用户名: 密码: 验证码:
受载煤岩变形破裂低频电磁信号规律特征与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击地压等煤岩动力灾害严重威胁着煤矿的安全生产,如何对其准确预测预报成为亟待解决的问题之一。目前煤岩电磁辐射技术被认为是预测预报煤岩动力灾害的有效手段之一,而受载煤岩低频电磁信号由于具有传播距离远、抗干扰能力强等优点,从而可能成为电磁辐射技术中一个较有前景的发展方向。
     本文建立了受载煤岩体低频电磁信号(0—5kHz)试验测试系统,创新性的试验研究了煤岩体在单轴压缩、剪切、劈裂拉伸等不同加载方式下的低频电磁信号特征及规律,并与应力、声发射、中频段电磁辐射信号(300kHz)进行了对比分析,研究了煤岩体破裂低频电磁信号的影响因素。研究表明:煤岩体在不同加载条件下变形破裂均能够产生低频电磁信号,且低频电磁信号与应力、声发射等都具有较好的相关性;不同破坏形式下,煤和岩石的低频磁信号与应力、声发射的相关性好于低频电信号,而混凝土的低频电信号规律性更强。在试验中煤岩体的组分参数、试验加载速度、试样尺寸都对低频电磁信号的产生及规律有影响。对于强度较大的煤岩体,在脆性变化时低频磁信号更好,而对于混凝土等塑性破坏显著的材料低频电信号的规律更好;同时加载速度越快,载荷越大,破坏时刻低频电磁信号强度的变化速度也越大。
     利用小波变换、相关性计算、傅里叶频谱分析等数学方法,对煤岩破坏过程中的低频电信号时域及频域特征进行了提取分析。结果表明电信号的低频部分与应力之间具有较高的相关系数,频谱分析结果表明在不同加载应力水平下,低频电信号的频谱主要集中在20Hz及以下范围。
     从微观角度分析了煤岩体变形破裂过程中自由电荷的产生机理,根据电磁场理论对壁面电荷运动产生的电磁信号进行了计算分析。结合断裂力学理论、数值模拟软件对剪切和劈裂拉伸破坏时的裂纹扩展趋势进行了分析,发现剪切时与剪切破坏面平行方向、劈裂拉伸时与破坏面垂直方向的低频电磁辐射磁场信号强度最大,并进行了实验验证。建立了煤岩低频电磁信号的统计损伤计算模型。
     现场测试研究了煤岩体在采动应力作用下低频电磁辐射信号的时空变化规律。在空间上的分布与工作面前方煤体内应力场的分布基本上一致,在时间分布上与周期来压对应较好。对煤炮、放炮等动力现象测试表明,低频电磁信号对煤岩动力灾害有较好的响应规律。对电磁辐射定向、定位技术的进行了初步研究,结果表明电磁辐射主要集中在煤体深部和工作面方向。
     本文对煤岩体受载破坏低频电磁信号的实验和机理研究,拓展了煤岩电磁辐射技术的研究范围,对于实现大范围、远距离预测,提高测试抗干扰能力,并最终能够利用电磁辐射技术对煤岩动力灾害进行定位定量预测预报具有重要的理论意义和现实意义。
With the increase of the devastating coal and rock dynamic desaraster such as rock burst, to predict and forecast it accurately has become a problem to be solved. Currently, electromagnetic radiation(EMR) technology has been accepted as an effective method for coal and rock dynamic disasters forecasting, and coal and rock low-frequency(LF) electromagnetic signals with the advantage of long distance transmittion and strong capacity of anti-interference has the potential to become a promissing developing direction of EMR technology.
     This thesis establishes LF electromagnetic signal(0—5kHz) of coal and rock under laoding experiment system, which innovatively studies the rule of LF electromagnetic signals (300kHz) of coal and rock under different ways of loading including uniaxial compression, shearing, spitting and stretching. The study results are compared with stress, acoustic emission(AE) and conventional electromagnetic signals. The influential factors of LF electromagnetic signal of coal and rock under loading are analyzed. The conclusion shows that coal and rock under different conditions of loading could produce LF electromagnetic signals, which have close relativity with stress and AE. And under different ways of fractuer, the relativity between LF electromagnetic signal of coal and rock and the stress and AE is better than with the LF signal, and the LF signal of concrete is much stronger. In the coal and rock experiment, the component parameter, loading rate and sample size could affect the rules and production of the LF electromagnetic signals. The coal and rock with stronger strength shows better LF electromagnetic signals when its brittleness changes, and the rule of LF electromagnetic signals are better when the materials with worse building feature such as concrete materials. And the faster and greater of the loading rate, the greater the speed changes of the LF electromagnetic signal will be when fracturing.
