用户名: 密码: 验证码:
大型干式安全壳严重事故条件下氢气控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在压水堆核电厂严重事故进程中,锆合金包壳与水蒸汽反应和压力容器外的熔融堆芯与混凝土相互作用等过程会产生大量的氢气,并释放到安全壳空间中。释放的氢气在安全壳内扩散流动,与水蒸汽、空气混合,形成可燃混合气体。在一定条件下,这些混合气体可能发生爆燃甚至爆炸,所产生的高温及压力载荷会危及到安全壳完整性,放射性裂变产物因此可能释放到环境中,造成严重后果。
     对于氢气风险而言,尤其是现有核电厂安全改进和先进核反应堆设计的氢气安全问题,目前最迫切的一个研究课题是如何提出有效的氢气控制方案,满足核电厂的事故管理要求。针对严重事故条件下的大型干式安全壳氢气安全与管理,本论文利用安全分析的基本方法建立了氢气安全分析和管理评价框架,该框架的核心是一套系统性分析流程,内容包括:①、如何标定和验证所使用的分析工具;②、如何建立氢气分析模型,并对模型进行验证,保证计算结果的准确性;③、如何选择最具典型意义的严重事故工况;④、氢气源项的释放特性;⑤、氢气在安全壳内的流动分布;⑥、氢气燃烧风险评估;⑦、氢气缓解措施(例如,氢气复合器、点火器)的效果分析;⑧、氢气缓解措施的优化设计。主要的研究内容包括:
     (1)基于确定性分析和核电厂1级概率安全分析(PSA),提出一种新的事故分析方法。通过对大破口失水(LB-LOCA)、中破口失水事故(MB-LOCA)、小破口失水事故(SB-LOCA)、全厂断电事故(SBO)和蒸汽发生器管道断裂事故(SGTR)诱发的严重事故工况下氢气产生的分析,研究了压水堆核电厂的氢气源项特性。研究发现:从氢气安全分析角度,严重事故工况可分为快速氢气释放(如LB-LOCA、MB-LOCA)、中等速度的氢气释放(如SB-LOCA、SBO)、慢速氢气释放(如SGTR)三种类型;其中,考虑安全壳内容纳等效于100%锆-水反应的产氢总量,LB-LOCA具有包络其他事故工况的特点。
     (2)以典型的大破口失水严重事故为计算基准,本文研究了氢气在安全壳空间内的流动特性和浓度分布。研究表明,喷淋对安全壳内氢气浓度分布有很大的负面作用,喷淋使得安全壳大气中的水蒸汽迅速冷凝成液滴,从而降低了隔间的水蒸汽浓度,增加安全壳内的氢气浓度和氧气浓度。进一步地,文章研究了不同浓度下安全壳内可能的氢气燃烧模式及燃烧风险。分析表明,喷淋效应会极大地增加氢气爆炸的风险,并直接威胁到安全壳完整性,因此综合地评估喷淋对氢气浓度和氢气燃烧的影响作用是氢气安全分析框架中的重点之一。
     (3)针对我国压水堆核电厂的实际情况,本文对比研究了各种氢气缓解措施,确定非能动氢气催化复合器、点火器及“点火器+复合器”联合使用作为大型干式安全壳核电厂三种主要的氢气管理策略。为了评估氢气管理策略的效果,本文开发了基于安全壳复杂结构空间的复合器和点火器分析模型。在此基础之上,论证了复合器、点火器以及“点火器+复合器”的消氢效果,包括消氢效率、点火时机、点火器位置、燃烧对安全壳的压力温度载荷影响等,并进一步提出一种氢气管理方案的优化设计准则。
     (4)局部氢气爆炸是氢气风险分析中十分重要的内容,集总参数方法(LP)不能模拟局部气体混合的细节,而计算流体力学方法(CFD)可以很好地弥补这个缺点。本文从LP方法分析结论出发,提出分析重点是“压力容器内氢气释放阶段的氢气在安全壳内的流动分布”的观点,并使用CFD程序,研究了氢气在安全壳局部空间的流动特性,作为集总参数方法分析结论的重要补充。集总参数方法和计算流体力学方法相结合的应用研究,为氢气安全分析提供了一种新的思路。
     本论文全面地研究了核电厂氢气安全分析的各个环节,为我国核电厂严重事故氢气控制与管理提供了一种新的方法,对于现有核电厂安全改进和新建核电厂满足相关法规要求,也具有现实的工程意义和参考价值。
During certain severe accidents in the pressurized water reactor (PWR) nuclear power plant (NPP), a great amount of hydrogen is generated due to zirconium-steam reaction (in-vessel period) and molten corium concrete interaction (ex-vessel period) and released into the containment. A flammable mixture (hydrogen/steam/air) is gradually formed in containment atmosphere, under the effects of hydrogen diffusion and flow. Deflagration or detonation might occur to produce high thermal and pressure loads, which may threaten the integrity of the containment, and the resulting large quantity of radioactive materials are eventually leaked into the environment.
