用户名: 密码: 验证码:
电泳—电沉积镍基纳米复合镀层及其性能的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合镀层由于具有优异的物理机械性能而受到广泛的研究与关注。在目前的研究中,主要是通过纳米粒子与基质金属的共沉积来制备纳米复合镀层,由于共沉积工艺所制备纳米复合镀层中的微粒含量极低,纳米粒子的独特性能未能得到充分发挥,复合镀层的性能难以得到更为有效的提高。
     为充分发挥纳米粒子的性能,制备具有更高微粒含量的纳米复合镀层,本文提出了采用电泳-电沉积制备纳米复合镀层的新工艺。具体为:首先在基体表面电泳沉积均匀分布且良好分散的纳米粒子,然后在微粒孔隙之中电沉积基质金属,以基质金属镶嵌纳米粒子而获得纳米复合镀层。采用电泳-电沉积工艺制备纳米复合镀层的微粒体积含量在15%~60%之间,微粒含量的显著提高使得镀层中纳米粒子的独特性能得以充分发挥。
     本文的主要研究内容及其结论如下:
     1.开展了纳米粒子的电泳沉积研究。系统研究了电泳沉积参数对电泳沉积量及沉积层中纳米粒子分散状态的影响,优选了对纳米Al2O3粒子在乙醇溶液中具有解团聚作用的分散剂,初步实现了均匀分布且具有良好分散的纳米粒子电泳沉积层的制备。
     2.研究了电泳-电沉积工艺制备纳米复合镀层的工艺过程。通过分析金属电沉积过程中纳米粒子分布状态的变化,提出了电沉积过程中纳米粒子存在着被扰动与再沉积的现象;系统分析了电泳-电沉积工艺中各工艺参数对纳米复合镀层微粒含量及其分散状态的影响,并研究了各工艺参数组合下复合镀层所能达到的最大厚度。
     3.对电泳-电沉积纳米复合镀层的表面形貌、组织成分及微观结构进行了测试与分析。研究了主要工艺参数对纳米复合镀层微观形貌的影响;以各微区内微粒含量的均方差为评价指标,采用正交试验研究了影响镀层中纳米粒子分布均匀性的主要因素,并就纳米粒子对基质金属择优取向的影响,以及纳米复合镀层的微观组织结构进行了分析。研究表明,电泳液微粒浓度与电沉积阴极电流密度是影响镀层中纳米粒子分布状态的主要因素;经过良好分散的纳米粒子可以显著细化基质金属晶粒,复合镀层的表面平整,组织致密均匀,弥散分布的纳米粒子与基质金属之间有着良好的结合,纳米粒子的存在对基质金属的择优取向产生了明显影响。
     4.对纳米复合镀层的显微硬度、耐磨性、耐蚀性及其与基体的结合性能进行了研究。结果表明,纳米粒子的强化作用使得纳米复合镀层的显微硬度与耐磨性能均有明显提高,其磨损形式主要是以磨料磨损为主;与纯镍镀层相比,复合镀层在各类腐蚀介质中的腐蚀凹坑更为细小和均匀,镀层表面的腐蚀均匀性有所提高;纳米复合镀层与基体的结合强度同镀层中的微粒含量有关,当微粒含量在一定范围内时,复合镀层的结合强度优于纯金属镀层的结合强度。
Nano-composite coatings are widely studied because of its excellent physical mechanical properties. The nano-composite coating is prepared mainly by nanoparticles codeposition with matrix metal at present. Because only a few nanoparticles were embedded in the coatings by this method, the properties of the coatings is unable to be improved significantly.
     In this dissertation, a new technique, electrophoretic-electrochemical deposition, was proposed to produce nano-composite coatings with high content of nanoparticles. A uniform film of nanoparticles was first electrophoretically deposited on a substrate, the matrix metal was then electrodeposited onto the substrate covered with the film of these nanoparticles. By adopting this method, the nano-composite coatings with 15~60vol% of nanoparticles can be obtained. The properties of the coatings can be improved efficiently because plenty of nanoparticles exists in the coatings.
     The main researches and conculsions are given as follows:
     1. The researches on electrophoretic deposition of nanoparticles were carried out. The influence of the process parameters on the deposition weight and dispersion state was studied, the deposition layer with uniform distribution and well dispersed nanoparticles was produced by optimizing the dispersant.