     By applying the mathematic methods such as wavelet transform, relativity calculation and Fourier spectrum analysis, the time domain and frequency domain features of the LF electromagnetic signal in the destroying process of coal and rock are extracted and analyzed. By calculating the relation coefficient between the LF electromagnetic signal part and the stress, it is found that these two factors are highly correlated, and the frequency spectrum analyzing result shows that under different stress loading level, the LF electric signals are concentrated below 20Hz.
     The production mechanism of free charge of coal and rock under deformation and fracture are analyzed from the micro angle, according to the calculation and analyzing of electromagnetic signals produced by the movement of electricity. Combined with the fracture mechanics theory, numerical simulation software, the thesis studies the wrecking extending trend when the coal and rock body under shearing, spitting and stretching conditions, and it is testified and concluded that the LF EMR signals reach its maximum value while shearing destroying face are parallel with it when shearing and vertical when spitting and stretching. Thus, the statistics destroying calculation model of LF EMR signals of coal and rock is established.
     The spot test studies the time and space variation regulations of the LF EMR signals of coal and rock. The result shows that the distribution between the space and the front coal body’s stress in work face are basically identical, and the signal is well correlated with the period pressure in time distribution.The test of the dynamic phenomenons such as shows that LF EMR signals’regularity reflect well with the coal and rock dynamic disaster.By studying the EMR direction orientation and positioning technology, the result shows that EMR are mainly concentrated on the deep coal body and workface direction
     This thesis studies LF signals when loading coal and rock are wrecking and expands the research scope of the coal and rock EMR technology. The study has profound and important application value on realizing wide scope, long distance predition ,improve the testing anti-interference capacity and eventually achieving the position and quantity prediction on the coal and rock dynamic disasters with the EMR technology.
引文
[1]中国新闻网. http://www.chinanews.com.cn/cj/news/2010/01-20/2082109.shtml.
    [2]马志飞.煤矿矿难何时休[J].生命与灾害,2010,01.
    [3]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [4]何学秋,王恩元,聂百胜,等.煤岩流变电磁动力学[M].北京:科学出版社,2003.
    [5]王恩元,何学秋,李忠辉,等.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2009.
    [6]窦林名,何学秋.采矿地球物理学[M].北京:中国科学文化出版社,2002.
    [7]何学秋,周广来,刘贞堂.含瓦斯煤的能量耗散过程及突出非接触预测[J].煤炭科学技术,1993,21(12):18-21.
    [8]刘明举.含瓦斯煤断裂电磁辐射及其在煤与瓦斯突出研究中的应用[D].徐州:中国矿业大学,1994.
    [9]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [10]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].徐州:中国矿业大学,1997.
    [11]聂百胜.含瓦斯煤岩力电效应及机理的研究[D].徐州:中国矿业大学,2001.
    [12] Xueqiu He, Enyuan Wang, Zhentang Liu. The general charastics of electromagnetic radiation during coal fracture and its application in outburst prediction[C]. Proceedings of the 8th U.S. Mine Ventilation Symposium, Rolla, Missouri, June 11-17, 1999: 81-84.
    [13]王恩元,何学秋,刘贞堂,等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [14]王恩元,何学秋,刘贞堂,等.煤岩变形破裂的电磁辐射规律及其应用研究[J].中国安全科学学报,2000,10(2):35-39.
    [15]窦林名,何学秋,王恩元,等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41(12):86-88.
    [16]钱建生,刘富强,陈治国,等.煤岩破裂过程电磁波传播特性的分析[J].煤炭学报,1999,24(4):392-394.
    [17]李忠辉,王恩元,何学秋,等.含水量对煤岩电磁辐射特征的影响[J].中国矿业大学学报,2006,35(3):362-366.
    [18]王恩元,何学秋,聂百胜,等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3):225-229.
    [19]窦林名,曹其伟,何学秋,等.冲击矿压危险的电磁辐射监测技术[J].矿山压力与顶板管理,2002,(4):89-91,98.
    [20]王恩元.电磁辐射法监测煤与瓦斯突出危险性技术及其应用研究[博士后研究报告].徐州:中国矿业大学,1999.
