用户名: 密码: 验证码:
燃用烟煤中心给粉旋流燃烧器流动及燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境问题的日益严峻,采用旋流煤粉燃烧技术的锅炉机组,降低NO_x排放量、提高煤种适应性、防止锅炉结渣及保证锅炉机组的安全稳定运行越来越重要。鉴于此,本文对燃用烟煤的中心给粉旋流煤粉燃烧器和日本石川岛播磨(IHI)公司生产的双旋流煤粉燃烧器进行了研究。通过实验室单相试验、示踪试验、两相试验和数值模拟方法对中心给粉旋流煤粉燃烧器和IHI双旋流燃烧器进行了研究,揭示了两种燃烧器的机理,并分别通过工业试验对两种燃烧器的燃烧特性和NO_x排放性能进行了研究。
     利用IFA300恒温热线热膜流速计对中心给粉燃烧器和IHI双旋流煤粉燃烧器出口气流的流动特性进行了试验研究,研究了不同结构和运行参数下两种燃烧器出口气流的流动特性和湍流强度分布。
     分别利用热质比拟和可视化研究的方法对中心给粉旋流煤粉燃烧器一、二次风混合特性进行了研究,得到了不同结构及参数下中心给粉燃烧器的一、二次风的混合特性及一次风边界的分形维数同湍流强度的对应关系。
     利用三维激光相位多普勒测速仪(PDA)研究了不同二次风风量、外二次风叶片角度和内、外二次风风量比例下中心给粉旋流燃烧器的气、固两相流动特性。中心给粉燃烧器在燃烧器中心区域存在较高的颗粒体积流量和颗粒相对数密度,同时具有较大的粒径。
     利用三维PDA研究了外二次风叶片角度对IHI双旋流燃烧器气、固两相流动特性的影响规律。IHI双旋流燃烧器具有较小的环形回流区,并且在二次风流动区域和边壁区域存在两个颗粒体积流量峰值和颗粒相对数密度峰值,同时燃烧器中心区域的粒径较小。
     参照PDA试验条件和试验参数,利用Realizable k-ε模型和拉格朗日颗粒随机轨道模型对中心给粉旋流煤粉燃烧器出口区域气、固流动特性进行了数值模拟,并将模拟结果与试验数据进行了对比,表明模拟与试验结果吻合较好。
     对一台下层8只采用中心给粉旋流煤粉燃烧器燃用烟煤的1025t/h锅炉上进行了冷、热态试验。测量了燃烧器区域的烟气温度、烟气成分及碳燃尽率。采用巴威强化点火双调风燃烧器时,煤的燃烧效率为96.73% ,NO_x排放量为843.55mg/m~3(O2=6%),锅炉最低不投油稳定运行负荷为180MWe,而采用中心给粉燃烧器后,煤的燃烧效率为97.09%,NO_x排放量为727.67mg/m~3(O2=6%),锅炉最低不投油稳定运行负荷为110MWe。
     在一台采用IHI双旋流煤粉燃烧器燃用烟煤的670t/h锅炉上进行了热态试验。分别测量了不同锅炉负荷、燃尽风挡板开度及外二次风叶片角度下燃烧器区域的烟气温度、烟气成分和碳燃尽率,同时还对整个炉膛温度分布、热流密度分布、NO_x排放量及锅炉效率进行了测量。
With the increasingly serious environmental problems, it is becoming more important to reduce NO_x emissions, enhance the adaptability of coal variety, and prevent slagging in furnace to ensure the safety and stability of boiler units adopting swirl coal combustion techniques. In view of this, studies are conducted on central-fuel-rich swirl coal combustion burner with bituminous and double-swirl flow burner designed by Ishikawajima-Harima Heavy Industries (IHI) Co., Ltd in Japanese. The mechanisms of two swirl burners are revealed through Single phase experiments, smog tracer tests, gas-particle two phase experiments and numerical simulation, while industrial tests are carried out simultaneously to study the characteristics of combustion and NO_x emissions of them.
     An IFA300 constant-temperature hot-film anemometer system is used to study flow characteristics at the nozzle region of central-fuel-rich and IHI double-swirl flow burner. The three-dimension flow field and turbulence intensity distribution at the nozzle region are investigated concerning with different structures and operational parameters.
     Through thermal transfer analogy and visualization used for the research on mixing characteristics of primary air and secondary air of central-fuel-rich burner, we obtain the mixing characteristics and the correlations between fractal dimension and turbulence intensity at the boundary of the primary air in different structures and operation parameters.