     2. The process of electrophoretic–electrochemical deposition was studied. Through analyzing the changes of the nanoparticles distribution state, a phenomenon was observed that nanoparticles was disturbed and redeposited at the electrodeposition process. The effects of the parameters on the particle content and the nanoparticles dispersion state were systematically analyzed, and the maximum thickness of the composite coatings was studied.
     3. Surface morphology, component, and microstructure of the nano-composite coatings were examined. The effects of process parameters on the micro-morphology of the nano-composite coatings were investigated. With the mean square deviation of the particle content in the micro-region as an evaluating index, the effects of the parameters on the distribution uniformity of the particles were studied by orthogonal test. Meanwhile, the crystal orientation of matrix metal and microstructure of nano-composite coatings were examined. The results indicated that, the main factors that influenced the particles distribution state were the concentration of nanoparticles in electrophoretic bath and the current density at the electrodeposition process. The nano-composite coatings exhibit a smooth surface and compact microstructure. Nanoparticles are dispersed inside the metallic matrix and combined with the metallic matrix closely. In electrodeposition process, nanoparticles affect the preferred orientation of matrix metal remarkably.
     4. The properties of the nano-composite coatings, such as microhardness, wear resistance, corrosion resistance and adhesion strength were evaluated. The results showed that the microhardness and wear resistance of the nano-composite coatings were significantly increased, and the major wear pattern under dry friction conditions was abrasive wear mechanism. Compared with pure Ni coating, the corrosion pits of the nano-composite coatings become smaller and more uniform. The bonding strength is related to the particle content, when the particle content is in a certain ratio, adhesion strength of the nano-composite coatings is better than the pure metallic coating.
引文
[1]邓世均.高性能陶瓷涂层.北京:化学工业出版社,2004
    [2]郭鹤桐,张三元.复合镀层.天津:天津大学出版社,1991
    [3]赵海军,刘磊,朱建华,等.复合电镀镍基自润滑材料的研究进展.机械工程材料,2004,28(7):1~3
    [4]杜令忠,徐滨士,董世运,等.纳米复合镀层的研究现状.兵器材料科学与工程,2004,27(3):68~72
    [5]王清滨,田秋,宿辉,等.纳米复合镀层的研究进展.材料工程,2004,(6):45~48
    [6]徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社,1999
    [7]李卫东,周晓荣,左正忠,等.电沉积复合镀层的研究现状.电镀与精饰,2000,19(5):44~49
    [8]刘小兵,王徐承,陈煜,等.复合电沉积的最新研究动态.电化学,2003,9(2):117~125
    [9]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [10]郭鹤桐,张三元.复合电镀技术.北京:化学工业出版社,2007
    [11]李辉,戴俊.纳米材料在复合电镀中的应用.电镀与环保,2004,24:20~21
    [12]张立德.纳米材料学.沈阳:辽宁科学技术出版社,1994
    [13]郭忠诚,刘鸿康,杨显万,等.电沉积耐磨耐蚀复合材料的工艺研究.有色金属,1994,46(4):67~72
    [14] Ferkel H,Müller B,Riehemann W. Electrodeposition of particle-strengthened nickel films. Materials Science and Engineering A,1997,234-236:474~476
    [15]潘晓军,王立安,何大波.金刚石微粉复合镀膜的性能试验及其应用.工具技术,2001,35(2):12~13
    [16]向永华,董世运,徐滨士. n-Al2O3/Ni-P复合电刷镀层的组织及摩擦磨损特性.中国表面工程,2005(2):15~18
    [17]汤皎宁,杨钦鹏,曹建明,等. Ni-SiO2复合镀层腐蚀摩擦学性能研究.科学技术与工程,2004,4(5):383~385
    [18] Gyttou P,Pavlato E A,Spyellis N,et al. Hardening Modification of Nickel Matrix Composite Electrocoatings Containing SiC Nanoparticles. Electroplating & Surface Treatment,2001,9(1):23~28
