用户名: 密码: 验证码:
约束子结构模型修正方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构健康监测是土木结构学科一个研究热点,其中模型修正和损伤识别是结构健康监测的重要理论组成部分。本文针对土木工程中,结构形式复杂、测点少或局部损伤不敏感等问题,提出约束子结构模型修正方法,实现利用少量传感器和局部结构动力响应准确修正识别局部子结构或整体结构。
     约束子结构模型修正方法包括两步:第一步构造约束子结构的动力响应,这步是方法的核心;第二步利用经典的模型修正方法,根据构造的动力响应或其模态来修正或识别子结构。根据方法对子结构约束程度的不同,分为完全约束子结构(简称约束子结构)和广义约束子结构:前者是在所关注子结构的边界上布置虚拟支座后,从整体结构中被隔离出来的简单、独立结构;后者虽然并不能将子结构分离出整体,但可以有效地提高子结构的灵敏度,使之更容易修正和识别。
     约束子结构的基本构造思想是通过局部子结构响应的卷积组合,使其边界的响应为零(实现将边界传感器模拟为虚拟支座);相应地,子结构内部响应的组合即为约束子结构的响应。根据选用的局部子结构响应的类型和特点,提出以下五种约束子结构模型修正法(简称约束子结构方法):
     (1)基于局部模态的约束子结构模型修正方法。利用整体结构低阶模态对应子结构位置的局部元素(局部模态)构造约束子结构的柔度矩阵,然后利用该柔度矩阵修正子结构。该方法首先从静力学的角度提出约束子结构的概念。
     (2)基于局部脉冲响应的约束子结构模型修正方法。利用整体结构中局部子结构的脉冲响应直接构造约束子结构的脉冲响应,将方法推广到动态,不但摆脱了局部模态要求振型归一化的限制,而且构造的动力响应往往比静力柔度矩阵包含更丰富的信息,提高修正的精度。并通过进一步理论推导(也适用于下面提出的三种约束子结构方法),对激励类型、激励点位置、虚拟支座形式进行了扩展,以及把方法运用范围扩展到允许子结构外部为非线性的情况,使该方法更容易操作和应用在实际工程中。
     (3)基于局部频率响应的约束子结构模型修正方法。该方法把约束子结构方法由时域扩展到频域,利用局部子结构的频率响应构造约束子结构的频率响应,避免了时域方法内大型矩阵求逆中存在的病态问题,提高了计算效率。
     (4)联合局部虚拟变形的约束子结构模型修正方法。虚拟变形法(Virtual Distortion Method)是一种结构快速重分析方法,与约束子结构方法相结合,同时利用测量的激励和构造的约束子结构响应在时域里识别子结构,不但加快了优化速度,而且提高了修正精度。
     (5)基于局部时间序列的约束子结构模型修正方法。前面提出的几种方法都需要利用测量多组响应来构造约束子结构,而且要求结构的初始状态为零。该方法只需利用一组局部子结构响应的时间序列,通过延时排列的办法构造约束子结构的自由响应。方法应用灵活,操作简单,适用性强,可用于在线的子结构监测。
     文中分别利用桁架有限元模型对上述五种方法进行仿真验证。并且,在一个悬臂梁子结构的动态试验中,成功地利用局部脉冲响应、频率响应、联合虚拟变形法、时间序列法构造约束子结构;验证了利用约束子结构方法能剔除子结构以外未知因素(包括子结构外部非线性)的影响,准确地识别子结构的损伤。
     子结构边界比较复杂时,其边界运动状态不容易测量,因而难以构造约束子结构。针对此局限,提出广义约束子结构模型修正法。它可以有效地提高子结构灵敏度,使之更容易修正识别。广义约束方法有两种:
     (1)基于局部主频率的广义约束子结构模型修正方法。在局部激励的作用下,如果子结构能够主要以单阶子结构变形为主的模态振动,那么对应的该阶频率定义为子结构的局部主频率。局部主频率能更多地反映子结构特性,对子结构损伤的灵敏度高,所以利用局部主频率就可以修正和识别子结构。然而子结构一般并不具有这种性质,为使子结构能具有局部主频率,可以采用以下两种方法:
     方法一,在子结构边界附加虚拟支座,增加对子结构边界的约束,减弱其外部构件的影响,从而提高子结构的灵敏度。用此方法有效识别了三层空间框架有限元模型底层柱的损伤。
     方法二,在子结构内部附加质量,提高子结构本身的权重来提高子结构灵敏度。通过二十跨空间桁架试验验证了该方法,成功地联合局部主频率和整体结构的低阶频率修正了桁架有限元模型,并进一步准确地识别了杆件损伤。
     (2)基于局部虚拟支座的联合约束结构模型修正方法。分别在每个子结构的内部施加虚拟支座,构造广义约束子结构(简称约束结构),使不同约束结构都含有对相应子结构灵敏度较高的低阶频率,继而收集所有这样的模态,联合其来修正整体结构。在数值模拟中,只利用三个传感器的排列组合布置,成功地识别了一个三层空间框架中的所有柱和板的损伤。
Structure Health Monitoring (SHM) is a hot research topic in civil engineering, of which model updating and damage identification are the important theoretical component. In civil engineering, the structures mostly are huge and complex, for which it is hard to obtain the complete measurement, and hence are insensitive to local damages. Aiming at solving these problems, Substructure Isolation Methods are proposed in this paper, which can precisely update or identify the local/global structure by very limited sensors.