     A three-dimensional particle-dynamics anemometer (PDA) system is used to study gas-particle flow characteristics of central-fuel-rich burner with different secondary air flux, tangential vane angles and ratios of inner/outer secondary air. The particle diameter, altoge ther with volume flux and relative number concentration, are comparatively large in the central region outside the burner nozzle.
     The influence of outer secondary air vane angles on the gas-particle flow characteristics of IHI double-swirl flow burner are investigated by the three-dimensional PDA system. The IHI double-swirl flow burner has a small ring recirculation zone near the burner nozzle. And there are two peak values of particle volume flux and particle relative number concentration in the secondary air region and near-wall region while the particles in the center of burner are small.
     As to the conditions and parameters of the PDA experiments, Realizable k-εmodel and Lagrangian stochastic trajectory model are used in the numerical simulation of gas-particle flow characteristics at the nozzle region of central-fuel-rich burner. The simulation results and experiments data coincide well.
     Both cold air flow experiments and industrial tests are conducted in a 1025 t/h, bituminous fired boiler before and after 8 burners at the bottom row are retrofitted to the central-fuel-rich burners. Gas temperature, gas composition and char burnout are measured in the burner region. For the boiler with enhanced ignition-dual register burners before the retrofit, coal combustion efficiency is 96.73% and the NO_x emission is 843.55mg/m~3 (O2=6%) while the lowest load without auxiliary oil is 180 MWe under the condition of stable operation. After central-fuel-rich burners are adopted, coal combustion efficiency increases to 97.09% and the NO_x emission decreases to 727.67mg/m~3 (O2=6%) , while the boiler could be operated stably at a load of 110 MWe without auxiliary oil.
     Industrial tests are also conducted in a 670 t/h, bituminous fired boiler which adopts the IHI double-swirl flow burners. Gas temperature, gas composition and char burnout in the burning region are measured under different loads, over-fire air damper openings and outer secondary air vane angles, as well as the furnace temperature distribution, heat flux distribution, NO_x emission and boiler efficiency.
引文
1江泽民.对中国能源问题的思考.上海交通大学学报, 2008, 42 (3): 345–360
    2沈镭,刘立涛.中国能源政策可持续性评价与发展路径选择.资源科学, 2009, 31(8): 1264–1271
    3李云峰,鲁刚.关于我国能源可持续发展战略的探讨.中国矿业, 2009, 18(9): 1–5
    4 J. M. Beer. Combustion Technology Developments in Power Generation in Re- sponse to Environmental Challenge. Progress in Energy and Combustion Science, 2000, 26: 301–327
    5唐庆杰,王育华,吴文荣,朱轶飞.洁净煤技术,中国能源发展的必然选择.国矿业, 2007, 16(11): 24–27
    6吴敬儒,陈剑波.我国电力工业发展规划问题.中国电力, 2005, 38(9): 11–15
    7黄其励.火力发电可持续发展新技术.中国电力, 2002, 35(1): 8–12
    8 J. Reilly, M. Mayer, J. Harnisch. The Kyoto Protocol and Non-CO2 Greenhouse Gases and Carbon Sinks. Environmental Modeling and Assessment, 2002, 7(4): 217–229