    [21]何学秋,陈庆禄.电磁辐射法预测突出危险性技术及便携式装备的研究[Z].国家重点科技项目(攻关)计划子专题工作报告,徐州:中国矿业大学,2000.
    [22]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [23]钱建生,刘富强,陈治国,等.煤与瓦斯突出电磁辐射监测仪[J].中国矿业大学学报,2000,29(2):167-169.
    [24]何学秋,李平,王恩元,等.煤与瓦斯突出动态监测预警技术及装备[Z].“十五”国家科技攻关重点项目子专题研究报告(一期),徐州:中国矿业大学,2004.
    [25]李忠辉,王恩元,何学秋,等.电磁辐射实时监测煤与瓦斯突出在煤矿的应用[J].煤炭科学技术,2005,33(9):31-33.
    [26]何学秋,袁亮,王恩元,等.煤与瓦斯突出动态监测预警技术及系统[Z].“十五”国家科技攻关重点项目子专题研究报告(二期),徐州:中国矿业大学,2006.
    [27] He Xueqiu, Wang Enyuan, Dou Linming, et al. Electromagnetic radiation monitoring system forecasting coal & gas outburst (or rock burst) and its application[C]. In: International Scientific-Technical Symposium Rockburst 2002 Research and Prevention Systems Proceedings, Ustron, Poland, November, 12-15, 2002, 423-428.
    [28] Wang Enyuan, He Xueqiu, Dou Linming, et al. Forecasting Rock Burst with the Non-contact Method of Electromagnetic Radiation[C]. In: 2002 International proceedings of safety science and technology, Tai’an, 2002, 10, 111-116.
    [29]Абдуллабеков,К.Н.地壳中的电现象[J].学术期刊出版社,1990:138-156.
    [30]Воробъев,А.А.,Самохвалов,М.А.идругие:Аномалъныеиз-мененияинтенсивностиестественногоимпулъсногоэле-ктромагнитногополявраионеТашкентапередземлетрясе-нием,Узб.геол.журн.,1976(2):9-11.
    [31]陈智勇,杜晓泉,陶如谦.电磁辐射与地震[M].北京:地震出版社,1998.
    [32]肖武军,关华平.地震ULF电磁扰动接受原理及异常特征[J].地震地磁观测与研究,2006,27(5):53-59
    [33]关华平,陈智勇,余素荣.首都圈及其邻近地区电磁辐射映震效果研究[J].地震,2000,20(1):65-70.
    [34]李彦堂,郭勇.地震前电磁信息观测[J].地震学报,1991,13(1):121~124.
    [35]张全喜,张明灿.云南地区中强与强烈地震电磁辐射的观测研究[J].地震学报,1992,14(3):325~331.
    [36]陈智勇,杜晓泉,徐东红,等.大地震前电磁辐射信息的观测研究[J].地震学报,1993,15(1):83-90.
    [37]袁家治,高桥耕三,钱书清,等. ULF和VLF地震电磁辐射的观测与研究[J].地震学报,1996,(18)2:272~275.
    [38]杨兆旺,沈海宝,杜爱军.南黄海6.1级地震电磁辐射异常分析[J].地震学报,1998,20(3):30-33.
    [39]郭宝昌,邹环宇,杨玉娟,等.电磁波异常与相关地震的探讨[J].东北地震研究,1997,13(1);32~38.
    [40]董旭光,苏鸾声.电磁波手段中强震前短临异常特征研究[J].东北地震研究,1998,14(4):46-53.
    [41]关华平,刘桂萍.震前电磁辐射异常与地震关系研究[J].地震学报,1995,17(2):237~246.
    [42]卢永,杨军,冯志生,等.江苏及邻近地区地震电磁辐射异常与地震关系[J].华南地震,2004,24(2):36-46.
    [43]钱书清,陈智勇,李彦堂,等.大同5.5级地震前的电磁前兆信号[J].地震地磁观测与研究,1996,17(1):54~60
    [44]李吾先,金明培,马骏康.云南地区强震电磁波异常特征及其预报意义[J].地震,2003,23(2):77~84.
    [45]杨兆旺,沈海宝.电磁辐射异常信息的分析与思考[J].地震学刊,1997,4:17~21.
    [46]杨少峰,陈宝生,杜爱民,等.新疆喀什地区地震前地磁脉动异常分析[J].地球物理学报,1998,41(3):334~341.