     Substructure Isolation Methods consist of two main steps: the first one is to construct the dynamic response of the isolated substructure, which is the core idea of the method; then, the classical modal updating techniques are applied to update/identify the concerned substructure via the constructed response. According to the extent of isolation, two kinds of isolated substructures are presented: Complete Isolated Substructure (“Isolated Substructure”for short) and Generalized Isolated Substructure. The former refers to an independent simple structure which is isolated from the global structure by adding virtual support on the boundary of the concerned substructure; while the latter facilitates the updating and identification by effectively increasing the sensitivity to the substructure(“substructure sensitivity”for short), although it can’t be isolated from the global structure completely.
     The basic idea of the Isolated Substructure construction is the convolution combination of the local substructural response, which makes its boundary response vanish to zero, that is, the boundary sensors are counted as virtual supports. Correspondingly, the combined response inside the substructural is the constructed response of the Isolated Substructure. Five kinds of Substructure Isolation Methods (SIM) for model updating are proposed as following, which lie on the different characteristics of the considered local substructural responses:
     (1) Substructure Isolation and model updating based on local mode. In the low-order global structural modes, the elements which are regard to the degree of freedom of the substructure are defined as the local mode. And then the flexibility matrix of the Isolated Substructure is constructed by the local mode. This approach first proposes the concept of the Substructure Isolation from the static mechanics.
     (2) Substructure Isolation and model updating based on local impulse response. In the global structure, the local impulse response of the substructure is used to construct the impulse response of the Isolated Substructure directly, which extends the isolation method to dynamic scope. It overcomes the limitation of normalized mode shape which is required in the method based on local mode. Moreover, the constructed dynamic response contains more useful information than static flexibility matrix. In addition, the theory is extended further to make the proposed isolation methods including the following three dynamic isolation methods, performed easier in the real application, such as the extension of the excitation type, of the excitation placement, as well as the extension of the virtual support type. Besides those extensions, the Substructure Isolation Methods is expanded to allow its application even in case that the elements outside substructure are nonlinear.
     (3) Substructure Isolation and model updating based on local frequency response. This approach extends the application of Substructure Isolation Methods from time domain to frequency domain, in which the frequency response of the local substructure is used to construct the frequency response of the Isolated Substructure. In this way, it avoids the ill-conditioning problem which often exists in the calculation of large inverse matrix, and moreover increases the computational efficiency.
     (4) Substructure Isolation and model updating Combined with local VDM. VDM (Virtual Distortion Method) belongs to fast structural reanalysis method. The Substructure Isolation Methods combined with VDM allows the substructure identification using simultaneously measured excitation and the constructed response of the Isolated Substructure in time domain. And hence it not only speeds up the optimization but also increases the identification accuracy.
     (5) Substructure Isolation and model updating based on local time series. The above proposed methods all require several groups of measurements to construct the Isolated Substructure, and in addition demand the zero initial structural state. This method only needs one group of measured time series of local substructural. The free vibration response of the Isolated Substructure is constructed by a delayed arrangement of the measured time series. The performance of the method is more flexible, easier, practical, and can be used for online local substructural monitoring.
     The Truss finite element model is used in this paper respectively to numerically verify the above proposed Isolation Methods. Moreover, a dynamic experiment of a cantilever beam is performed, in which the Isolated Substructure is constructed successfully based on local impulse response, local frequency response, local VDM, and local time series. The experiment validates that the Substructure Isolation Methods can remove the influence of the unknown factors outside the substructure (including the nonlinearity), and thus denitrify the local substructural damage effectively and precisely.
     For the substructure with complex boundary, it is hard measure all the boundary states, which are required in construction of the above Isolated Substructure. Aiming at improving the drawbacks, a Generalized Substructure Isolation Method for model updating is proposed which can obviously enhance the substructure sensitivity, and hence facilitate the substructure updating and identification. Two kinds of Generalized Substructure Isolation Method are as following:
     (1) Generalized Substructure Isolation and model updating based on Local Primary Frequency. Apply the local excitation on concerned substructure, if the substructure can vibrate mainly at one single model which consist mostly of the substructural distortion, then the corresponding frequency are defined as the substructural Local Primary Frequency, which can reflect more characteristics of the substructure and are more sensitive to the substructural damage. Thus, Local Primary Frequency is enough to be used for substructural updating and identification. However, generally substructures don’t own this character. Two approaches are developed and adopted to make the concerned substructure have its Local Primary Frequency:
     Approach I: Virtual supports are applied on the substructural boundary, such that it can raise the constraint on the boundary, and reduce the influence from the elements outside the substructure. In this way, the substructure sensitivity is enhanced. The bottom columns of a three-story space frame structure are testified that damage is identified effectively by this method.
