用户名: 密码: 验证码:
煤层中封存二氧化碳的双重孔隙力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用煤层进行CO_2地质封存成为了学术研究的热点之一。煤具有典型的双孔结构特征和有机组成,CO_2在其中主要呈吸附状态,性质稳定,并可驱替煤层气,有广阔的应用前景。但是在煤层中封存CO_2的过程中涉及到煤的变形、气体的吸附、渗流与扩散等一系列力学问题极大地制约了这项技术的实施。本文根据多孔介质弹性力学理论,综合利用理论分析和数值模拟手段系统研究了CO_2煤层封存中的煤体变形、气体吸附、气体渗流和气体扩散等多物理场耦合系统,主要得到以下结论:
     (1)根据裂隙和孔隙系统之间相互作用,建立了适合各自特点的渗透率变化模型。根据多孔介质弹性理论的有效应力原理建立了包含气体流动和吸附作用影响的煤的变形方程。根据气体在煤中的流动和吸附储存的特点分别建立了裂隙和孔隙中的气体流动控制方程。控制方程中包含了固体变形、流体渗流、流体吸附等多物理场耦合作用。
     (2)考虑到煤中残余水分对气体吸附的影响,利用Ettinger模型,建立了包含湿度效应的裂隙和孔隙系统的渗透率变化模型,并将湿度效应引入双重孔隙介质多物理场耦合模型。
     (3)利用COMSOL Multiphysics结合双重孔隙介质模型,对CO_2煤层封存进行了模拟,并对相关影响因素进行了分析。煤层的裂隙发育程度直接决定了CO_2注入的速度。煤层中裂隙越多,裂隙的初始渗透率越大,受到注气影响时变化越大。当水平方向上地应力的值不相等时,气体渗透具有方向性。气体在沿着最大应力的方向上的渗透速度较快。当煤层中含有残余水分时,气体注入速度则更快,但是煤层对CO_2的总封存量越小。
     (4)利用图像处理法和数值生成法研究了煤层中裂隙分布问题。图像处理法包括:数字图像处理技术和断层x射线扫描成像技术。前者通过处理平面图像获得初始裂隙的二维空间分布,后者通过一组CT扫描图片构造出岩样裂隙分布的三维模型。数值生成方法利用Weibull分布模型构建了岩样中裂隙的分布,讨论了Weibull均匀性指数对裂隙分布的影响。
     (5)将双重孔隙介质的多物理场耦合模型应用于CO_2-ECBM中,建立了在二元气体竞争吸附过程中,裂隙的裂隙率和渗透率变化模型、孔隙中的孔隙率和渗透率变化模型。根据多孔介质弹性理论的有效应力原理和多元气体竞争吸附引起煤的变形关系,推导了煤层耦合变形方程。根据裂隙和孔隙中流体的质量守恒方程,动力扩散方程,Fick定律分别建立了包含二元气体竞争吸附效应的裂隙和孔隙中气体对流扩散耦合方程。
     (6)以沁水盆地煤层气增产试验为工程背景,将建立的CO_2-ECBM模型应用于现场模拟,分别对不注气抽采煤层气、不同注气压力下抽采煤层气等情况进行了模拟研究。模拟结果表明在煤层中注入CO_2能有效的提高煤层气的采出率。
Geological sequestration of CO_2 in coal seams shows great potential to reduce Greenhouse gas emissions and has been studied worldwide in recent years. The typical dual-porosity property and organic component of coal together with the liquid state and steady property of CO_2, as well as methane production make coal seams a promising target. However, the CO_2 sequestration in coal seams involves a serial of mechanical problems such as coal deformation, the adsorption, seepage and diffusion of gas, which restricted the implement of this technology. This paper studied the multi-physics system which coupled the coal deformation, gas adsorption, seepage and diffusion equations on the basis of poroelastic medium, theory analysis and numerical simulation, and the following conclusions are obtained,
     (1) Based on the interaction of two systems, the porosity models for both matrix and frature are developed. The coal deformation model has been developed on the basis of effective stress in poroelastic medium, in which the gas flow effect is included. A set of interacted three-equation system including the multiphysics effect of the solid deformation, gas flow and adsorption is developed in which the flow of gas in coal and the adsorption capacity of coal are studied.
     (2) Given the effect of the residual water on the gas adsorption, permeability models including the moisture effects for fracture and matrix system are developed on the basis of Ettiger model, to which the wettability is introduced.
