur Stahlbeton. Heft. 1979: 304
    140 F. Rostasy. FRP Composite Elements and Techniques as Non-MetallicReinforcement of Concrete. Brite Project 4142/BREU– CT 91 0515, Evaluation of Potentials and Production Techniques of FRP. Technical Report, 1992
    141 E.M. Silverman. Elevated Temperature Testing for Comparison of Glass/Resin Composites. Polymer Composites. 1983, 4(4): 214~218
    142 C.A. Griffis, R.A. Masmura, and C.I. Chang. Thermal Response of Graphite Epoxy Composite Subjected to Rapid Heating. Environmental Effects on Composite Materials, Lancaster, Pennsylvania. 1984: 245~260
    143 E.P. Scott, and V.B. Beck. Estimation of Thermal Properties in Epoxy Matrix/Carbon Fiber Composite Materials. Journal of Composite Materials. 1992, 26(1): 132~149
    144 S. Kumahara, Y. Masuda, H. Tanano, and A. Shimizu. Tensile Strength of Continouous Fibre Bar under High Temperature. International Symposium: Fibre-Reinforced-Plastic Reinforcement for Concrete Structures, ACI, Detroit, Michigan. 1993: 731~742
    145 Y. Uematsu, T. Kitamura, and R. Ohtani. Delamination of a Carbon-Fibre-Reinforced Thermoplastic Polymer at High Temperatures. Composites Science and Technology. 1995, 53: 333~341
    146 S.H. Alsayed, Y.A. Al-Salloum, and T.H. Almusalfam. Fibre-Reinforced Polymer Repair Materials– Some Facts. Proceedings of the Institution of Civil Engineers, Civil Engineering. 2000, 138: 131~134
    147 P.K. Mallick. Fibre-Reinforced Composites: Materials, Manufacturing, and Design. Marcel Dekker Inc., New York, NY. 1988
    148 R.J. Sun, Z. Sun, D.H. Dan, and L.M. Sun. An Integrated FBG Sensing System for Bridge Health Monitoring. Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proceedings of SPIE. 2006, 61742Q: 1~7
    149 J.P. Ou. Some Recent Advances of Intelligent Health Monitoring Systems for Civil Infrastructures in HIT. Fundamental Problems of Optoelectronics and Microelectronics II, Stroganov Proceedings of SPIE. 2005, 5851: 147~162
    150 J.P. Ou. Research and Practice of Intelligent Sensing Technologies in Civil Structural Health Monitoring in the Mainland of China. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V, Proceedings of SPIE. 2006, 61761D: 1~12
    151 S.Z. Tian, X.F. Zhao, Z. Zhou, and J.P. Ou. Application of Fiber Bragg Grating Sensors in Civil Engineering. Fundamental Problems of Optoelectronics and Microelectronics II, Stroganov Proceedings of SPIE. 2005, 5851: 182~189
    152 R.A. Schapery. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. Journal of Composite Materials. 1968, 2(3): 380~404
    153《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004). 2004
    154《公路桥梁抗震设计规范》
    155《建筑抗震试验方法规程》(JGJ101-96). 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700