     Approach II: Mass are added to the substructure interior, which increases the weighting of the substructure itself and thus enhances its sensitivity. A twenty-span space truss experiment is used to validate the effectiveness of this method, in which the finite element model of the truss is updated successfully by combining the Local Primary Frequency and the low-order mode of the global structure. Using the updated model, the local element damage is further identified accurately.
     (2) United Isolated Structure for model updating based on Local Virtual Support. Virtual supports are added respectively inside each substructure to construct the respective Generalized Isolated Substructure (“Isolated Structure”for short). It aims at making each Isolated Structure own the low-order frequencies which are high sensitive to the corresponding substructure. Then all these frequencies are collected and united to update the global structure. A numerical example of a three-story space frame proves that this method can identify damages of all the columns and plates successfully using only three sensors.
引文
1欧进萍.重大工程结构的累积损伤与安全度评定.走向21世纪的中国力学—中国科协第9次青年科学家论坛报告文集.北京:清华大学出版社, 1996: 179~189
    2欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金, 2005, (1): 8~12
    3李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评.地震工程与工程振动. 2002,22(3):82~94
    4李辉,丁桦.结构动力模型修正方法研究进展.力学进展. 2005, 35 (2):170~180.
    5 M. Baruch, Y. B Itzhack. Optimal Weighted Orthogonalization of Measured Modes. AIAA Journal. 1978,16(4):346~351
    6 M. Baruch. Optimal Correction of Mass and Stiffness Matrices Using Measured Modes. AIAA Journal. 1982, 20(11):1623~1626
    7 M. Berman, Improvement of Analytical Dynamic Models Using Modal Test Data. Proc. Of the 21st SDM Conference, AIAA. 1980:809~814
    8 A.M. Kabe, Stiffness Matrix Adjustment Using Mode Data. AIAA Journal. 1985,23(9):1431~1436
    9 S. W Smith, C. A Beanie. Secant Method Adjustment for Structural Models. AIAA Journal. 1991,29(1):119~126
    10 Minas, D.J. Inman. Correcting Finite Element Models with Measured Modal Results using Eigenstructure Assignment Methods. the 6th IMAC, 1988:583~587
    11 Minas, D.J. Inman. Model Improvement by Pole Placement Methods. ASME , Vibration Analysis Technique and Applications, New York, 1989:179~185
    12 D.C. Zimmerman, M.Widengren. Equivalence Relations for Model Correction of Non-proportionally Damped linear Systems. Pro of the 7th VPI and SU/AIAA Symposium on the Dynamics and Control of Large Structures, 1990:523~538
    13 D.C. Zimmerman, M.Widengren. Correction Finite Element Models using A Symmetric Rigenstructure Assignment Technique. AIAA, Journal, 1990,28(9):1670~1676
    14 N. A Roy, A. Girard, L. P Bugeat, J. N Bricaut. A Survey of Finite Element Model Updating Methods. In: Guyenne D, Hunt J J, eds. Proceedings of the International Symposium on Environmental Testing for Space Programmes Test: Facilities and Methods, Noordwijk. Paris, European Space Agency. 1990,333~349
    15 C. Farhat, F. M Hemez. Updating Finite Element Dynamic Models Using an Element-by-element Sensitivity Methodology. AIAA Journal. 1993,31(9): 1702~1711
    16侯吉林.结构模型修正的子结构方法研究.硕士论文,哈尔滨工业大学, 2006
    17 B. Peeters, C. Ventura. Comparative study of model analysis techniques for bridge dynamic characteristics. Mechanical Systems and Signal Processing. 2003, 17 (5):965~988
    18 G. James, T. Carne, J. Lauffer. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines. SAND92—1666, Sandia National Laboratory, Albuquerque, NM, 1993
    19 F.S.V. Bazan. Eigensystem realization algorithm (ERA): reformulation and system pole perturbation analysis. Journal of Sound and Vibration, 2004. 274(1-2): 433~444
    20 B. Peeters, G. Roeck. Reference-based stochastic subspace identification for output only modal analysis. Mechanical Systems and Signal Processing. 1999, (13):855~878
    21 R. Brincker, L. Zhang, P. Andersen. Modal Identification from Ambient Responses Using Frequency Domain Decomposition. 18th IMAC. 2000, 625~630
    22 J. K. Vandiver. Detection of Structural Failure on Fixed Platforms by Measurement of Dynamic Response. Proc. of the 7th Annual Offshore Technology Conference. 1975: 243~252
    23 J. K. Vandiver. Detection of Structural Failure on Fixed Platforms by Measurement of Dynamic Response. Proc. of the 7th Annual Offshore Technology Conference. 1975: 243~252
    24 Cawley, R.D. Adams. The Locations of Defects in Structures fromMeasurements of Natural Frequencies. Journal of Strain Analysis. 1979, 14(2):49~57
    25 E.J. Williams, A. Messina, B.S. Payne. A Frequency-change Correlation Approach to Damage Detection. Proceedings of the 11th International Modal Analysis Conference, 1997. 652~657
    26 A. Messina, T. Contursi and E.J. Williams. Multiple Damage Evaluation Using Natural Frequency Changes. Proceedings of the 15th International Modal Analysis Conference, 1997, 658~664.