    [47]于世昌,王波,王庆志,等.张北6.2级地震前的电磁前兆信号的特征[J].东北地震研究,1999,15(4):33~36.
    [48]陈建毅.台湾花莲地震前电磁辐射异常分析[J].地震地磁观测与研究,2003,24(1):46-48.
    [49]张德齐,王盛飞,张念孝.临震电磁波前兆的观测研究[J].地震学报,1987,9(4):434-442.
    [50]金能均,王英亮,郭宝昌,等.地震电磁波与短临预报[J].地震学刊,1995,15(i):55~58.
    [51]钱书清,任克新,吕智.伴随岩石破裂的VLF、MF、HF和VHF电磁辐射特性的实验研究[J].地震学报,1996,18(3):346~351
    [52]郭自强,郭子棋,钱书清,等.岩石破裂中的电声效应[J].地球物理学报,1999,42(1):74-83.
    [53]郝锦绮,黄平章,周建国.微破裂对岩石剩磁的影响对地震预报的意义[J].地球物理学,1993,36(2):204-211
    [54]唐林波,李世愚,苏肪,等.强地震前兆低频波的实验研究[J].中国地震,2003,19(1):48-56
    [55]曹惠馨,钱书清等.岩石破裂过程中超长波段的电磁信号和声发射的实验研究[J].地震学报,1994,16(2):235-241.
    [56]刘煜洲,刘因,王寅生等.岩石破裂时电磁辐射的影响因素和机理[J].地震学报,1997,19(4):418~425.
    [57]钱书清,郝锦绮,周建国,等. 1999年9月21日台湾集集Ms7.4地震前ULF电磁信号及其与模拟试验结果的比较[J].地震学报,2001,23(3):322~327.
    [58]郝锦绮,钱书清,高金田,等.岩石破裂过程中的超低频电磁异常[J].地震学报,2003,25(1):102~111.
    [59] V.I.Frid, A.N.shabarov, V.H.Proskuryakov, et al. Formation of electromagnetic radiation in coal stratum. Soviet Mining science, Vol.28, No.2, 1992, 139-145.
    [60] Frid, V., Rockburst hazard forecast by electromagnetic radiation excited by rock fracture. Rock Mechanics and Rock Engineering, Vol.30, No.4, 1997, 229-236.
    [61] Frid, V.. Electromagnetic radiation method for rock and gas outburst forecast. Journal of Applied Geophysics, Vol.38, No.2, 1997 Elsevier Sci B.V. Amsterdam Netherlands, 97-104.
    [62] A.T.Airuni, I.V.Zverev, M.O.Dolgova, et al. Physical and physico-chemical principles of prediction and contral of gas emission at coal mines. In: Proceeding of the 21st international conference of safety in mines research institutes, ed. A.R. Green, Australia,1985, 297-303.
    [63]Хамиащвили,Н.Г.论碱卤互素结晶体和岩石中裂隙形成时的电磁辐射效应.见:地震地电学译文集[M].北京:地震出版社,1989.
    [64] Nie Baisheng, He Xueqiu, Wang Enyuan, et al. Study on de-noising EMR signals with wavelet transform[C]. In: Proceedings in Mining Science and Safety Technology, 2002’ISMSST, Jiaozuo, 2002, 4, 498-501.
    [65]撒占友.煤岩流变破坏电磁辐射效应与异常判识技术的研究[D].徐州:中国矿业大学,2003.
    [66]王先义.煤岩电磁辐射特性及其应用研究[D].徐州:中国矿业大学,2003.
    [67]王云海.煤岩冲击破坏的电磁辐射前兆及预测研究[D].徐州:中国矿业大学,2003.
    [68]肖红飞.煤岩变形破裂电磁辐射与应力耦合规律研究[D].徐州:中国矿业大学,2003.
    [69]魏建平.矿井煤岩动力灾害电磁辐射预警机理及其应用研究[D].徐州:中国矿业大学,2005.
    [70] Nitsan U. Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophysics Research letters, 1977(4): 333-336.
    [71]Шевцов,Т.И.,Мигунов,Н.И.идругие:Электризацияпо-левыхштаповпридеформациииразрушении,ДАНССCР,1975,225(2):313-315.
    [72]李均之,曹明,毛浦森等.岩石压缩实验与震前电磁辐射的研究[J].北京工业大学学报,1982(4).