    [19] Chen X H,Xia J T,Peng J C,et al. Carbon nanotube metal-matrix composites prepared byelectroless plating. Composites Science and Technology,2000,60:301~306
    [20]陈小华,李德意,李学谦,等.碳纳米管增强镍基复合镀层的形貌及摩擦磨损行为研究.摩擦学学报,2002,22(1):6~9
    [21]张永忠.化学镀Ni-P-PTFE的工艺及性能.功能材料,1999,30(1):23~25
    [22]陈卫祥,甘海洋,涂江平,等. Ni-P-纳米碳管化学复合镀层的摩擦磨损特性.摩擦学学报,2002,22(4):241~244
    [23]黄新民,吴玉程,郑玉春,等.纳米功能复合涂层.功能材料,2000,31(4):419~421
    [24]欧忠文.纳米材料在表面工程中应用的研究进展.中国表面工程,2000(2):5~8
    [25]朱立群,李卫平.电沉积Ni-W非晶态合金复合镀层研究.功能材料. 1999,30(1):85~87
    [26]张玉峰.复合刷镀纳米Ni-ZrO2高温耐磨性的研究.电镀与涂饰. 2000,19(4):18~21
    [27]彭晓,马信清,陈全芳,等. Ni-La2O3复合镀层的氧化行为及机制.中国稀土学报,1995,13(4):328~333
    [28]张文峰,朱荻.含纳米ZrO2颗粒复合电铸层高温氧化行为研究.材料热处理学报,2006,27(5):114~117
    [29]郑筱梅,李自林,童洁,等.镍基纳米氧化铝化学复合镀研究.表面技术,2003,32(5):23~25
    [30]张文峰,朱荻. Ni-ZrO2纳米复合电铸层耐蚀性的研究.电镀与环保. 2005,25(1):12~14
    [31] Benea L,Bonora P L,Borello A,et al. Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating. Wear,2002,249:995~1003
    [32] Burkat G K,Dolmatov V Y. Electrodeposition and properties of zinc-diamond coatings obtained in zincate solutions. Electroplating & Surface Treatment,2001,9(2):35~40
    [33] Deguchi T,Imai K,Iwasaki M,et al. Photocatalytically highly active nanocomposite films consisting of TiO2 particles and ZnO whiskers formed on steel plates. Journal of the Electrochemical Society,2000,147(6):2263~2267
    [34] Deguchi T,Imai K,Matsui H,et al. Rapid electroplating of photocatalytically highly active TiO2-Zn nanocomposite films on steel. Journal of Materials Science,2001,36(19):4723~4729
    [35]马洁,蒋雄,江琳才,等.球磨形成的Ni-Mo纳米晶复合镀层上的析氢反应.物理化学学报,1996,12(1):22~28
    [36]虞慰曾,马洁,初一鸣,等.在纳米晶Co-Mo/Ni复合电极上的析氢反应.电化学,1996,2(1):47~53
    [37]彭元芳,赵国鹏. Ni-α-Al2O3纳米复合电镀工艺条件的研究.电镀与涂饰,2003,22(2):40~43
    [38]彭元芳,赵国鹏,刘建平,等. Ni-α-Al2O3纳米复合电镀最佳工艺条件的确定.表面技术,2004,33(1):53~55
    [39]王健,孙建春,丁培道,等.纳米复合镀工艺的研究现状.表面技术,2004,33(3):1~3
    [40]姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000
    [41]陈伟荣,王宙,于元,等. Ni-P-石墨化学复合镀工艺研究.表面技术,2004,33(4):44~45
    [42]靖爱,程秀,揭晓华. Ni-P-SiO2(纳米)化学复合镀研究.热加工工艺,2004,10:35~36
    [43]王为,李克锋. Ni-P基纳米化学复合镀研究现状.电镀与涂饰,2003,22(5):34~38
    [44]蒋斌,丁培道,徐滨士,等.电刷镀纳米复合镀层的接触疲劳性能研究.表面技术,2002,31(5):16~18
    [45]马亚军,朱张校,丁莲珍.镍基纳米Al2O3粉末复合电刷镀镀层的耐磨性.清华大学学报(自然科学版),2002,42(4):498~500
    [46]艾薇,高志,潘红良,等.电刷镀镍基复合镀层性能综合研究.长江大学学报(自然版),2005,2(1):45~47
    [47]郭忠诚,郭淑仙,朱晓云.电沉积多元复合镀层的研究现状.电镀与环保,2001,21(2):4~12
    [48]蒋斌,徐滨士,董世运,等.纳米复合镀层的研究现状.材料保护,2002,35(6):1~3
    [49]孙伟,张覃轶,叶卫平,等.纳米复合电沉积技术及机理研究的现状.材料保护,2005,38(6):41~44
    [50] Guglielmi N. Kinetics of the deposition of inert particles from electrolytics baths. Journal of the Electrochemical Society,1972,119(8):1009~1012
    [51] Celis J P,Roos J R,Buelens C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix. Journal of the Electrochemical Society,1992,139(2):413~425
    [52] Fransaer J,Celis J P,Roos J R. Analysis of the electrolytic codeposition of non-brownian particles with metals. Journal of the Electrochemical Society,1987,134(6):1402~1408
    [53] Valdes J L. Electrodeposition of Colloidal Particles. Journal of the Electrochemical Society,1987,134(4):223C~225C
    [54] Yeh S H,Wan C C. A Study of SiC/Ni Composite Plating in the Watts Bath. Plating and Surface Finishing,1997,84(3):54~57
    [55]薛玉君,段明德,李济顺等.纳米和微米La2O3颗粒增强镍基复合镀层的摩擦磨损性能.中国机械工程,2006,17(3):311~314.