    27 S. Hassiotis and K. Grigoriadis. Damage Detection Using Impulse Response.Proc. 2nd World Congress of Nonlinear Analysts. 1997, 30(8): 4757~4764
    28 S. Hassiotis. Identification of Damage Using Natural Frequencies and Markov Parameters. Computers and Structures. 2000, (74): 365~373
    29杨智春,王乐,丁燕,李斌.基于附加已知刚度的动力学模型修正方法.工程力学. 2009, 26(5):19~24.
    30 R.J. Guyan. Reduction of Stiffness and Mass Matrices. AIAA Journal. 1965, 13 (1):380
    31 J.C. O'Callahan. A Procedure for Improved Reduced System (1RS) Model. In: Alfred L W , Dominick J, DeMichele, eds. Proceedings of the 7th International Modal Analysis Conference, Las Vegas, 1989-02-20-22. Kissimmee: Union College. 1989:17~21
    32 D. C Kammer. Test-analysis Modal Development Using an Exact Modal Reduction. The International Journal of Analytical and Experimental Modal Analysis. 1987, 2(4):174~179
    33张德文,魏阜旋.模型修正与破损诊断.北京:科学出版社. 1999,1~174
    34 J.C. O'Callahan, P. Avitabile. System equivalent reduction expansion process (SEREP). In: Alfred L W, Dominick J, DeMichele, eds. Proceedings of the 7th International Modal Analysis Conference, Las Vegas, 1989-02-20-22. Kissimmee: Union College. 1989,29~37
    35张以帅,洪嘉振,李伟明.模型缩聚-模型修正迭代方法的研究.振动与冲击. 2009, 28(12):23~29
    36刘洋,段忠东,周道成.基于模态综合技术的结构有限元模型修正.振动、测试与诊断. 2009, 9(3):287~292
    37 A. Berman, E. J Nagy. Improvement of a large analytical model using test data. AIAA Journal. 1983,21(8):1168~1173
    38 C. Farhat, F. M Hemez. Updating Finite Element Dynamic Models Using an Element-by-element Sensitivity Methodology. AIAA Journal. 1993, 31(9):1702~1711
    39曾庆华.结构动力修改技术若干问题研究.博士论文.南京航空舫天大学. 1989. 1~117
    40王超,李立,陈绍汀.结构振动有限元模型的精细修改方法.西安交通大学报. 1990,24(5):129~136
    41勤仙荣,张令弥,顾明,改进的基于模态参数的结构计算模型修正算法.同济大学学报. 2002, 30(11):1295~1299
    42 A.K. Pandey, M. Biswas. Damage Detection in Structures Using Changes in Flexibility. Journal of Sound and Vibration. 1994, (169):3~17
    43 S.W. Doebling, L.D. Peterson, K.F. Alvin. Experimental Determination of Local Structural Stiffness by Disassembly of Measured Flexibility Matrices. Journal of Vibration and Acoustics. 1998, (120): 949~957
    44 D. Bernal. Extracting Flexibility Matrices from State-Space Realizations. COST F3 Conference, Madrid, 2000: 127~135
    45 G.W. Reich and K.C. Park. Experimental Application of a Structural Health Monitoring Methodology. S. C. Liu. Proceedings of SPIE, In Smart Structures and Materials, 2000, 3988: 143~153
    46 K.C. Park, G.W. Reich and K.F. Alvin. Damage Detection Using Localized Flexibilities. Structural Health Monitoring, Current Status and Perspectives, F.K. Chang, Technomic Publishers, 1997: 125~139
    47 D. Bernal. Load Vectors for Damage Localization. Journal of Engineering Mechanics, ASCE. 2002, 128(1):7~14
    48 D. Bernal, B. Gunes. Flexibility Based Approach for Damage Characterization: Benchmark Application. Journal of Engineering Mechanics. 2004; 130(1):61~70
    49 D. Bernal and B. Gunes. Damage Localization in Output-only Systems: A Flexibility Based Approach. XX International Modal Analysis Conference, Los Angeles California. 2002: 1185~1191
    50 G. Yong, B.F. Spencer. Flexibility-Based Damage Location EmployingAmbient Vibration. 15th ASCE Engineering Mechanics Conference. 2002, 136~144
    51 C. Michael, P. Kara. Flexibility Approach for Damage Localization Suitable for Multi-scale Sensor Fusion. Smart Structures and Materials. Proceedings of SPIE. 2003, (5050): 11~22
    52 K.C. Park and C.A. Felippa. A Variational Framework for Solution Method Mechanics. 2004, 130(1): 61~70