    [73]Гохберг,М.Б.,Гуфельд,И.Л.идругие:Электромагнитныеэффектыприразрушенииземликоры.ФизикаЗемли. 1985(1): 71-87.
    [74] Enomoto, Y.; Akai, M.; Hashimoto, H.; Mori, S.; Asabe, Y., Exoelectron emission: Possible relation to seismic geo-electromagnetic activities as a microscopic aspect in geotribology, In: Wear Proceedings of the 1st International Workshop on Microtribology (IWM) Oct 12-13 1992 v 168 n 1-2 Sep 1 1993 Morioka, Jpn, p 135-142.
    [75] M.E.佩列利曼,Н.Г.哈季阿什维利.破裂电磁辐射理论研究[M].苏联地震预报研究文集,北京:地震出版社,1993.35-39.
    [76]Р.Ш.基利凯耶夫,М.И.米罗什尼钦科.力载荷下的岩石电场[M].苏联地震预报研究文集,北京:地震出版社,1993:31-34.
    [77] Ogawa, T., Oike, K.: Electromagnetic radiation from rocks. J Geophys Res, 90(D4), 1985: 6245~6249.
    [78] Cress, G.O., Brady, B.T. and Rowell, G.A.:Sources of electromagnetic radiation from fracture ofrock samples in laboratory. Geophys. Res. Lett., 1987(14): 331-334.
    [79]Гольд,Р.М.,Марков,П.Г.идр.:Импульсноеэлестримагни-тноеизлучениеминераловигорныхпород,поверженныхме-ханическомунагружению.ФизикаЗемли, 1975(7):109~111.
    [80]Мирошниченко,М.П.,Кунксенко,В.С.:Излучениеэлестром-агнитныхимпульсовпризарождениивтвердыхдпэлестрик-ах.Физ.Тв.Тела, 1980, 22: 1531.
    [81] Egorov, P.V.; Ivanov, V.V.; Kolpakova, L.A., Patterns in the electromagnetic pulsed radiation of alkali halide crystals and rocks, Soviet Mining Science, 1988, 24(1), 58-61
    [82]郭自强,尤峻汉,李高,等.破裂岩石的电子发射与压缩原子模型[J].地球物理学报,1989,32(2):173~177.
    [83]朱元清,罗祥麟,郭自强等.岩石破裂时电磁辐射的机理研究[J].地球物理学报,1991,34(5):595-601.
    [84]熊皓,地震电磁前兆研究[J].见:国家地震局科技监测司,震前电磁波观测与实验研究文集[M]北京:地震出版社,1989,125-130.
    [85]郑联达.地震电磁波发射的一种机制[J].见:国家地震局科技监测司,震前电磁波观测与实验研究文集[M].北京:地震出版社,1989:138-146.
    [86]王炽仑,杨仲乐,陈以旭,等.岩石破裂时的电磁辐射[J].地球物理学报,1992,35(增刊):287~291.
    [87] Robsman, V.A.; Nikogosyan, G.N., Changes in emission spectra during crack development and rock failureTransactions (Doklady) of the USSR Academy of Sciences: Earth Science Sections, 1990,306 (3), 26-29.
    [88] Kurlenya, M.V.; Yakovitskaya, G.E.; Kulakov, G.I., Stages in the fracturing process based on EME studies, Soviet Mining Science, 1991, 27(1), 39-43
    [89] Sobolev, G.A.; Demin, V.M., Time-dependent behavior of electromagnetic and acoustic emission as predictor of instability of contacts between blocks, Transactions (Doklady) of the USSR Academy of Sciences:Earth Science Sections, 1988, 303(6), 37-40.
    [90]郭自强,周大庄,施行觉,等.岩石破裂中的电子发射[J].地球物理学报,1988,31(5):566~571.
    [91] Ivanov, V.V.; Egorov, P.V.; Kolpakova, L.A.; Pimonov, A.G., Crack dynamics and electromagnetic emission by loaded rock masses, Soviet Mining Science,1988, 24(5), 406-412.
    [92] Ivanov, V.V.; Pimonov, A.G., Statistical model of electromagnetic emission from a fracture in a rock, Soviet Mining Science, 1991, 26(2), 148-151.
    [93] Ohtsuki, Yoshi-Hiko; Kamogawa, Masashi, Plasmon-decay model for origin of electromagnetic wave noises in the earthquakes, IEEE International Symposium on Electromagnetic Compatibility Proceedings of the 1997 International Symposium on Electromagnetic Compatibility, EMC May 21-23 1997, Beijing, China, p 80-82.