    [56]张文峰,朱荻.极板放置方式对电铸层中微米/纳米SiC复合量影响的研究.中国机械工程,2004,15(24):2241~2244
    [57]张文峰.镍基纳米复合电铸层制备工艺及其性能的基础研究.南京航空航天大学博士学位论文,2004
    [58]薛玉君.稀土纳米复合电铸技术研究.南京航空航天大学博士后研究工作报告,2004
    [59]王玉林,赵乃勤,董刚,等. Al2O3颗粒粒径和含量对α-Al2O3/Cu复合镀层性能的影响.复合材料学报,1998,15(1):78~82
    [60]王红美,徐滨士,马世宁,等.纳米Al2O3颗粒含量对复合镀层组织和滑动磨损行为的影响.金属热处理,2005,30(4):10~14
    [61] Helle K,Walsh F. Electrodeposition of Composite Layers Consisting of Inert Inclusions in a Metal Matrix. Transactions of the Institute of Metal Finishing. 1997,75(2):53~58
    [62] Vidrine A B,Podlaha E J. Composite electrodeposition of ultrafineγ-alumina particles in nickel matrices Part I: Citrate and chloride electrolytes. Journal of Applied Electrochemistry,2001,31:461~468
    [63]王红美,徐滨士,马世宁,等.纳米Al2O3颗粒增强镍基复合镀层的制备及微观力学性能.材料热处理学报,2005,26(1):81~85
    [64]魏孝信,梁志杰,曹勇.摩擦喷射电沉积制备Ni-Al2O3纳米复合镀层.电镀与涂饰. 2006,25(5):7~10
    [65]吴蒙华,傅欣欣,李智,等.超声电沉积镍/纳米碳化硅复合镀层组织结构研究.机械工程材料. 2004,28(12):46~48
    [66] Lee T J. Synthesis of Ni/SiCw Composite Coatings by Electrochemical Infiltration. doctoral dissertation, Steven Institute of Technology. 1995
    [67]张迎光,白雪峰,张洪林,等.化学气相沉积技术的进展.中国科技信息,2005,(12):83
    [68]赵建玲,王晓慧,郝俊杰,等.电泳沉积及其在新型陶瓷工艺上的应用.功能材料,2005,36(2):165~168
    [69]张建民,杨长春,石秋芝,等.电泳沉积功能陶瓷涂层技术.中国陶瓷,2000,36(6):36~40
    [70]张道礼,胡云香,黎步银,等.电泳沉积原理及其在陶瓷制备中的应用.现代技术陶瓷,1999,(4):22~25
    [71] Harsanyi E. Method of coating radiant bodies. United States Patent No. 1897902,1933
    [72] Hamaker H C. Formation of deposition by electrophoresis. Transactions of the Faraday Society,1940,35:279~283
    [73] Giersig M,Mulvaney P. Formation of ordered two dimensional gold colloid lattices by electrophoretic deposition. Journal of Physical Chemistry,1993,97:6334~6336
    [74] Giersig M,Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir,1993,9(12):3408~3413
    [75] Lin C K,Yang T J,Feng Y C,et al. Characterization of electrophoretically deposited nanocrystalline titanium dioxide films. Surface & Coatings Technology,2006,200:3184~3189
    [76] Castro Y,Ferrari B,Moreno R,et al. Coatings produced by electrophoretic deposition from nano-particulate silica sol-gel suspensions. Surface and Coatings Technology,2004,182:199~203
    [77] Shan W,Zhang Y H,Yang W L,et al. Electrophoretic deposition of nanosized zeolites in non-aqueous medium and its application in fabricating thin zeolite membranes. Microporous and Mesoporous Materials,2004,69:35~42
    [78] Tang F Q,Uchikoshi T,Ozawa K,et al. Electrophoretic deposition of aqueous nano-γ-Al2O3 suspensions. Materials Research Bulletin,2002,37:653~660
    [79] Sarkar P,Nicholson P S. Electrophoretic Deposition(EPD):Mechanisms,Kinetics,and Application to Ceramics. Journal of the American Ceramic Society,1996,79(8):1987~2002
    [80]花国然.基于激光扫描的纳米陶瓷涂层及纳米结构块体制备技术的基础研究.南京航空航天大学博士学位论文,2003
    [81] Wang Z,Xiao P,Shemilt J. Fabrication of composite coatings using a combination of electrochemical methods and reaction bonding process. Journal of the European Ceramic Society,2000,20:1469~1473