    9 L. D. Smoot. A Decade of Combustion Research. Progress in Energy and Combustion Science, 1997, 23(3): 203–232
    10 R. A. Newby, W. F. Domeracki, A. W. McGuigan. Integration of Combustion Turbine Systems into Pressurized Fluidized Bed Combustion Combined Cycles. American Society of Mechanical Engineers, 1994: 1–11
    11岑可法,程军,池涌,周昊.高效低污染燃烧及气化技术的最新研究进展.中国动力工程学报, 2005, 25(2): 153–160
    12张海,吕俊复,徐秀清,曾瑞良,岳光溪.煤粉燃烧器的分级浓缩.中国电力, 2005, 38(4): 1–4
    13张海,吕俊复,徐秀清,吴学安,宾子胜,高志涛,卢广盛.富集型燃烧器在单独燃用合山劣质烟煤锅炉上的应用.锅炉技术, 2007, 38(3): 34–38
    14陈伟,顾昌,朱全利,严响林,李君. DG 410 t/h-3型锅炉燃烧器技术改造.锅炉技术, 2006, 37(3): 60–63
    15安恩科,杨震,宋谦,周海珠.浓淡煤粉燃烧器双通道速度差对NOx排放的影响.同济大学学报, 2009, 37(4): 537–539
    16史学锋,钱壬章,马小茜.开缝钝体燃烧器的燃烧特性及优化实验研究.动力工程, 1995, 15(5): 12–17, 62
    17马小茜,史学锋,靳世平,罗萌,钱壬章.开缝钝体燃烧器对四角切向燃烧锅炉的适应性.热能动力工程, 1995, 10(4): 216–221, 255
    18季鹏伟,张雷.双通道燃烧器在国产670t/h锅炉上的应用.长春工程学院学报, 2008, 9(2): 29–31
    19曹殿民,张健如,孙春林.双通道燃烧器技术在电站锅炉中的应用.东北电力技术, 2005, (4): 40–42
    20丘纪华,陈刚,李佛金,孙学信.稳然腔煤粉燃烧器在无烟煤锅炉调峰中的应用.电站系统工程, 2000, 16(6): 362–364
    21孙锐,李争起,孙绍增,吴少华.四角切圆锅炉炉内煤粉燃烧过程数值模拟.机械工程学报, 2006, 42(8): 107–113
    22 R. Sun, Y. Wu, J. Swithenbank, Z. Q. Li. Horizontal Split Combustion Burner in a
    200-MW Tangential Fired Boiler. Journal of the Energy Institute, 2004, 77: 97–107
    23 Z. Q. Li, L. B. Yang, P. H. Qiu, R. Sun, L. Z. Chen and S. Z. Sun. Experimental Study of the Combustion Efficiency and Formation of NOx in an Industrial Pulverized Coal Combustor. International Journal of Energy Research, 2004, 28: 511–520
    24 Z. Q. Li, J. P. Jing, Z. H. Ge, G. K. Liu, Z. C. Chen, F. Ren. Numerical Simulation of Low NOx Combustion Technology in a 100 MWe Bituminous Coal-Fired Wall Boiler. Numerical Heat Transfer, Part A: Applications, 2009, 55: 574–593
    25罗义英,陈婷飞.锅炉燃烧器改造及燃烧调整试验研究.河南城建高等专科学校学报, 2001, 10(3): 25–26
    26曹荣秀,于景泽,王伟.电站锅炉的燃烧器形式及分类.锅炉制造, 2005, 3: 22–23
    27顾山,唐必光,熊立红,顾昌,金振齐.双通道旋流煤粉燃烧器空气动力场的试验研究.华中电力, 2005, 13(5): 1–3
    28方庆艳,汪华剑,张志国,傅培坊,周怀春.一种可调节自适应煤粉燃烧器的数值模拟.动力工程, 2007, 27(2): 189–193
    29陈智超,李争起,孙锐,吴少华.大容量锅炉新型旋流煤粉燃烧技术的研究.动力工程, 2005, 25(5): 618–622
    30 J. O. Chae, Y. N. Chun. Effect of Two-Stage Combustion on NOx Emission in Pulverized Coal Combustion. Fuel, 1991, 70(6):703–707
    31赵静,杨宗恒,张海.浓缩型双调风旋流燃烧器的冷模试验研究.动力工程, 2008, 28(5): 690–695
    32 J. L. King. Low NOx Pulverized Fuel Burners Summary of Plant Experience. ASME, Environmental Control Division Publication, EC, FACT. Proceedings of the 1995 International Joint Power Generation Conference, Minneapolis, MN, USA,1995: 353–364
    33 J. M. Beer, M. A. Toqan, J. M. Haynes. Development of the RSFC Low NOx Burner from Fundamentals to Industrial Applications. ASME Power Division, ASME Fuels and Combustion Technologies Division, ASME Nuclear Engineering Division. Proceedings of the IJPGC 2002 International Joint Power Generation Conference, Scottsdale, AZ, USA, 2002: 899–906
    34 L. E. Barta, P. F. Lewis, M. J. Beer. Low NOx Combustion of Pulverized Coal Using the Radially Stratified Flame Core Burner. ASME, Fuels and Combustion Technologies Division FACT. The 1999 International Joint Power Generation Conference and ICOPE'99, Burlingame, CA, USA, 1999, 23(1): 165–178