    [94] Kamogawa, Masashi; Ohtsuki, Yoshi-Hiko , Dipole-image model for origin of electromagnetic wave noises in the earthquakes, IEEE International Symposium on Electromagnetic Compatibility Proceedings of the 1997 International Symposium on Electromagnetic Compatibility, EMC May 21-23 1997, Beijing, China, p83-85.
    [95]钱书清,任克新,吕智.伴随岩石破裂的VLF,M F,HF和VHF电磁辐射特性的实验研究[J].地震学报,1996,18(3):346~351.
    [96] Yamada, I., Masuda,K.,Mizutani,H.: Electromagnetic and acoustic emission associated with rock fracture. Phys. Earth Planet.Inter., 1989, 57: 157~168.
    [97] Warwick, J.W., Stoker, C and Meyer, T.R.: Radio emission associated with rock fracture:possible application to the Great Chilean Earthquake of May 22, 1960. J.Geaphys.res., 92, 87B4: 3851~2859.
    [98]孙正江,王丽华,高宏.岩石破裂时的电磁辐射和光发射[J].地球物理学报,1986,(29):491-495
    [99]耿乃光,崔承禹等.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报,1992(增刊):645-652.
    [100]耿乃光,樊正芳等.微波遥感技术在岩石力学中的应用[J].地震学报,1995(4):482-486.
    [101] Ohtsuki, Yoshi-Hiko; Kamogawa, Masashi, Plasmon-decay model for origin of electromagnetic wave noises in the earthquakes, IEEE International Symposium on Electromagnetic Compatibility Proceedings of the 1997 International Symposium on Electromagnetic Compatibility, EMC May 21-23 1997,Beijing, China, p 80-82.
    [102]郭自强,刘斌.岩石破裂电磁辐射的频率特性[J].地球物理学报,1995,38(2):221~226.
    [103] Nikiforova, N. N., Yudekhiu, F. N., Toktosopiev, A. M., Study of electromagnetic emission of seismotectonic origin in kirghiz, S. S. R., Phys. Earth Planet. Inter., 57, 68-75. 1989.
    [104] Morgunov, U. A., Matveev, E. V., Electromagnetic emission on Spitak earthquake, Geophysics, 6,14-191.1990.
    [105] Y.Fujinawa, K.Takahashi. Relationships between anomalous subsurface electric field changes and earthquakes[C]. International Workshop on Electromagnetic Phenomena Related to Earthquake Prediction, 1993, 9.
    [106] Parrrot, M., Lefeuvre, F., Correlation between GEOS VLF emissions and earthquakes, Ann, Geophys, 3, 737-748, 1985.
    [107] Fraser-smith, A. C., Bernardi, A., McGil, P. R., Bowen, M. M., Ladd, M. E., Helliwell, R. A., Villard, JR., O. G., Low-frequency magnetic field measurements near the epicenter of the M, 7.1 Loma Prieta earthquake, Geophys. Res. Lett., 17, 1465-1468, 1990.
    [108] Adams, M. H., Some observations of electromagnetic signals proor to California earthquakes. J. Sci. Explor., 4.137-152, 1990.
    [109] Larkina, V. I., Nalivayko, A. V., Gershenzon, N. I., Gokhberg, M. B., Liperovskiy, V. A., Shalimov, S.L., Observations of VLF emissions related with seismic activity, on the Interkosmos-19 satellite, Geomagn. Aeron., 23. 684-687,1983.
    [110]张德齐,王盛飞,刘福,等.南黄海Ms6.1地震电磁辐射特征[J].地震学刊,1997(2);23~26.
    [111]陈宝华,黄声明,杨德荣.闽台地区震前电磁辐射和自然电位特征的研究[J].地震学报,1996,18(3):404 408.
    [112]李美,卢军,常媛,刘秀.汶川8.0级地震前高碑店和宁晋台超低频电磁辐射异常特征分析[J].国际地震动态,总367(no.7),2009年7月.
    [113]王庆志,于世昌,史素娟,等.近震电磁信息异常特点及分析[J].东北地震研究,1998,14(4):36~39.
    [114]牛继荣,张富芳,王玉华,等.中强地震前天祝电磁波信息变化的初步研究[J].西北地震学报,2003,25(3):286~288.
    [115]李世愚,唐林波,刘建新,等.地震前低频事件的实验研究[J].地震地磁观测与研究,2002,23(4):2-7.