    [82] Wang Z,Shemilt J,Xiao P. Fabrication of ceramic composite coatings using electrophoretic deposition, reaction bonding and low temperature sintering. Journal of the European Ceramic Society,2002,22:183~189
    [83] Wang X,Xiao P,Schmidt M,et al. Laser processing of yttria stabilised zirconia/alumina coatings on Fecralloy substrates. Surface and Coatings Technology,2004,187:370~376
    [84]张建民,魏爱卿.两步电化学沉积技术制备功能陶瓷/金属复合镀层.化学研究,2003,14(4):1~3
    [85]刘榕芳,肖秀峰,郑立群,等.两步法电沉积制备HA/Ag复合涂层.应用化学,2003,20(6):547~551
    [86] Shrestha N K,Sakurada K,Masuko M,et al. Composite coatings of nickel and ceramic particles prepared in two steps. Surface and Coatings Technology,2001,140:175~181
    [87] Shrestha N K,Hamal D B, Saji T. Composite plating of Ni-P-Al2O3 in two steps and its anti-wear performance. Surface and Coatings Technology,2004,183:247~253
    [88]高濂,孙静,刘阳桥.纳米分体的分散及表面改性.北京:化学工业出版社,2003
    [89]邢宏龙,徐国财,李爱元,等.纳米粉体的分散及纳米复合材料的成型技术.材料导报,2001,15(9):62~64
    [90] Lyklema J. Principles of the Stability of Lyophobic Colloidal in Non-aqueous Media. Advances in Colloid and Interface Science,1968,2:65~114
    [91]游常.电泳沉积法制备碳化物层状复合材料的研究.中国科学院上海硅酸盐研究所博士学位论文,2004
    [92] Besra L,Liu M L. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science,2007,52:1~61
    [93] Koelman H. Suspensions in Non-Aqueous Media. Philips Research Report,1995,10:161~193
    [94] Grillon F,Fayeulle D,Jeandin M. Quantitative Image Analysis of Electrophoretic Coating. Journal of Materials Science Letters,1992,11:272~275
    [95] Shimbo M,Tanzawa K,Miyakawa M,et al. Electrophoretic Deposition of Glass Powder for Passivation of High-Voltage Transistors. Journal of the Electrochemical Society,1985,132:393~398
    [96] Mizuguchi J,Sumi K,Muchi T. A Highly Stable Non-aqueous Suspension for Electrophoretic Deposition of Powdered Substances. Journal of the Electrochemical Society,1983,130:1819~1825
    [97] Avgustinik A,Vigdergauz V,Zharavlev G. Electrophoretic deposition of ceramic masses from suspension and calculation of deposit yields. Journal of Applied Chemistry,1962,35(10):2175~2180
    [98] Biesheuvel P M,Verweij H. Theory of cast formation in electrophoretic deposition. Journal of the American Ceramic Society,1999,82(6):1451~1455
    [99] Ishihara T,Shimise K,Kudo T,et al. Preparation of Yttria-stabilised zirconia thin-films on strontium doped LaMnO3 cathode substrate via electrophoretic deposition for solid oxide fuel cells. Journal of the American Ceramic Society,2000:83(8):1921~1927
    [100] Chen F,Liu M. Preparation of yttria-stabilised zirconia(YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrate using an electrophoretic deposition(EPD) process. Journal of the European Ceramic Society,2001,21:127~134
    [101]周绍民.金属电沉积-原理与研究方法.上海:上海科学技术出版社,1987
    [102]李荻.电化学原理.北京:北京航空航天出版社,1999
    [103]查全性.电极过程动力学导论.北京:科学出版社,2002