     (3) The coupled models are implemented in the COMSOL Multiphysics, in which the CO_2 sequestration process is simulated and the relative factors are analysed. The injection rate of CO_2 is directly decided by the fracture development. The more fractures in the coal seams, the larger the initial permeability of the fracture, and the faster of the gas transportation in them. In the meanwhile, the more cleats, the larger contact area of gas and coal will be. When the ground stresses are not equal in the horizontal directions, the gas permeability is directional. Gas permeates fastest in the direction of the largest geostress. The injection rate of gas is faster when residual water exists in the coal seams. The larger the moisture content, the smaller of the CO_2 sequestration.
     (4) The initial fracture distribution has been studied by image processing and numerical generation. The image processing consists of digital image processing technique and X-ray computerized tomography technique. By using the former method, two dimensional space distributions of the initial fracture can be obtained. While by using the latter, a set of CT scanning pictures can generate the 3D fracture distribution model of the core sample. The fracture distribution in the core sample is constructed and the effect of different homogeneity indices on the fracture distribution is studied in the numerical generation method on the basis of the Weibull distribution model.
     (5)The dual-porosity model is applied to the CO_2-ECBM, and the porosity and permeability models for both fracture and matrix systems are generated during the competitive adsorption of binary gas. The coupled coal deformation equation is derived on the basis of effective stress theory and the deformation relation caused by the competitive adsorption of binary gas. In addition, the coupled gas convection and diffusion equations are attributed to the mass conservation law, hydraulic diffusion equation as well as the Fick’s law.
     (6) The CO_2-ECBM model is implemented into a field case in Qinshui CBM field. The simulation is conducted under different situations of gas producing without CO_2 injection and gas producing by various injection pressures. The simulation results demonstrate that the gas production is enhanced by CO_2 injection effectively.
引文
[1] Holloway S. Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth[J].AnnualReview ofEnergy and theEnvironment,2001,26:145-166.
    [2] Jiang Z M.Reflections on energy issues in China[J].China Nuclear Power.2008,(1):98-113.
    [3]杨乃芬.减排45%或使中国GDP损失超5000亿.第一财经日报.2009
    [4]白希光等.日本治理温室效应现状[J].环境科学进展.1994,2(6),58-65
    [5]郑楚光.温室效应及其控制对策[M].北京:中国电力出版社,2001.
    [6]戴军虎.温室效应[M].北京:中国环境科学出版社,2001.
    [7]周来.深部煤层处置CO_2多物理耦合过程的实验与模拟[D].中国矿业大学, 2009.
    [8]李天成,冯霞,李鑫钢.二氧化碳处理技术现状及其发展趋势[J].化学工业与工程.2004, 19(2):191-196.
    [9]张镜澄.超临界流体萃取[M].北京:化学工业出版社,2000:1-77.
    [10] Bachu S,Bonijoly D,Bradshaw J,et al.CO_2 storage capacity estimation:Methodology and gaps[J].International Journal of Greenhouse Gas Control.2007:430-443.
    [11] Bruant R G,Guswa A J,Celia M A,et al.Sate storage of CO_2 deep aquifer[J].Environment Science and Technology.2002,36(11):240-245.
    [12]叶建平,冯三利,范志强.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报,28(4):77-80
    [13] http://www.co2crc.com.au/images/imagelibrary/gen_diag/world_projects_a_media.jpg
    [14]林刚,陈莉纯.温室气体CO_2的收集,存储与再利用[J].低温与特气.1999(2):14-19.
    [15] Gentzis T.Subsurface sequestration of carbon dioxide--an overview from an Alberta(Canada) perspective [J]. International Journal of Coal Geology.2000,43(1-4):287-305.
    [16] Hamelinck C N,Faaij A P,Turkenburg W C,et al. CO_2 enhanced coalbed methane production in the Netherlands[J]. Energy. 2002,27(7):647-674.
    [17] Yamazaki T,Aso K,Chinju J.Japanese potential of CO_2 sequestration in coal seams [J]. Applied Energy. 2006,83(9):911-920.
    [18] Holloway S.Underground sequestration of carbon dioxide-a viable greenhouse gas mitigation options [J].Energy Conversion and Management.2005,30(11-12):231-333.
    [19] Holloway S.An overview of the jouleⅡproject“The underground dioxide”[J].Energy Conversion and Management.1996, 37(6-8):1149-1154.
    [20]张群.煤层气储层数值模拟模型及应用研究[D].煤炭科学总院,2003
    [21] Barenblatt, G.I, I.P. Zheltov, and N.Kochina, 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Prikl. Mat. Mekh, 24(5), 852-864.
    [22] Warren, J. E. and P. J. Root. Behavior of naturally fractured reservoirs [J]. Trans., AIME 228,Soc. Petrol. Eng. J. 1963: 245-55.