    [116]宋晓艳.煤岩物性的电磁辐射响应特征与机制研究[D].徐州:中国矿业大学,2009.
    [117]新三思Y4306型3000 kN压力试验机控制系统说明书.
    [118]黄滚.岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[D].重庆:重庆大学,2007.
    [119] Brady B T. An exact solution to the radially end-constrained circular cylinder under triaxial loading [J]. Int. J. Rock Mech. Min. Sci., 1971, 8: 165-178.
    [120] R E古得曼著.王鸿儒,王鸿硕等译.岩石力学原理及其应用[M].北京:水利出版社,1989.
    [121]王文星.岩体力学[M].长沙:中南大学出版社,2004.
    [122]郭志.实用岩体力学[M].北京:地质出版社,1996.
    [123]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1988.
    [124]高延法,张庆松.矿山岩体力学[M].徐州:中国矿业大学,2000.
    [125] http://www.cqcoal.com/DispInfo.jsp?id=11827
    [126]韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社,1995.
    [127]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [128]孟召平,张吉昌,Joachim Tiedemann.煤系岩石物理力学参数与声波速度之间的关系[J].地球物理学报,2006,49(5):1506-1510.
    [129]李增学,魏久传,刘莹.煤地质学[M].北京:地质出版社,2005.
    [130]张咸恭.工程地质学[M].北京:地质出版社,1979.
    [131]孙广忠.岩体力学基础[M].北京:科学出版社,1983.
    [132] [美]悉尼?明德斯等著,方秋清,杜如楼等译.混凝土[M].北京:中国建筑工业出版社,1989.
    [133]沈蒲生主编.混凝土结构设计原理[M].北京:高等教育出版社,2002.
    [134]王云刚.受载煤体变形破裂微波辐射规律及其机理的基础研究[D].徐州:中国矿业大学,2008.
    [135]王立凤,王继军,陈小斌,等.岩石破裂电磁辐射(EMR)现象实验研究[J].地球物理学进展,2007,22(3):715-719。
    [136]虞吉林.动态断裂理论和实验研究进展[J].力学与实践,1992,14(5):7-14.
    [137]续媛君,潘宏侠.设备故障趋势预测的分析与应用[J].振动、测试与诊断,2006,26(4):305-308.
    [138]陈珊珊,李钢燕,何立波.滚动轴承现场故障诊断实用方法[J].轴承,2008,(5):39-42.
    [139]钱济国.机械故障的时域参数诊断法[J].煤矿机械,2006,27(9):192-193.
    [140]白天旭.铁路货车滚动轴承在线计算机诊断系统[J].河南科技大学学报(自然科学版),2003,24(3):93-94.
    [141] Michael R. Lyu, Edward Yau, Sam Sze, A multilingual multimodal digital video library system, Proceedings of the second ACM/IEEE-CS joint conference on Digital libraries, 2002, Portland, Oregon, USA.
    [142] LJ. Stankovic. A multitime definition of the wigner higher order distribution: L-wigner distribution. IEEE Signal Lett. 1994, 1: 106-109.
    [143] Bingham E. and Hyvarinen A. A fastfixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems, 2000, 10(1): 1-8.
    [144] Cardoso, J. F. and Souloumiac A. Blind beamfroming for non Gaussion signals. IEEE Processings-F, 1993, 140(6): 362-370.
    [145] Cardoso J. F. and Laheld B.H. Equivariant adaptive source separation. IEEE Trdns. Signal Proceeding. 1996, 44(12): 3017-3029.
    [146]赵松年,熊小芸著.子波变换与子波分析[M].北京:电子工业出版社,1997.
    [147] Umberto Spagnolini. Time-domain estimation of mt impedance tensor[J]. Geophysics,1994,712-721.
    [148]严家斌.大地电磁信号处理理论及方法研究[D].武汉:中南大学,2003.
    [149]汪源源.现代信号处理理论与方法[M].上海:复旦大学出版社,2003.
    [150]胡昌华,李国华,刘涛,周志杰.基于MATLAB 6.x的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社,2004.
    [151]胡广书编著.现代信号处理教程[M].清华大学出版社,2004.
    [152]赵松年,熊小芸著.子波变换与子波分析[M].北京:电子工业出版社,1997.
    [153]李建平.小波分析与信号处理[M].重庆:重庆出版社,1997.