    35童艳,孙博.低NOx旋流燃烧器的研究进展.节能, 2005, 8: 11–15
    36袁德.现代电站锅炉技术极其改造.中国电力出版社. 2006: 32–39
    37成文俊,李争起,陈智超,秦裕琨.旋流燃烧器高负荷灭火问题研究.中国电力. 2005, 38(1): 57–61
    38孙锐.径向浓淡旋流煤粉燃烧器流动特性试验研究及数值模拟.哈尔滨工业大学博士学位论文. 1998: 87–108
    39李争起.径向浓淡旋流煤粉燃烧器气固两相及应用研究.哈尔滨工业大学博士学位论文. 1997: 74–110
    40陈智超.中心给粉旋流燃烧器气固流动及应用的研究.哈尔滨工业大学博士学位论文. 2007: 26–33
    41 G. Probstle. Velocity Measurements in a Swirl Driven Pulverized Coal Combustion Chamber. Combustion and Flame, 1988, 72: 193–203
    42 Y. C. Chao. Recirculation Structure of the Co-Annular Swirling Jets in a Combustor. AIAA Journal, 1988, 26(5): 623–625
    43陈启峰,李德贵,章明川,范浩杰,席时桐.单丝热线旋转方法用于旋流燃烧器出口参数测量.上海交通大学学报, 2000, 34(9): 1195–1199
    44窦文宇,蒋宏利,魏铜生,惠世恩,徐通模.浓淡型双调风旋流燃烧器的空气动力特性研究.西安交通大学学报, 1998, 32(2): 34–38
    45唐必光,顾山,熊立红,顾昌,金振齐.钝体对双通道旋流煤粉燃烧器出口空气动力场的影响.热力发电, 2001, 30(5): 35–38
    46董永胜,孙保民,初燕,郭永红.旋流燃烧器冷态模化试验研究.现代电力, 2006, 23(3), 36–40
    47秦裕琨,孙锐,李争起,孙绍增,马春元,吴少华.径向浓淡旋流煤粉燃烧器气流湍流特性的冷态试验研究.工程热物理学报, 2001, 22(1): 111–114
    48 G. Q. Dai, W. M. Chen, J. M. Li, L. Y. Chu. Experimental study of solid-liquid two-phase flow in a hydrocyclone. Chemical Engineering journal, 1999, 74: 211–216
    49 V. M. Zemlianskii. A new phase method of measuring particle’s size with laser Doppler system. Journal of Aerosol Science, 1996, 27(Supplement 1): 325–326
    50 L. M. Pickett, R. E. Jackson, D. R. Tree. LDA measurements in a pulverized coal flame at three swirl ratios. Combustion Science and technology, 1999, 143:79–106
    51 S. Moon, C. Bae, J. Choi, E. Abo-Serie. The Influence of Airflow on Fuel Spray Characteristics from a Slit Injector. Fuel, 2007, 86: 400–409
    52黄荣国,陈星晶,张红泉.直流燃烧器一次风通道气固两相流实验研究.水动力学研究与进展, 2009, 24(1): 7–14
    53孙杰,黄荣国,张红泉.燃烧器内气固两相流动的PDA实验研究.实验室研究与探索, 2007, 26(10): 10–14
    54 Z. C. Chen, Z. Q. Li, J. P. Jing, L. Z. Chen, S. H. Wu, Y. Yao. Study on Flow Fields of Centrally Fuel Rich Swirl Burner and Its Applications. Korean Journal of Chemical Engineering, 2009, 26(5): 1186–1193
    55 W. D. Fan, Y. Y. Li, Z. C. Lin, M. C. Zhang. PDA Research on a Novel Pulverized Coal Combustion Technology for a Large Utility Boiler. Energy, 2010: 1–8
    56 M. Sommerfeld and J. Kussin. Wall Roughness Effects on Pneumatic Conveying of Spherical Particles in a Narrow Horizontal Channel. Powder Technology, 2004, 142: 180–192
    57 M. H. Xu, J. W. Yuan, C. Y. Han, C. G. Zheng. Investigation of Particle Dynamics and Pulverized Coal Combustion in a Cavity Bluff-body Burner. Fuel, 1995, 74(12): 1913–1917
    58 H. Zhou, K. F. Cen, J. R. Fan. Experimental Investigation on Flow Structures and Mixing Mechanisms of a Gas–solid Burner Jet. Fuel, 2005, 84: 1622–1634
    59 D. L. Black, M. Q. McQuay. Laser-based Particle Measurements of Spherical and Nonspherical Particles. International Journal of Multiphase Flow, 2001, 27: 1333–1362
    60 Z. Q. Li, R. Sun, L. Z. Chen, Z. X. Wan, S. H. Wu, Y. K. Qin. Effect of Primary Air Flow Types on Particle Distributions in the Near Swirl Burner Region. Fuel, 2002, 81(6): 829–835