     For the special hydrogen safety issues of current NPP’s safety enhancement and advanced reactors’design, one of the most significant questions for discussion is how to design an effectual hydrogen control strategy to satisfy the regulatory requirements. Base on the safety analysis theories and methods, a new framework of hydrogen safety analysis and hydrogen management is presented in this paper, for the hydrogen control and management in large dry containment under severe accident conditions. The key content of the framework is one systematic analysis process, including:①, how to identify and verify the analytical tools;②, How to establish and verify the hydrogen analysis model to make the calculation results correct;③, how to choose the most typical severe accident condition;④, the characteristics of hydrogen sources;⑤, hydrogen flow and distribution in the containment atmosphere;⑥, assessment of hydrogen combustion risk;⑦, efficiency analysis of hydrogen mitigative messures, such as catalytic recombiner or igniter;⑧, optimization design of hydrogen mitigative messures.
     The significant research fields are included as follows:
     (1) On the basis of a new method of accident analysis, where deterministic analysis and level 1 probabilistic safety assessment (PSA) results are integrated, typical severe accident sequences are calculated, such as large-break loss-of coolant-accident (LB-LOCA), middle-break loss-of coolant-accident (MB-LOCA), small-break loss-of coolant-accident (SB-LOCA), station blackout (SBO) and steam generator tube rupture (SGTR), and the characteristics of hydrogen sources are investigated. The research results show that severe accident scenarios may be ranked into three types: the fast hydrogen releasing (LB-LOCA, MB-LOCA), the intermediate hydrogen releasing (SB-LOCA, SBO) and the slow hydrogen releasing (SGTR), where LB-LOCA is the most typical accident scenario, considering that the amount of hydrogen in containment is equivalent to that generated from a 100% zirconium-steam reaction.
     (2) Hydrogen flow and hydrogen concentration distribution in containment atmosphere under LB-LOCA as the basic calculating accident scenario are investigated. The study shows that the containment spray has a great side effect to hydrogen concentration distribution, because of the phenomenon of steam condensation and the resulting hydrogen concentration increase. The analysis of hydrogen combustion risk under different atmosphere conditions shows that the spray would increase greatly the probability of hydrogen detonation, and threaten the integrity of the containment. Therefore, to assess detailedly the containment spray which impacts on hydrogen concentration distribution and hydrogen combustion is a significant step in the framework of hydrogen safety analysis and hydrogen management.
     (3) PARs, igniters and the combination of PARs and igniters are three important hydrogen management strategies for the nuclear power plant with a large dry containment. The analytical models of PARs and igniters, based on the complex containment structure, are developed to evaluate the efficiency of the hydrogen mitigative messures, including hydrogen removal efficiency, time of ignition, position of igniters, pressure and temperature loads to containment due to hydrogen combustion, etc. On the base of the research work above, a criterion of optimization design for hydrogen management strategies is proposed in this paper.
     (4) The local deflagration or detonation is one of most important issues in the hydrogen risk analysis, and the lumped-parameter (LP) method does not simulate detailedly the local hydrogen distribution, while the computational fluid dynamics (CFD) method could conquer the shortcoming above. Based on the foregoing research results,“containment hydrogen distribution in the in-vessel period”is analyzed by the computational fluid dynamics (CFD) method at the end of this paper, as an important complementarity for the calculating results of lumped parameter (LP) code. The combination of LP and CFD is a new application in hydrogen safety anlaysis.