    53 Z. Duan, G. Yan, J. Ou and B.F. Spencer. Construction of proportional flexibility matrix at sensor locations in ambient vibration for damage localization. The Second International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa, 5-7 July 2004
    54 Z. Duan, G. Yan, J. Ou, B.F. Spencer. Damage Localization in Ambient Vibration by Constructing Proportional Flexibility Matrix. Journal of Sound and vibration. 2005, 284 (1-2): 455~466
    55 Z. Duan, G. Yan, J. Ou. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs. Structural Control and Health Monitoring: The Journal of the International Association of Structural Control and Monitoring. 2005, 14(2):186~196
    56 Z.D. Duan, G.R. Yan, J.P. Ou. Structural damage localization based on rotational flexibility matrix. Proceedings Of The Third International Conference On Earthquake Engineering. 2004: 846~850
    57 G.R. Yan, Z.D. Duan, J.P. Ou. An Axial Strain Flexibility for Damage Detection of Truss Structure. International workshop on smart materials and structures, 13-14 October 2005, Toronto, Ontario, Canada
    58 P. Kolakowski, M. Wiklo, J. Holnicki-Szulc. The virtual Distortion Method - a versatile reanalysis tool for structure and systems. Structural and Multidisciplinary Optimization. 2008, 36(3) 217~234
    59 J. Holnicki-Szulc, J. Gierlinski. Structural Modifications Simulated by Virtual Distortions, International Journal for Numerical Methods in Engineering. 1989, 28:645~666
    60 J. Holnicki-Szulc. Virtual Distortion Method, Lecture Notes in Engeneering No.65,Springer Verlag, Heidelberg-Berlin, 1991
    61 J. Holnicki-Szulc. J. Gierlinski. Structural Analysis, Design and Control bytheVirtual Distortion Method, J. Wiley & Sons, Chichester, U.K. 1995
    62 G. Suwala, L. Jankowski. A model-less method for impact mass identification. In: Proceedings of the 4th European Workshop on Structural Health Monitoring, Krakow, Poland, 2008, 365~373
    63 M. Mroz, J. Holnicki-Szulc. Remodelling of vibrating systems via frequency-domain-based virtual distortion method. Mechanics 2005; 24(2):124~129
    64 A. Orlowska, P. Kolakowski, J. Holnicki-Szulc. Modelling and identification of delamination in double-layer beams by the virtual distortion method. Computers and Structures. 2008, 86(23–24):2203~2214
    65 Q. Zhang, L. Jankowski, Z. Duan. Identification of coexistent load and damage. Structural and Multidisciplinary Optimization 2010; 41(2):243~253
    66 J. Holnicki-Szulc, P. Kolakowski, and N. Nasher. Leakage detection in water networks. J. Intell. Mater. Syst. Struct. 2005, 16(3):207~219
    67 M. Kokot and J. Holnicki-Szulc. Health monitoring of electric circuits. In Proceedings of the 6th International Conference on Damage Assessment of Structures– DAMAS, 2005
    68 R.M. Lin, D.J. Ewins. Model updating Using FRF Data. In: Proceedings of The 15th International Seminar on Modal 1990. Analysis, Leuven: 1990-09-19-21. Leuven: Belgium,141~102
    69 M. Imregun, K.Y. Sanliturk, D.J. Ewins. Finite Element Model Updating Using Frequency Response Function Data-II: Case Study on A Medium-Size Finite Element Model. Mechanical Systems and Signal Processing. 1990, 9(2):203~213
    70 R.L. Fox, M.P. Kapoor. Rates of Change of Eigenvalues and Eigenvectors. AIAA Journal. 1968,6(12):2426~2429
    71 W. Visser, M. Imregun. A technique to update finite element models using frequency response data. In: Alfred L W, Dominick J, DeMichele, eds. Proceedings of the 9th International Modal Analysis Conference, Florence, 1991-09-10-12. Kissimmee: Union College. 1991, 462~468
    72 J. Mark et al. Detecting Structural Damage Using Transmittance Function. Proceedings of 15th IMAC, Florida.1997: 638~644