    61 Z. Q. Li, Z. X. Wan, S. Z. Sun, L. Z. Chen, S. H. Wu, Y. K. Qin. Influence of Division Cone Angles Between the Fuel-rich and the Fuel-lean Ducts on Gas-particle Flow and Combustion near Swirl Burners. Energy, 2002, 27: 1119–1130
    62 Z. Q. Li, R. Sun, Z. X. Wan, S. Z. Sun, S. H. Wu, L. Z. Chen. Gas-particle Flow and Combustionin the near-burner Zone of the Swirl-stabilized Pulverized Coal Burner. Combustion Science and Technology, 2003, 175(11): 1979–2014
    63 Z. C. Chen, Z. Q. Li, F. Q. Wang, J. P. Jing, L. Z. Chen,S. H. Wu. Gas/particle Flow Characteristics of a Centrally Fuel Rich Swirl Coal Combustion Burner. Fuel, 2008, 87: 2102–2110
    64 Z. C. Chen, Z. Q. Li, J. P. Jing, H. D. Wei, L. Z. Chen, S. H. Wu, Y. Yao. Experiment Investigations on the Performance of Centrally Fuel Rich Swirl Coal Combustion Burner: Influence of Primary Air Ratio. International Journal of Chemical Reactor Engineering, 2008, Vol. 6, Article A39: http://www.bepress.com/ijcre/vol6/A39
    65 Z. C. Chen, Z. Q. Li, J. P. Jing, F. Q. Wang, L. Z. Chen, S. H. Wu. The Influence of Fuel Bias in the Primary Air Duct on the Gas/particle Flow Characteristics near the Swirl Burner Region. Fuel Processing Technology, 2008, 89: 958–965
    66 Z. C. Chen, Z. Q. Li, J. P. Jing, L. Z. Chen, S. H. Wu, Y. Yao. Gas/particle Flow Characteristics of Two Swirl Burners. Energy Conversion and Management, 2009, 50: 1180–1191
    67王磊,李争起,郝金波,宋资勤,吴少华,秦裕琨.中心风对旋流煤粉燃烧器性能的影响.机械工程学报, 2000, 36(6): 63–67
    68王国忠,吴少华,陈力哲,邱朋华. PDA在炉膛气固两相流动特性研究中的应用.仪器仪表学报, 2005, 26(8): 199–202
    69王国忠,吴少华,刘辉,邱朋华,秦裕琨.主燃区过量空气系数对再燃区速度场影响的试验研究.动力工程, 2006, 26(1): 125–129
    70李志强,李文健.旋流浓淡煤粉燃烧器出口区域气固两相流动特性的实验研究.热能动力工程, 1999, 14(6): 450–454
    71高正阳.双调风旋流煤粉燃烧器技术特点分析与研究.锅炉技术, 1998, 1: 9-13
    72金燕,韦勇华,熊凡凡,张海霞,郑洽余,闫德中.非流线型体的滞止浓缩与弥散过程.热能动力工程, 2000, 15(3): 220–222
    73金燕,韦勇华,熊凡凡,张海霞,郑洽余,闫德中.不良流线体对颗粒滞止浓缩与弥散过程的影响.动力工程, 2001, 21(1): 1140–1142
    74陈世英,刘贵苏,曾汉才,马毓义. WR浓淡分离燃烧器波形扩流锥的选型.华中理工大学学报, 1994, 22(3): 74–77
    75陈世英,刘贵英,曾汉才,马毓义.美国CE-WR燃烧器的混和特性的研究.动力工程, 1995, 15(4): 32–36, 61
    76 I. Gillandt, U. Fristching, K. Bauckhage. Measurement of Phase Interaction in Dispersed Gas/particle Two-phase Flow. Multiphase Flow, 2001, 27: 1313–1332
    77 J. Bao, S. L. Soo. Measurement of Particle Flow Properties in a Suspension by a Laser System. Powder Technology, 1995, 85:261–268
    78 S. Xue, S. E. Hui, Q. L. Zhou, T. M. Xu. Experimental Study on NOx Emission and Unburnt Carbon of a Radial Biased Swirl Burner for Coal Combustion. Energy & Fuels, 2009, 23: 3558–3564
    79 S. Xue, S. E. Hui, T. S. Liu, Q. L. Zhou, T. M. Xu, H. L. Hu. ExperimentalInvestigation on NOx Emission and Carbon Burnout from a Radially Biased Pulverized Coal Swhirl Burner. Fuel Processing Technology, 2009, 90: 1142–1147
    80 M. Costa, J. L. T. Azevedo, M. G. Carvalho. Combustion Characteristics of a Front-wall-fired Pulverized Coal 300 MWe Utility Boiler. Combust. Sci. Technol., 1997, 129: 277–293