     This study presents an integral analytical framework of hydrogen safety, and provides a new technique of hydrogen control and management during severe accidents, which is of engineering significance and reference value for nuclear power plants in China.
引文
[1] Sehgal B.R. Accomplishments and challenges of the severe accident research. Nuclear Engineering and Design. 2001, 210: 79-94.
    [2] US NRC. Severe accident risks: an assessment for five U.S. nuclear power plants. NUREG-1150, 1990.
    [3]濮继龙.压水堆核电厂安全与事故对策.北京:原子能出版社. 1995.
    [4]朱继洲,奚树人,杨志林,等.核反应堆安全分析.西安:西安交通大学出版社.2000.
    [5]徐进良,薛大知.轻水堆严重事故及可能的缓解措施.核动力工程,1998,19(5):423~430.
    [6] Alvares N.J., Beason D.G., Eidam G.R., et al. Investigation of Hydrogen Burn Damage in the TMI-2 Reactor Building. Transactions of the American Nuclear Society. 1982, 43: p11-12.
    [7] Henrie J.O., Postma A.K. Analysis of the TMI-2 Hydrogen Burn. Transactions of the American Nuclear Society. 1982, 43: p12-13.
    [8] OECD/NEA. State-of-the-Art Report on Containment Thermalhydraulics and Hydrogen Distribution. NEA/CSNI/R(99)16, 1999.
    [9] Duco J, Durin M. Rationale for the implementation of hydrogen mitigation techniques on French PWRs. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [10] Vendel J, Armand P. Large scale hydrogen-air-steam experiments in the RUT facility. Hydrogen combustion work group meeting, Tokyo. 1995.
    [11] EURSAFE. FISA 2001: EU research in reactor safety, Luxembourg. EUR 20281. 12-15 November 2001.
    [12] Cheikhravat H., Yahyaour M., Barret A., et al. Influence of hydrogen distribution on flame propagation. Thire European combustion meeting. 2007.
    [13] Choi Y.S., Lee U.J., Lee J.J., Park G.C. Improvement of HYCA3D code and experimental. verification in rectangular geometry. Nuclear Engineering and Design. 2003, 226: 337-349.
    [14] Rongier P., Studer E., Sabroux J.C., et al. Passive Autocatalytic Recombiner Testing in H2PAR. CSARP Meeting, Albuquerque, New Mexico, May 3-6, 1999.
    [15] Braillard O., Guieu S., Hosler J., et al. Tests of Passive Autocatalytic Recombiners for Combustible Gas Control in Nuclear Power Plants. The 2nd Meeting on ARS, Orlando, Florida, June 1-5, 1997.
    [16] Blanchat T.K. Analysis of hydrogen depletion using a scaled passive autocatalytic recombiner. SAND98-2436J, 1998.
    [17] Blanchat T.K., Malliakos A.C. Testing a passive autocatalytic recombiner in the Surtsey facility. Nuclear Technology. 2000, 129: 356-372.
    [18] Dewit W.A., Koroll G.W., Loesel Sitar J. Hydrogen Recombiner Development at AECL. Workshop on the Implementation of Hydrogen Mitigation Techniques. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [19] Wolf L., Valencia L., Kanzleiter T. Theoretical and experimental investigations on large-scale, long-term thermohydraulics relevant to severe accident conditions in containment. Proceedings of the international center for heat and mass transfer 1990: 635-655.
    [20] Electric Power Research Institute (EPRI). Qualification of passive autocatalytic recombiners for combustion gas control in ALWR containments. Advanced Light Water Reactor Program report. Palo Alto, CA, 1993.
    [21] Kim H.C., Lee J.I. The status of KINS review on Wolsong 2-4 PSA and hydrogen behavior issue. The 2nd Japan-Korea Joint Workshop on PSA. Tokyo, Japan. 1993.
    [22] Kim H.C., Lee J.I, Lee S. An application of CONTAIN code to hydrogen distribution analysis following a LOCA in the CANDU-6 containment. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [23] Watada M, Furuta T. Hydrogen combustion management during severe accident at the plant with the ice condenser type containment. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [24] Wang L.L. Modelling of hydrogen deflagration in a vented vessel. Proceedings of the 19th CNS simulation symposium. Hamilton, Ontario. 1995.