    73 R. Sampaion, M. Maia, J. Silva. Damage Detection Using the Frequency Response Function Curvature Method. Journal of Sound and Vibration. 1999,226(5): 1030~1042
    74杨智春,王乐,李斌,刘江华.结构动力学有限元模型修正的目标函数及算法.应用力学学报. 2009, 29(2):288-297
    75 J. Mottershead, M. Rriswell, G. Ng, et al. Geometric parameters for finite element model updating of joints and constraints. Mechanical Systems and Signal Processing. 1996, 10 (2):171~182
    76 J. Mottershead, C. Mare, M. Rriswell, et al. Selection and updating of parameters for an aluminium. Mechanical Systems and Signal Processing. 2000, 14 (6):923~944
    77李岩,盛洪飞,黄新艺.大跨径斜拉桥动力分析基准有限元模型研究.公路交通科技. 2006, 23(9):58~62
    78丁幼亮,李爱群,缪长青,等.大跨桥梁结构损伤诊断与安全评估的多尺度有限元模拟研究.地震工程与工程振动. 2006, 26 (2):66~72
    79孙正华,李兆霞,韩晓林.大跨桥梁索塔有限元模型修正.工程抗震与加固改造, 2006, 28(1):50~54
    80郑荣跃,吕忠达,许凯明.宁波招宝山大桥基于模型修正的动力分析.公路交通科技, 2006, 23(5):52~56
    81余岭,万祖勇,朱宏平,等.基于PSO算法的结构模型修正与损伤检测.振动与冲击. 2006, 25(5):37~39
    82 P. Tarazaga, Y. Halevib, D. Inman. The quadratic compression method for model updating and it s noise filtering properties. Mechanical Systems and Signal Processing. 2007, 21:58~73
    83 F. Asma, A. Bouazzouni. Finite element model updating using variable separation. European Journal of Mechanics A/Solids. 2007, 26:728~735
    84吕中荣,罗绍湘,刘济科.利用响应灵敏度修正Gascogine天桥的有限元模型.中山大学学报:自然科学版. 2006, 45(3):13~16
    85 M. Friswell, J. Penny, S. Garvey. A combined genetic and eigensensitivity algorithm for the location of damage in structures. Computers & Structures, 1998, 69(5): 547~556
    86 B. Jaishi.基于环境振动的土木工程结构有限元模型修正.博士论文,福州大学. 2005
    87刘洋.高性能优化算法与结构模型修正的研究.博士论文,哈尔滨工业大学. 2008
    88 R.Fox, M. Kapoor. Rates of Change of Eigenvalues and Eigenvectors. AIAA Journal. 1968, 6(12):2426~2429
    89 R. Nelson. Simplified Calculation of Eigenvector Derivatives. AIAA Journal. 1976, 14(9):1201~1205
    90 K. Lim, J. Junkins, B. Wang. Re-examination of Eigenvector Derivatives. Journal of Guidance, Control and Dynamics. 1987,10(6): 581~587
    91 Ojalvo. Efficient Computation of Mode Shape Derivatives for Large Dynamic Systems. ATAA Journal. 1987,25(10):1386~1390
    92 T. Setter, C. Camarda, J. Walsh, H. Adelman. Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives. AIAA Journal. 1988, 26(12):1506~1511
    93 Z. Peng, J. Song. Invariant Theorem of Relative Sensitivity Summation and Higher Order Sensitivity Analysis Applied to Structural Modification. In: Alfred L W, Dominick J, DeMichele, eds. Proceedings of the 4th International Modal Analysis Conference, Los Angeles, 1986-02-03-06. Kissimmee: Union College. 1986,66~74
    94 C. Kuo, B. Wada. Nonlinear Sensitivity Coefficients and Corrections in System Identification. AIAA Journal. 1987,25(11):1463~1468
    95 J. Zhao, J. Dewolf. Sensitivity study for vibrational parameters used in damage detection. Journal of Structure Engineering, ASCE, 1999, 125(4): 410~416.
    96 J. Wang, J. Ko, Y. Ni. Modal Sensitivity Analysis of Tsing Ma Bridges for Structural Damage Detection[A]. Aktan A E,et al. SPIE 5th Int. Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure[C]. Newport Beach, 2000. 300~311
    97朱安文,曲广吉,高耀南.结构模型修正中一种新的摄动方法.中国空间科学技术. 2001, (5):33~40
    98徐张明,沈荣瀛,华宏星.基于频响函数相关性的灵敏度分析的有限元模型修正.机械强度. 2003, 25 (1):5~8
    99郭彤,李爱群,韩大章.基于灵敏度分析与优化设计原理的大跨桥梁动力模型修正.桥梁建设. 2004, (6):20~23
    100 P.C. Kaminski. The Approximate Location of Damage Through the Analysis of Natural Frequencies with Artificial Neural Networks. Journal of ProcessMechanical Engineering. 1995, 209: 117~123
    101张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(1):32~42.