    81 M. Costa, P. Silva, J. L. T. Azevedo. Measurements of Gas Species, Temperature, and Char Burnout in a Low-NOx Pulverized Coal-fired Utility Boiler. Combust. Sci. Technol., 2003, 175: 271–289
    82 M. Costa, J. L. T. Azevedo. Experimental Characterization of an Industrial Pulverized Coal-fired Furnace under Deep Staging Conditions. Combust. Sci. Technol., 2007, 179: 1923–1935
    83 R. M. Weber, F. D. Breussin. Scaling Properties of Swirling Pulverized Coal Flames: from 180 KW to 50 MW Thermal Inputs. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998: 2957–2964
    84 L. Aísa, J. A. Garcia, L. M. Cerecedo, I. García Palacín, E. Calvo. Particle Concentration and Local Mass Flux Measurements in Two-phase Flows with PDA. Application to a Study on the Dispersion of sSpherical Particles in a Turbulent Air Jet. Multiphase Flow, 2002, 28: 301–324
    85 H. J. Sheen, W. J. Chen, S. Y. Jeng, T. L. Huang. Correlation of Swirl Number for a Radial-type Swirl Generator. Experimental Thermal and Fluid Science, 1996, 12: 444–451
    86 A. W. Hübner, M. Tummers, K. Hanjali?, Th. H. van der Meer. Experiments on a Rotating-pipe Swirl Burner. Experimental Thermal and Fluid Science, 2003, 27: 481–489
    87 A. Vikhansky, E. Bar-Ziv, B. Chudnovsky, A. Talanker, E. Eddings and A. Sarofim. Measurements and Numerical Simulations for Optimization of the Combustion Process in a Utility Boiler. International Journal of Energy Research, 2004, 28: 391–401
    88 R. P. van der Lans, P. Glarborg, K. Dam-Johansen. Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners. Combustion Science and technology, 1997, 23: 349–377
    89 V. I. Kouprianova, V. Tanetsakunvatanab. Optimization of Excess Air for the Improvement of Environmental Performance of a 150 MW Boiler Fired with Thai Lignite. Applied energy 2003, 74: 445–453
    90 S. Su, J. H. Pohl, D. Holcombe, J. A. Hart. A Comparison of Thermal Condition between Pilot- and Full-Scale Furnaces for Studying Slagging and Fouling Propensity in PF Boilers. Combustion Science and technology, 2001,165: 129–150
    91 T. Abbas, P. Costen, F. C. Lockwood. Influence of near Burner RegionAerodynamics on the Formation and Emission of Nitrogen Oxides in a Pulverized Coal-Fired Furnace. Combustion and Flame, 1992, 91: 346–363
    92 T. Tsumura, H. Okazaki, P. Dernjatin, K. Savolainenc. Reducing the Minimum Load and NOx Emissions for Lignite-fired Boiler by Applying a Stable-flame Concept. Applied Energy, 2003, 74: 415–424
    93 B. W. Butler, B. M. Webb. Local Temperature and Wall Radiant Heat Flux Measurements in an Industrial Scale Coal Fired Boiler. Fuel, 1991, 70: 1457–1464
    94赵伶玲;周强泰.新型旋流燃烧器——花瓣燃烧器的研究与应用.中国电力, 2005, 38(11): 31–34
    95张广全,董建勋,伊磊. EI-XCL型双调风旋流燃烧器性能工业试验研究.东北电力技术, 2007, (9): 19–21
    96李争起,陈智超,孙锐,吴少华.适用于燃用贫煤1025t/h锅炉的中心给粉旋流燃烧器.机械工程学报, 2006, 42(3): 221–226
    97陈智超,李争起,孙锐,吴少华.采用旋流煤粉燃烧方式的1025t/h锅炉结渣原因的工业试验研究.燃烧科学与技术, 2006, 12(4): 300–303
    98由长福,祁海鹰.采用不同湍流模型及差分格式对四角切向燃烧煤粉锅炉内冷态流场的数值模拟.动力工程, 2001, 21(1): 1128–1131