    [25] Spore W., Travis J. R., Royl P., et al. GASFLOW: A Computational Fluid Dynamics Code for Gases Aerosols, and Combustion Volume 2 User’s Manual, LA-13357-M ,FZKA-5994, 1998.
    [26] Royl P. Analysis of mitigating measures during steam/hydrogen distributions in nuclear reactor containments with the 3D field code GASFLOW. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996
    [27] Royl P. Validation of GASFLOW for analysis of steam/hydrogen transport and combustion processes in nuclear reactor containments, Proceedings 13th SMiRT Conference. Porto Alegre, Brazil. 1995.
    [28] Rohde J. Development and validation of a catalytic recombiner model for the containment code RALOC MOD 4.0. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [29] Yim K. GOTHIC analysis of post-accident hydrogen mixing behavior in CANDU fuelling machine vault. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996
    [30] Yim K. Hydrogen mixing study in CANDU containments- cell size spatial convergence analysis on GOTHIC distributed parameter models. Proceedings of the 19th CNS simulation symposium, Hamilton, Ontario, 1995
    [31] Dorofeev S.B. Numerical study of detonation self-initiation conditions. The 15th ICDERS. Colorado, USA. 1995
    [32] Dorofeev S.B, Sidorov V.P. Deflagration to Detonation Transition in Large Confined Volume ofLean Hydrogen-Air Mixtures. Combustion and Flame. 1996, 104: 95~110
    [33] Durst B. Interaction of turbulence deflagration with representative flow obstacles. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [34] Preusser G. Concept for the analysis of hydrogen problems un nuclear power plants after accidents. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [35] International Atomic Energy Agency (IAEA). Mitigation of hydrogen hazards in water cooled power reactors. IAEA-TECDOC-1196, 2001.
    [36]郎明刚.大亚湾核电厂全厂断电诱发的严重事故研究[博士学位论文].北京:清华大学. 2002.
    [37]郎明刚.压水堆部分堆芯参数敏感性分析.核科学与工程. 2002, 2: 8~11.
    [38]甘向阳.大亚湾核电厂二级PSA中的LOCA诱发严重事故的研究[博士学位论文].北京:清华大学. 2001.
    [39]林继铭.严重事故下安全壳喷淋模式的研究[硕士学位论文].北京:清华大学. 2003.
    [40]林继铭,贾宝山,刘宝亭.喷淋模式对氢气爆炸影响的初步研究.核动力工程. 2004, 25(2): 275~283.
    [41]宋春景.典型严重事故下安全壳内氢分布分析及对策探讨[硕士学位论文].上海:上海核工程研究设计院. 2004.
    [42]宋春景,翁明辉,王勇.严重事故下安全壳内的氢气控制.核电工程与技术. 2004, 2.
    [43]陈松,刘鑫,史国宝,等.严重事故下安全壳内环境条件计算分析.核动力工程,2006,27(1):13~17.
    [44]方立凯,陈松,周全福.严重事故下核电厂安全壳内氢气分布及控制分析[J].核动力工程. 2006,27(1):18~22.
    [45]骆邦其,陈巧艳,唐文忠. 60万千瓦核电厂严重事故情况下安全壳内的氢气浓度分布与消氢系统初步分析.核工程,第52期.
    [46]肖建军,周志伟,经荥清.核电厂安全壳内氢气扩散和燃烧的分析程序GASFLOW及其应用.核科学与工程. 2005, 25(4): 317~321.
    [47]肖建军,周志伟,经荥清.严重事故氢气燃爆缓解措施的初步研究.核动力工程. 2006, 27(2): 64~67.
    [48]肖建军,周志伟,经荥清.氢气复合器与点火器消氢效率与安全性.清华大学学报. 2006,46(3): 444~448.
    [49]肖建军,周志伟,经荥清.严重事故安全壳内氢气传输与混合的三维数值模拟.第九届全国反应堆热工流体学术会议.西安. 2005.10.
    [50]肖建军.严重事故下安全壳内氢气分布及缓解措施研究[博士学位论文].北京:清华大学. 2006.
    [51] Xiao J J, Zhou Z W, Jing X Q. Simulation of hydrogen mixing and transport in the containment using CFD codes. The 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, China. August 7-12, 2005.