    102 C. Yun, H. Lee , Substructural identification for damage estimation of structures. Structural Safety,1997, 19(1): 121~140
    103 C.G. Koh, K. Shankar. Substructural identification method without interface measurement. Journal of Engineering Mechanics (ASCE), 2003, 129(7): 769~776
    104 J. Yang, H. Huang, Substructure Damage Identification Using Sequential Nonlinear Lse Method,4th International Conference on Earthquake Engineering, Taipei, Taiwan. 2006.11 (Paper No. 119)
    105樊素英,李忠献.桥梁结构物理参数识别的双单元子结构法.工程力学, 2007.6, 24(6): 68~72
    106谢献忠,易伟建.结构物理参数时域识别的子结构方法研究.工程力学, 2005.10: 22(5).94~98
    107郭力,李兆霞,陈鸿天.基于子结构分析的多重子步模型修正方法.中国工程科学. 2006, 8(9):42~48
    108 F. Hemez, S. Doebling. Validation of structural dynamics models at Los Alamos National Laboratory. Proceedings of the 41st A IAA /ASME / ASCE /AHS/ASC Structures. Atlanta GA, USA: Structural Dynamics and Materials Conference, A IAA-2000-1437, 2000: 749~760
    109 F. Hemez, S. Doebling. Model validation and uncertainty quantification. Proceedings of IMAC - XIX. Kissimmee Florida USA: The 19th International Modal Analysis Conference, 2001: 1153~1158
    110 K.F. Alvin, W.L. Oberkampf, K. Diegert, et al. Uncertainty quantification in computational structural dynamics: A new paradigm for model validation. Proceedings of IMAC-XVI. Santa Barbara, CA, USA: The 16th International Modal Analysis Conference, 1998: 1191~1197
    111 R. Rebb, S. Mahadevan, R. Zhang. Validation of uncertainty propagation models. Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures. Norfolk VA USA: Structural Dynamics and Materials Conference, 2003: 4671~4678
    112 J. Beck, L. Katafygiotis, Updating Models and Their Uncertainties-Bayesian Statistical Framework, ASCE, Journal of Engnieering Mechanics, 1998, 124:455~461
    113 J. Beck, S. Au, M. Vanik. Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation. ASCE, Journal of Engineering Mechanics, 2002,128: 380~391
    114 J. Ching, J. Beck. Bayesian Analysis of the Phase II IASC-ASCE Structural Health Monitoring Experimental Benchmark Data, ASCE, Journal of Engineering Mechanics, 2004, 130:1233~1244
    115 W. M. West. Illustration of the Use of Model Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen. Proc. of Air Force Conference on Aircraft Structural Integrity: 1~6
    116 J.M. Ko, C.W. Wong, H.F. Lam. Damage Detection in Steel Framed Structures by Vibration Measurement Approach. In Proc. of 12th International Modal Analysis Conference. 1994: 280~286
    117 A.K. Pandy, M. Biswas, M.M. Samman. Damage Detection from Change in Curvature Mode Shapes. Journal of Sound and Vibration. 1991, 145(2):321~332
    118 G. Yao, K. Chang. A Study of Damage Diagnosis from Earthquake Records of a Steel Gable Frame. Journal of the Chinese Institute of Engineers. 1995, 18(1):115~123
    119 R.A. Osegueda, C.J. Carrasco et al. A Modal Strain Energy Distribution Method to Localize and Quantify Damage. 15th IMAC, Orlando, FI. 1997:1298~1303
    120 J.M. Ricles, J.B. Kosmatka. Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity. AIAA Journal. 1992, 30:2310~2316
    121傅志方,华宏星.模态分析理论与应用.上海交通大学出版社, 2002
    122 V. Gabe. Garcia, O. Roberto. Damage Detection Using ARMA Model Coefficients. Proc. Part of the SPIE Conference on Smart Systems for Bridges, Structures, and Highways. 1999, 3671:289~296
    123 K.K. Nair, A.S. Kiremidjian, Y. Lei et al. Application of Time Series Analysis in Structural Damage Evaluation. Proceedings of the International Conference on Structural Health Monitoring, Tokyo, Japan, Nov 14-16,2003
    124 D.E. Newland. Wavelet Analysis of Vibration. Part I: Theory. J. of Vib. Andcoustics. 1994, (116): 409~416
    125 C. Surace, R. Ruotolo. Crack Detection Of A Beam Using The WaveletTransform. Proceedings of the 12th International Modal Analysis Conference. Honolulu, 1994: 1141~1147
    126 A. Sone, S. Yamamoto, A. Nakaoka and A. Masuda. Health Monitoring System of Structures Based on Orthonormal Wavelet Transform. ASME PVP. 1995, 312: 161~167
    127 A. Sone, S. Yamamoto, A. Masuda and A. Nakaoka. Health Monitoring System of Building by Using Wavelet Analysis. Proc. of the Eleventh World Conference on Earthquake Engineering. 1996, (paper No. 235)