    99 S. Benyahia, H. Arastoopour. Simulation of Particles and Gas Flow Behavior in The Riser Section of a Circulating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase. Powder Technology, 2000, 112: 24–33
    100申春梅,孙锐,吴少华. 1GW单炉膛双切圆炉内煤粉燃烧过程的数值模拟.中国电机工程学报, 2006, 26(15): 51–57
    101 L. K. Huang, Z. Q. Li, R. Sun, J. Zhou. Numerical Study on The Effect of The Over-Fire-Air to The Air Flow and Coal Combustion in a 670 t/h Wall-Fired Boiler. Fuel Processing Technology, 2006, 87: 363–371
    102郭术义.高炉回旋区数学模型与CFX的数值模拟.青岛大学学报, 2006, 21(4): 49–53
    103 M. Ertan Taskin, Anthony G. Dixon, and E. Hugh Stitt. CFD Study of Fluid Flow and Heat Transfer in A Fixed Bed of Cylinders. Numerical Heat Transfer, Part A: Applications, 2007, 52: 203–218
    104赵伶玲,周强泰.旋流燃烧器的稳燃性能分析.动力工程. 2005, 25(3): 364–368
    105尚庆,张健,周力行.旋流燃烧室内气体-颗粒两相湍流流动的数值模拟.化工学报, 2004, 55(9): 1434–1440
    106陈春明,张健,周力行.环形进出口旋流燃烧室内有回流的湍流旋流流动的数值模拟.燃烧科学与技术, 2002, 8(1): 84–88
    107 M. Sommerfeld. The Importance of Inter-particle Collisions in Horizontal Gas-solid Channel Flows. Gas-Particle Flows, 1995, 228: 335–345
    108 M. Sommerfeld. Analysis of Collision Effects for Turbulent Gas–particle Flow in a Horizontal Channel: Part I. Particle Transport. International Journal of Multiphase Flow, 2003, 29: 675–699
    109 M. Sommerfeld and J. Kussin. Analysis of Collision Effects for Turbulent Gas-particle Flow in a Horizontal Channel. Part II. Integral Properties and Validation International Journal of Multiphase Flow, 2003, 29: 701–718
    110 O. Triesch and M. Bohnet. Measurement and CFD Prediction of Velocity and Concentration Profiles in a Decelerated Gas–solids Flow. Powder Technology, 2001, 115: 101–113
    111尚庆,张健,周力行.旋流燃烧室内颗粒运动的数值模拟.工程热物理学报. 2004, 25(3): 515–518
    112 J. Zhang, S. Nieh, L. X. Zhou, H. P. Lu. Simulation of Annular Swirling Turbulent Flows with a New Algebraic Reynolds Stress Model. Numerical Heat Transfer B, 1997, 31: 235–249
    113 J. Zhang, S. Nieh. Simulation of Gaseous Combustion and Heat Transfer in a Vortex Combustor. Numerical Heat Transfer A, 1997, 32: 697–713
    114 J. Zhang, Y. Lei, L. X. Zhou. Simulation of Coaxial Jet Interaction in a Swirl Combustor. Combustion Science and technology, 2004, 176: 23–43
    115曾东和,易超,熊立红.带中心钝体旋流燃烧器的数值模拟.锅炉技术, 2006, 37(3): 37–40
    116曾东和,易超,熊立红.钝体形状对旋流燃烧器出口流场影响的数值研究.动力工程, 2006, 26(3): 375–378
    117 Q. L. Zhou, Q. X. Zhao, N. Li, X. Chen, T. M. Xu and S. E. Hui. A Dimensionless Factor Characterizing the Ignition of Pulverized Coal Flow: Analytical Model, Experimental Verification, and Application. Int. J. Energy Res. 2009, 33: 235–254
    118倪建民,陈云,樊建人,岑可法.旋流燃烧器出口湍流流场的数值模拟.动力工程, 2004, 24(1): 102-105
    119 L. L. Zhao, Q. T. Zhou, C. S. Zhao. Flame Characteristics in a Novel Petal Swirl Burner. Combustion and Flame, 2008, 155: 277–288
    120范洁川.近代流动显示技术.北京国防工业出版社. 2002: 77–112
    121 U. Lackermeier, C. Rudnick, J. Werther, A. Bredebusch, H. Burkhardt. Visualization of Flow Structures Inside a Circulating Fluidized Bed by Means of Laser Sheet and Image Processing, Powder Technology 2001, 114: 71–83