    [52] Smith C, Borgonovo E, Apostolakis G. Review of International Activities in Accident Management and Decision Making in the Nuclear Industry. MIT. 1999.
    [53] Boeck B D. Prevention and mitigation measures to ensure containment integrity. Nuclear Engineering and Design. 2001, 209: 147~154
    [54] Bachellerie E, Arnould F, Auglaire M. Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nuclear Engineering and Design. 2003, 221: 151~165
    [55] Fineschi F, Bazzichi M, Carcassi M. A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition. Nuclear Engineering and Design. 1996, 166: 481~494.
    [56]国家核安全局.新建核电厂设计中的几个重要安全问题的技术政策.北京. 2002.
    [57]国家核安全局.核动力厂设计安全规定.北京. 2004.
    [58] Boeck B D. Introduction to severe accident: especially the containment behavior. AVN-97/013. 1997.
    [59] US NRC. Reactor Safety Study: an assessment of accident risks in U.S. commercial nuclear power plants. WASH-1400 (NUREG-75/014). Washington, USA. 1975.
    [60] Droulas J L, Nebois L. In-vessel hydrogen production assessment during severe accident sequences. EDF/SEPTEN- Annual meeting of ANS. Reno, USA. 1996.
    [61] OECD/NEA. In-vessel and ex-vessel hydrogen sources. NEA/CSNI/R(2001)15, 2001.
    [62] OECD/NEA. PWG4 perspective on ex-vessel hydrogen sources. NEA/CSNI/R(2000)19, 2000.
    [63] Bradley D.R., Garnder D.R., Brockmann J.E., et al. CORCON-MOD3: an integrated computer model for analysis of molten core-concrete interactions User's Mannual. NUREG/CR-5843, 1993.
    [64] Copus E.R., Blose R.E., Brockmann J.E., et al. Core-concrete interactions using molten urania with zirconium on a limestone concrete basemat. NUREG/CR-5443, 1992.
    [65] Allelein H.J., Bürger M. Considering on ex-vessel corium behavior:Scenarios, MCCI and coolability. Nuclear Engineering and Design. 2006, 236: 2220-2236.
    [66] OECD/NEA. The implementation of hydrogen mitigation techniques: Summary and conclusions. NEA/CSNI/R(96)9, 1996.
    [67] BRAY, A.P. Consideration pertaining to containment inerting. General Electric, PED-5654, 1968.
    [68] Heising-Goodman C.D., Lepervanche-Valencia J. A probabilistic assessment of containment inerting in BWRs. Proceedings of International Conference on Current Nuclear Power Plant Safety Issues, Stockholm, Vienna, 1981.
    [69] International Atomic Energy Agency (IAEA). the question of containment inertization for the BWR Mark II Laguna Verde nuclear power project. Advisory Safety Mission to Mexico, 1984.
    [70] Harris M.A., Hobbs S.H., Ashton D.H. A technical evaluation of a post-accident CO2 inerting control system. The 2and International Conference on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, Washington D.C., 1982。
    [71] KARWAT H., STOLZE, P. The inertization of PWR containment by injection of carbon dioxide. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [72] Visser J.G., Mercx W.P.M., Vayssier G.L.C.M. The quenching of hydrogen/air flames in obstructed and multi-compartment configurations by partial inertization. Nuclear Technology. 1994,105(2) : 59-69.
    [73] Eckardt B.A. Semi-passive PAD (Post-Accident Dilution) system combined with recombiners or igniters for e.g., multiple-unit VVER. Proceedings of the OECD/NEA/CSNI Workshop on the implementation of hydrogen mitigation techniques. Winnipeg, Manitoba. 1996.
    [74] Hech, R., Hill, A. A two-pronged approach to hydrogen reduction. Nuclear Engineering.1992, 3: 21-28.
    [75] International Atomic Energy Agency (IAEA). Safety of nuclear power plants: design. IAEA safety standard aeries No.NS-R-1. 2000.
    [76] US NRC. Safety goals for the operation of nuclear power plants: policy statement, correction and republication. 10CFR Part50. Washington, USA. 1986.
    [77] Bedford T., Cooke R. Probabilistic risk analysis: foundations and methods. Cambridge: Cambridge University Press. 2001.