    128 Y.J. Wu and R. Du. Feature Extraction And Assessment Using Wavelet Packets for Monitoring of Machining Processes. Mechanical Systems and Signal Processing. 1996, 10(1): 29~53
    129 K.M. Liew, Q. Wang. Application of Wavelet Theory for Crack Identification in Structures. Journal of Engineering Mechanics. 1998, 124(2): 152~157
    130 Z. Hou, M. Noori and R.St. Amand. Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics. 2000, 126(7): 677~ 683
    131 Y.Y. Kim, E.H. Kim. A New Damage Deflection Method Based On A Wavelet Transform. Proceedings of the International Modal Analysis Conference, 2000: 1207~1212
    132 Z. Sun and C.C. Chang. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structure Engineering. 2002, 128(10): 1354~1361
    133 Y.J. Yan and L.H. Yam. Online Detection Of Crack Damage in Composite Plates Using Embedded Piezoelectric Actuators/Sensors And Wavelet Analysis. Composite Structures. 2002, 58: 29~38
    134 A.N. Robertson, C.R. Farrar and H. Sohn. Singularity Detection for Structural Health Monitoring Using Holder Exponents. Mechanical Systems and Signal Processing. 2003, 17(6): 1163~1184
    135 H. Kim and H. Melhem. Fourier and Wavelet Analyses for Fatigue Assessment of Concrete Beams. Experimental Mechanics. 2003, 43(2): 131~140
    136 A. Salehian, Z. Hou and F.G. Yuan. Identification of Location of A Sudden Damage in Plates Using Wavelet Approach. 16th ASCE EngineeringMechanics Conference, 2003, University of Washington, Seattle
    137 G.R Yan. Z.D. Duan, J.P. Ou. Structural Damage Detection Based On The Correlation Analysis Between The Wavelet Packet Component Energies. The Eighth International Symposium on Structural Engineering for Young Exports, 2004
    138 N.E. Huang, S. Zheng and S.R. Long et al. The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proceedings of the Royal Society of London, SeriesA. 1998, 454: 903~995
    139 J.N. Yang, Y. Lei, S. Lin and N. Huang. Hilbert-Huang Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, ASCE. 2004: 85~95
    140 Y. L. Xu, J. Chen. Structural Damage Detection Using Empirical Mode Decomposition: Experimental Investigation, Journal of Engineering Mechanics, 2004, 130(11):1279~1288
    141 D. Pines, L. Salvino, Structural health monitoring using empirical mode decomposition and the Hilbert phase, Journal of Sound and Vibration, 2006, 294(1-2): 97~124
    142 C. Jutten, J. Herault. Blind separation of sources, Part I: An adaptive algorithm based on neuromimatic architecture. Signal Processing. 1991, 24(1):1~10
    143 A. Hyvarinen, J. Karhunen, E. Oja. Independent component analysis. New York: John Wiley & Sons, Inc., 2001
    144姜绍飞.结构健康监测-智能信息处理及应用.工程力学. 2009, 26:184~212
    145 A. Dempster. Upper and Lower Probabilities Induced by a Multivalued Mapping. Annals of Mathematical Statistics. 1967, 38(2):325~339
    146 G. Shafer. A Mathematical Theory of evidence. Princeton University Press, 1976
    147郭惠勇,张陵.基于遗传算法和加权D-S信息融合的结构多损伤位置识别. 2004, 40(9): 148~153
    148 J. Guo, Y. Chen, B.N. Sun, W.J. Lou. Study of Structural Damage Identification Based on Multi-Sensor Information Fusion. Journal of Vibration Engineering. 2005, 18(2): 155~160
    149 S.F. Jiang, G.K. Chan, C.M. Zhang. Data Fusion Technique and Its Applicationin Structural Health Monitoring. Proccedings of the2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure. Shenzhen, P. R. of China, 2005, 2: 1125~1130
    150 Y. Bao, H. Li, J. Ou. A Dempster-Shafer Evidence Theory-Based Approach for On-Line Structural Health Monitoring, SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, 15th International Symposium, San Diego, California USA. 2008, 6935
    151 P. Kolakowski, T.G. Zielinski, J. Holnicki-Szulc. Damage Identification by the Dynamic Virtual Distortion Method. Journal of Intelligent Material Systems and Structures. 2004, 15(6):479~493
    152 M. Akgun, J. Garcelon, R. Haftka. Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. International Journal for Numerical Methods in Engineering 2001. 50(7):1587~1606
    153 R. Haftka, Z. Gurdal. Elements of structural optimization (3rd edn). Kluwer Publishers. 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700