    [104] Gao J Q,Wu Y T,Liu L,et al. Crystallization behaviour of nanometer-sized Al2O3 composite coatings prepared by electroless deposition. Materials Letters,2005,59:391~394
    [105] Chang L M,An M Z,Guo H F,et al. Microstructure and properties of Ni-Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition. Applied Surface Science. 2006,253:2132~2137
    [106] Du L Z,Xu B S,Dong S Y,et al. Preparation, microstructure and tribological properties of nano-Al2O3/Ni brush plated composite coatings. Surface & Coatings Technology. 2005,192:311~316
    [107] Powers R W. The electrophoretic forming of beta-alumina ceramic. Journal of the Electrochemical Society,1975,122:482~486
    [108] Moreno R,Ferrari B. Effect of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition. Materials Research Bulletin,2000,35:887~897
    [109] Lebrette S,Pagnoux C,Abelard P. Fabrication of titania dense layers by electrophoretic deposition in aqueous media. Journal of the European Ceramic Society,2006,26:2727~2734
    [110] Zanetti S M,Varela J A,Leite E R,et al. SrBi2Ta2O9 ferroelectric thick films prepared by electrophoretic deposition using aqueous suspension. Journal of the European Ceramic Society,2004,24:2445~2451
    [111] Wang G H,Sarkar P,Nicholson P S. Influence of acidity on electrostatic stability of alumina suspensions in ethanol. Journal of the American Ceramic Society. 1997,80(4):965~972
    [112] Wang G H,Sarkar P,Nicholson P S. Surface chemistry and rheology of electrostatically (ionically) stabilized alumina suspensions in polar organic media. Journal of the American Ceramic Society. 1999,82(4):849~856
    [113] Saengdoen D,Tetsuo U,Yuji N,et al. Electrophoretic deposition of lead zirconate titanate(PZT) powder from ethanol suspension prepared with phosphate eater. Science and Technology of Advanced Materials,2005,(6):927~932
    [114] Ferrari B,Moreno R,Sarkar P,et al. Electrophoretic deposition of MgO from organic suspensions. Journal of the European Ceramic Society,2000,(2):99~106
    [115] Wang C,Ma J,Cheng W,et al. Thick hydroxyapatite coatings by electrophoretic deposition. Materials Letters,2002,57:99~105
    [116] Mandich N V,Dennis J K. Codeposition of nano-diamonds with chromium. Metal Finishing,2001,99(6):117~119
    [117]王柏春,朱永伟,许向阳,等.复合镀用纳米金刚石悬浮液制备和复合镀铬研究.表面技术,2004,33(3):4~6
    [118] Ferrari B,Moreno R. Electrophoretic forming of ceramics in aqueous media. Boletin De La Sociedad Espanola De Ceramica Y Vidrio. 1998,37(5):369~381
    [119] Ferrari B,Moreno R. The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Materials Letters,1996,28:353~355
    [120] Ferrari B,Moreno B. Electrophoretic deposition of aqueous alumina slip. Journal of the European Ceramic Society,1997,(17):549~556
    [121] Basu R N,Randall C A,Mayo M J,et al. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of the American Ceramic Society,2001,84(1):33~40