    [78] International Atomic Energy Agency (IAEA). Applications of probabilistic safety assessment (PSA) for nuclear power plants. TECDOC-1200, 2001
    [79] Electric Power Research Institute (EPRI). MAAP User’s Manual. EPRI Research Project 3131-02, 1994.
    [80] Wolf L., Valencia L., Kanzleiter T. Overview of the HDR-Containment Tests. Proceedings of the U.S. Nuclear Regulatory Commission, Eleventh Water Reactor Safety Research Information Meeting. NUREG/CP-0048, 1984.
    [81] OECD/NEA. International Standard Problem ISP 23: Rupture of a large-diameter pipe within the HDR-containment. CSNI-Report No. 160, 1989.
    [82] OECD/NEA. International standard problem 29: distribution of hydrogen within the HDR containment under severe accident conditions. NEA/CSNI/R(1993)4, 1993.
    [83] Schanz G. Recommendations and supporting information on the choice of zirconium oxidation model in severe accident codes. FZKA 6827, 2003.
    [84] Schanz G., Adroguer B., Bolchek A. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations Part I. Experimental database and basic modelling. Nuclear Engineering and Design. 2004, 232: 75-84.
    [85] Volchek A., Zvonarev Yu.,Schanz G. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations Part II. Best-fitted parabolic correlation. Nuclear Engineering and Design. 2004, 232: 85-96.
    [86] Fichot F., Adroguer B., Volchek A., Zvonarev Yu. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations Part III. Verification against representative transient tests. Nuclear Engineering and Design. 2004, 232: 97-109.
    [87] Davis, K.L., Allison, C.M., Berna, G.A. SCDAP/RELAP5/MOD 3.1 code manual: Damage progression model theory. NUREG/CR-6150-Vol.2, 1995.
    [88] Summers, R.M., Cole, R.K. Jr., Smith, R.C., et al. MELCOR computer code manuals. NUREG/CR-6119, 1995.
    [89] Avakian G. Theoretical model of hydrogen recombiner for a nuclear power plant. The 7th International Conference on Nulcear Engineering. April 19-23, Tokyo, Japan, 1999.
    [90] Heitsch M. Fluid dynamic analysis of a catalytic recombiner to remove hydrogen. NuclearEngineering and Design. 2000, 201: 1-10.
    [91] Reinecke E.A., Tragsdorf I.M., Gierling K. Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors. Nuclear Engineering and Design. 2004, 230: 49-59.
    [92] Jiménez M.A., Martín-Valdepe?as J.M., Martín-Fuetes F., et al. A detailed chemistry model for transient hydrogen and carbon monoxide catalytic recombination on parallel flat Pt surfaces implemented in an integral code. Nuclear Engineering and Design. 2007, 237: 460-472.
    [93] Dewit W A, Koroll G W, Sitar J L, et al. Hydrogen recombiner development at AECL. Proc. OECD/NEA/CSNI Workshop on the Implementation of Mitigation Techniques. Winnipeg. 1996.
    [94] Behrens U, Seidler M, Wolff U. Hydrogen mitigation using catalyst modules. Proc. of CEC/IAEA/KAEI Workshop on Hydrogen Behaviour and Mitigation in Water-cooled Nuclear Power Reactors. Brussels. 1991。
    [95] Wolff U. Control of hydrogen concentration in reactor containment buildings by using passive catalytic recombiners. Proc. 2nd ASME-JSME Int. Conf. on Nuclear Engineering. San Francisco, CA. 1993.
    [96] Kumar R.K, Koroll G.W. Hydrogen combustion mitigation concepts for nuclear reactor containment buildings. Nuclear Safety. 1992, 33(3): 398-416.
    [97] Ferroni F. Design comparison of devices for the catalytic removal of hydrogen. Proc. Int. Conf. on Nuclear Containment. University of Cambridge, England. 1996.
    [98] Brockerhoffrock P. Removal of hydrogen by means of catalytic measures. Proc. Post-SMiRT 14 Int. Seminar 18 on Passive Safety Features in Nuclear Installations, Pisa, Italy. 1997.