    [154]沈民奋,孙丽莎.现代随机信号与系统分析[M].北京:科学出版社,1998.
    [155]杨维权,刘兰亭,林鸿洲.多元统计分析[M].北京:高等教育出版社,1989.
    [156]范金城,梅长林.数据分析[M].北京:科学出版社,2002.
    [157]吕扬生,边奠英.随机信号处理导论[M].天津:天津大学出版社,1988.
    [158]林洪桦.动态测试数据处理[M].北京:北京理工大学出版社,1995.
    [159]陈元亨.信息与信号理论基础[M].北京:高等教育出版社,1989.
    [160]雷继尧,何世德,王嘉琛.工程信号处理技术[M].重庆:重庆大学出版社,1990.
    [161] [苏]Н.Б.多尔特曼.岩石和矿物的物理性质[M].蒋宏耀等译.北京:科学出版社,1985.
    [162]М.П.Воларович,Э.И.Пархоменко.Пьезоэлектрическииэффектгорныхпород[J].Изв.АНСССР,сер.геофиз, 1955, (2): 215-222.
    [163]孙正江,王华俊.地电概论[M].北京:地震出版社,1984.
    [164]姚守拙.压电化学与生物传感[M].长沙:湖南师范大学出版社,1997.
    [165]国家地震局科技监测司.地震电磁观测技术[M].北京:地震出版社
    [166]瓦尔茨,И.Э.苏联煤岩学-煤岩学原理和煤岩学研究方法[M].北京:地质出版社,1986.
    [167]崔承禹,邓明德,耿乃光.在不同压力下岩石光谱辐射特性研究[J].科学通报.1993( 6):528-541.
    [168]黄昆原著,韩汝琪改编.固体物理学[M].北京:高等教育出版社,2000.
    [169] (英)B. R..劳恩,T. R.威尔肖.陈颙,尹祥础译.脆性断裂力学[M].北京:地震出版社,1985.
    [170]Р.Ш.基利凯耶夫,М.И.米罗什尼钦科.力载荷下的岩石电场[J].见:苏联地震预报研究文集[M].北京:地震出版社,1993:31-34.
    [171]孙大明,席光康.固体的表面与界面[M].合肥:安徽教育出版社,1996.
    [172] Alekseev D. V., Egorov P.V., Ivanov V.V.. Mechanisms of electrifications of cracks and electromagnetic precursors of rock failure. Soviet Mining Science, 1993,28(6): 515-519
    [173]毕德显.电磁场理论[M].北京:电子工业出版社,1985.
    [174]朱建清.电磁波工程[M].长沙:国防科技大学出版社,2000.
    [175]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991,115-123.
    [176]赵建生.断裂力学与断裂物理[M].武汉:华中科技大学出版社,2003.
    [177]尹祥础.固体力学[M].北京:地震出版社,1985.
    [178]许金泉,丁浩江.现代固体力学理论及应用[M].杭州:浙江大学出版社,1997.
    [179]李贺,尹光志,许江等.岩石断裂力学[M].重庆:重庆大学出版社,1988.
    [180]哈宽富.断裂物理基础[M].北京:科学出版社,2000.
    [181] Ramulu M, Kobayashi A S, Kang B S J. Dynamic Crack Curving and Branching in Line Pipe[J]. Journal of Pressure Vessel Technology, 1982,104:317-322.
    [182]白卫峰.混凝土损伤机理及饱和混凝土力学性能研究[D].大连:大连理工大学,2008.
    [183]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [184]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [185]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [186]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [187]熊皓.电磁波传播与空间环境[M].北京:电子工业出版社,2004.
    [188]刘天放,李志聃.矿井地球物理勘探[M].北京:煤炭工业出版社,1993.
    [189]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [190]沈熙宁.电磁场与电磁波[M].北京:科学出版社,2006.
    [191]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [192]宋振骐,蒋宇静,杨增夫等.煤矿重大事故预测和控制的动力信息基础的研究[M].北京:煤炭工业出版社,2003. 10.
    [193]蒋金泉.采场围岩应力与运动[M].煤炭工业出版社,1993年.
    [194]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [195]耿献文主编.矿山压力测控技术[M].徐州:中国矿业大学出版社,2002,1.
    [196]四川绵阳地区天地煤矿,重庆煤炭科学研究所.天地煤矿煤层注水防治煤炮工业试验报告[J].见:煤炭部矿山压力科技情报中心站.冲击地压机理研究与防治文集[M]. 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700