    122赵荣椿.数字图象导论.西安西北工业大学出版社. 1995: 25–35
    123楼顺天.基于MATLAB的系统分析与设计—信号处理.西安西安电子科技大学出版社. 1998: 44–55
    124张华,章明川,王经.同轴旋转分层流燃烧器空气动力场中一次风转捩长度的研究.锅炉技术, 2005, 36(5): 42–46
    125张华,章明川,王经.同轴旋转分层流燃烧器空气动力场中一次风扩展角α的实验研究.热能与动力工程, 2005, 20(4): 402–406
    126 B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman. 1982: 30–72
    127 IFA300 Constant Temperature Anemometer System Instruction Manual. USA: TSI Inc., 2004: 1–22
    128孙锐,马春元,李争起,吴少华,秦裕琨.利用一维热膜探针对旋流燃烧器出口冷态旋流流场的测量.热能动力工程, 2000, 15(86): 165–168
    129刘文铁.锅炉热工测试技术.哈尔滨工业大学出版社, 1992: 98–271
    130 U. R. Mueller. On the Accuracy of Turbulence Measurements with Inclined Hot-wires, Fluid Mech., 1982, 119: 155–172
    131张东,刘广亮.二维热线探针在三维流测量中的应用.沈阳航空工业学院学报, 2008, 25(3): 31–34
    132何佩敖.旋流煤粉燃烧器.电站系统工程, 1988, 4(2): 1–19
    133孙锐,李争起,吴少华,陈力哲,秦裕琨.多只旋流煤粉燃烧器在炉内布置方式研究及应用.燃烧科学与技术, 2000, 6(4): 363–373
    134何佩鏊,赵仲琥,秦裕琨.煤粉燃烧器设计及运行.机械工业出版社, 1987: 79–
    198
    135马春元.径向浓缩旋流煤粉燃烧器的试验研究.哈尔滨工业大学博士学位论文. 1996: 14–16
    136刘建忠.侧边射流横向混合扩散特性研究.燃烧科学与技术, 1995, 4(1): 360–365
    137吴江.超低NOx旋流燃烧器中的分层流机理研究.上海交通大学博士学位论文. 2003: 16, 16–36
    138 J. Wu, M. C. Zhang, H. J. Fan, W. D. Fan, Y. G. Zhou. A Study on Fractal Characteristics of Aerodynamic Field in Low-NOx Coaxial Swirling Burner. Chemical Engineering Science, 2004, 59: 1473–1479
    139罗军辉,冯平. matlab7.0在图像处理中的应用.机械工业出版社, 2005: 40–52
    140章毓晋.图象处理与分析,清华大学出版社. 2000: 49–54
    141 K.J. Falconer.分形几何数学基础及其应用.东北大学出版社, 1991: 78–100
    142董连科.分形理论及其运用.辽宁科学出版社,1991: 96–102
    143高安秀树,沈步明,常子文译.分数维.地震出版社, 1992: 7–25
    144 T. Takeno, M. Murayama, Y. Tanida. Fractal Analysis of Turbulent Premixed Flame Surface. Experiments in fluids, 1990, (10): 61–70
    145 R. R. Prasad, K. R. Sreenivasan. The Measurement and Interpretation of FractalDimensions of Scalar Interface in Turbulent Flows. Phys. Fluids A, 1990, 2(5): 792–807
    146 P. Berge, Chaotic Behavior in a Non-linear System, Spring-Verlag, 1987: 56–65
    147 A. Brandstater, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer. Low-dimension Chaos in a Hydrodynamic System. Phys. Rev. Lett., 1983, 52: 1442–1445
    148 P. Tabelling, Sudden Increase of the Fractal Dimension in a Hydrodynamic System. Phys. Rev., 1985, A31: 3460–3462
    149 F. C. Gouldin. An Application of Fractals to Modeling Premixed Turbulent Flame. Combustion and Flame, 1987, 68: 249–266
    150 G. J. Smallwood. Characterization of Flame Front Surface in Turbulent Premixed Methane/Air Combustion. Combustion and Flame, 1995, 101: 461–470
    151 M. Ismail. Char Burnout and Flame Stability in Pulverized Fuel Furnace. Ph.D. Dissertation, Department of Mechanical Engineering, University of London, 1989
    152 L. D. Smoot, P. O. Hedman and P. J. Smith. Pulverized-coal Combustion Research at Brigham Young University. Prog. Energy Combust. Sci., 1984, 10: 359–441
    153 C. F. You and Y. Zhou. Effect of Operation Parameters on the Slagging near Swirl Coal Burner Throat. Energy Fuels, 2006, 20: 1855–1861

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700