    [99] Fineschi F. Loading on partition walls due to hydrogen deflagration - tests in a multi-compartment small scale containment. American Society of Mechanical Engineers. New York. 1998: 3-10.
    [100] Fineschi F, Carcassi M.N, Lusini L. Amplification of the maximum overpressure of hydrogen deflagration in multi-compartment containments. Korean Society of Mechanical Engineers. Seoul. 1998: 275-282.
    [101] Breitung B.A., Dorofeev S.B., Travis J.R. A mechanistic approach to safe igniter implementation for hydrogen mitigation. Proc. OECD/NEA/CSNI Workshop on the Implementation of Mitigation Techniques. Winnipeg. 1996.
    [102] Meneley D.A. A designer’s view of hydrogen mitigation.
    [103] Khosla J.K., Rizk M. Hydrogen mitigation systems - a canadian Regulatory Perspective. Proc. OECD/NEA/CSNI Workshop on the Implementation of Mitigation Techniques. Winnipeg. 1996.
    [104] Watada M., Furuta T., Ohtani M., et al. Hydrogen combustion management during a severe accident at the plant with the ice condenser type containment. Proc. OECD/NEA/CSNI Workshop on the Implementation of Mitigation Techniques. Winnipeg. 1996.
    [105] Kanzleiter T.F. Multi-compartment hydrogen deflagration experiments in the Battelle-Frankfurt Model Containment. Proc. ITth Water Reactor Safety Mtg., NUREG/CP-0105, 1990.
    [106] Lothar W., Ashok R., Daq W., et al. Detailed assessment of the Heiss Dampf Reaktor hydrogen deflagration experiments E12. Nuclear Technology. 1999, 125(2): 136-154.
    [107] Zaslonko I.S., Karpov V.P., Frolov S.M., et al. Flame-jet ignition of fuel air mixtures: experimentalfindings and modeling. Proc. 16th Int. Conf. Dynamics of Explosions and Reactive Systems (ICDERS-16), Heidelberg, Germany, 1999.
    [108]余常昭.紊动射流.北京:高等教育出版社. 1993.
    [109]赵承庆,姜毅.气体射流动力学.北京:北京理工大学出版社. 1998.
    [110] Chen C.J., Jaw S.Y. Fundamentals of turbulence modeling. Washington, DC: Taylor & Francis. 1998.
    [111] Davidson P.A. Turbulence : an introduction for scientists and engineers. Oxford, UK, New York: Oxford University Press. 2004.
    [112]张兆顺.湍流.北京:国防工业出版社. 2002.
    [113]罗迪著.湍浮力射流与羽流.刘兰芬,王能家译.北京:海洋出版社. 1991.
    [114] Fabio M., Daniele M., Fulvio T., et al. Francesco Application of CFX-10 to the investigation of RPV coolant mixing in VVER reactors. The 14th International Conference on Nuclear Engineering, 2006.
    [115] Bogdan Y., Gyula C., Attila A. CFD analysis of coolant flow in VVER-440 fuel assemblies with the code ANSYS CFX 10.0. The 14th International Conference on Nuclear Engineering, 2006.
    [116] Gabor L., Attila A. Detailed CFD analysis of coolant mixing in VVER-440 fuel assembly heads performed with the code CFX-5.5. the 12th International Conference on Nuclear Engineering, 2004.
    [117] Thomas H., Soren K., Ulrich R., et al. Modeling of a buoyancy-driven flow experiment at the ROCOM test facility using the CFD codes CFX-5 and Trio_U. Nuclear Engineering and Design. 2006, 236(12): 1309-1325.
    [118] Thomas H., Soren K., Ulrich R., et al. Buoyancy driven coolant mixing studies of natural circulation flows at the rocom test facility using ansys CFX. The 14th International Conference on Nuclear Engineering, 2006.
    [119] Daniele B., Matthias H., Heinz ., CFD simulations of hydrogen combustion in a simplified EPR containment with CFX and REACFLOW. Nuclear Engineering and Design. 2007, 237(15-17): 1668-1678.
    [120] Michele A., Putz, F., Dury, T.V., et al. On the application of field codes to the analysis of gas mixing in large volumes: Case studies using CFX and GOTHIC. Annals of Nuclear Energy. 2003, 30( 6): 685-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700