    [122] Kouran N,Tsukamoto T,Shoji H,et al. Preparation of various oxide films by electrophoretic deposition method: a study of mechanism. Japanese Journal of Applied Physics,1995,34:1643~1647
    [123] Karina R,Mariela A. Temperature and pressure effects on zeta potential values of reservoir minerals. Journal of Colloid and Interface Science,2006,300:788~794
    [124] Valdivieso A L,Bahena J L R,Song S,et al. Temperature effect on the zeta potential and fluoride adsorption at theα-Al2O3/aqueous solution interface. Journal of Colloid and Interface Science,2006,298:1~5
    [125]覃奇贤,郭鹤桐,刘淑兰,等.电镀原理与工艺.天津:天津科学技术出版社,1993
    [126]薛玉君,朱荻,赵飞. Ni-La2O3纳米复合镀层制备工艺研究.机械工程材料,2004,28(8):42~45
    [127]周海飞,杜楠,赵晴.复合电沉积工艺研究现状.电镀与涂饰,2005,24(6):41~46
    [128]张文峰,朱荻,薛玉君,等.镍-碳化硅纳米复合电铸层的制备.特种铸造及有色合金,2004,5:9~11
    [129]桑付明,成旦红,曹铁华,等.电沉积法制备镍-纳米碳复合镀层及其工艺.上海大学学报(自然科学版),2004,10(3):296~301
    [130]桑付明,成旦红,曹铁华,等.电沉积技术制备Ni-纳米SiO2复合镀层的研究.电镀与精饰,2004,26(3):5~8
    [131]张文峰,朱荻,薛玉君,等. Ni-SiC纳米复合电镀工艺的研究.电镀与环保,2004,24(7):10~13
    [132]朱瑞安,郭振常.脉冲电镀.北京:电子工业出版社,1986
    [133]陈丽,王立平,曾志翔,等.脉冲电沉积Ni-SiC复合镀工艺的研究.电镀与环保,2005,25(2):5~7
    [134]宋曰海,郭忠诚.脉冲与直流电沉积Re-Ni-W-P-SiC复合镀层性能的研究.电镀与环保,2003,23(6):10~11
    [135]张文峰,朱荻.直流和脉冲Ni-ZrO2纳米复合电铸层显微硬度的研究.电镀与环保,2006,26(2):36~39
    [136]吴健.精密电沉积超硬磨料钻头制造技术及加工机理研究.南京航空航天大学博士学位论文,1997
    [137] Golodnitsky D,Gudin N V,Volyanuk G A. Cathode process in nickel-cobalt alloy deposition from sulfamate electrolytes application to electroforming. Plating and Surface Finishing,1998,85(2):65~71
    [138]张奎,樊建中,张永忠,等.颗粒增强复合材料增强体颗粒分布均匀性研究.稀有金属,1999,23(1):62~65
    [139]黄惠忠.纳米材料分析.北京:化学工业出版社,2003
    [140]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,2002
    [141]辜敏,杨防祖,黄令,等.高择优取向铜镀层的电化学形成及其表面形貌.物理化学学报,2002,18(11):973~978
    [142] Ye X P,Bonte M D,Celis J P,et al. Role of overpotential on texture, morphology and ductility of electrodeposited copper foils for printed circuit board applications. Journal of the Electrochemical Society,1992,139(6):1592~1600
    [143]王为,郭鹤桐,高建平,等. Ni-ZrO2复合镀层组织结构分析.材料工程,1998,41(9):21~23
    [144]林文松,周细应,往思珺,等.碳纳米管/镍复合镀层硬度研究.机械工程材料,2005,29(4):51~53
    [145]曹大勇,杨景茹,张国旭,等.双向脉冲Ni/Al2O3复合镀层的组织与硬度.物理测试,2006,24(6):14~15
    [146]刘为霞,杨玉国,许韵华,等.脉冲电沉积Ni/纳米SiC复合镀层硬度的研究.纳米材料与应用,2006,3(1):22~25
    [147]王从曾.材料性能学.北京:北京工业大学出版社,2004
    [148] Shefford P B. Plastic deformation and strength of materials in small dimensions. Material Science & Engineering A,2001,319-321:16~23
    [149]董世运,徐滨士,马世宁.纳米颗粒复合刷镀层性能研究及其强化机制探讨.中国表面工程,2003,3:17~31
    [150]戴雄杰.摩擦学基础.上海:上海科技出版社,1984
    [151]日本润滑学会编,霍庶辉译.磨损.北京:铁道出版社,1985
    [152]张文峰,朱荻. Ni-ZrO2纳米复合电铸层耐磨性研究.机械科学与技术,2006,25(12):1467~1470
    [153]金属基体上的金属覆盖层(电沉积层和化学沉积层)附着强度试验方法,GB5270-85
    [154]汪龙胜,苏丽琴,王春霞.钢铁基体无氰镀铜结合力的研究进展.电镀与精饰,2007,29(5):25~29
    [155]徐瑞东,郭忠诚,薛方勤,等.化学镀锡层孔隙率研究.电镀与精饰,2003,25(2):27~29
    [156]轻工产品金属镀层的孔隙率测定方法,GB5935-86
    [157]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,1984
    [158]张刚,李绍禄,陈小华,等.碳纳米管镍基复合镀层的腐蚀行为.中国有色金属学报,2003,13(4):996~1000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700