    [23] Schoreder K., Ozdemir E.M B L.Sequestration of Carbon Dioxide in Coal Seams[J].J of Energy&Environment Research. 2002(2):54-63.
    [24] Harris R G&I.Coalbed methane and coal geology[M].London:The Geological Society,1996.
    [25] Stach E.,Mackowsky M.T.,Teichmaller M.,Taylor G.h.,chandra D.R.,Stach's Textbook of Coal Petroogy[M].3 ed.Berlin,Stuttgart:Gerbruder Bortraeger,1982.
    [26] Al-hawaree M.Geomechanics of carbon dioxide sequestration in coalbed methane reservoirs[D].University of Alberta(Canada).,1999.
    [27]唐书恒.晋城地区煤储存特征及多元气体的吸附-解吸特性[D].北京:中国矿业大学(北京校区),2001.
    [28]降文萍,崔永君,张群.煤表面与CH_4,CO_2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237-240.
    [29]辜敏,陈昌国,鲜学福.混合气体的吸附特征[J].天然气工业,2001,21(4):91-95.
    [30]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报(自然科学版),2001,20(3):161-166
    [31]ΚPИЧеВCKИЧP. M. OЛPИPOдеВΗeyanHbIX BbIдeneHИЙИBbIБPOCOByrΛЯИraya [J],БrOΛΛeTeHb MakHИИ, 1948 (18).
    [32]ЧБaPuHOBa-KOЧИHaЛ.Я.OHeyCTaHOBЧBЧIeЙCЯХuΛbTPaЧИuГayaByrOΛbHOMЛΛacTe [J],ЛPuKΛ. MaT.ИMex., 1953 (6).
    [33]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报, 1965, 2 (1): 24-36.
    [34]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报, 1984, 2 (2): 19-28.
    [35]谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报, 1986, (1): 106-112.
    [36]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报, 1989, 12 (5): 1-9.
    [37]孙培德.煤层瓦斯流动理论及其应用[A].中国煤炭学会1988年学术年会论文集.北京:煤炭工业出版社,1988.
    [38]孙培德.煤层瓦斯动力学及其应用的研究[J].山西矿业学院学报, 1989, 7 (2): 126-135.
    [39]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探, 1993, 21 (1): 32-40.
    [40]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探, 1993, 21 (5): 61-62.
    [41] Sun Peide. Coal gas dynamics and its applications [J]. Scientia Geologica Sinica., 1994, 3 (1): 66-72.
    [42]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报, 1988, 20 (2): 23-28.
    [43]丁晓良.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学: A辑, 1989, (6): 600-607.
    [44]黄运飞、孙广忠.煤─瓦斯介质力学[M].北京:煤炭工业出版社, 1993.
    [45]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报, 1987, 12 (4): 74-82.
    [46]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报, 1986, 11 (3): 62-70.
    [47] Saghafi, A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[A].第22届国际采矿安全会议论文集.北京:煤炭工业出版社, 1987.
    [48]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报, 1990, 15 (1): 61-67.
    [49]彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社, 1983.
    [50]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报, 1991, 20 (3): 36-42.
    [51]姚宇平.煤层瓦斯流动的达西定律与幂定律[J].山西矿业学院学报, 1992, 10 (1): 32-37.
    [52]俊藤研.カ”ス拔キポアホ一ルのある炭曾中のガス流れとその近似表示(第2报) [J].日本矿业会志,1984, 1162.
    [53] Bear, J著.多孔介质流体动力学[M].李竞生、陈崇希译.北京:中国建筑工业出版社, 1983.
    [54]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报, 1994,13(3):229-239.
    [55]赵阳升.煤体瓦斯流动的固-气耦合数学模型及数值解法的研究[J].固体力学学报, 1994,15(1):49-57.
    [56]梁冰,章梦涛,潘一山,等.煤和瓦斯突出的固流耦合失稳理论田.煤炭学报,1995,20(5):492-496.
    [57]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6):397-401.
    [58]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报,2001,20(1):36-39.
    [59]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学, 2004.
    [60]李祥春,郭勇义,吴世跃,等.考虑吸附膨胀应力影响的煤层瓦斯流-固耦合渗流数学模型及数值模拟[J].岩石力学与工程学报,2007,26(增1):2743-2748.
    [61]王惠芸,刘勇,梁冰.煤层气在低渗透储层中传输非线性规律研究[J].辽宁工程技术大学学报,2005,24(4):469-472.
    [62]白冰. CO_2煤层封存流动-力学理论及场地力学稳定性数值模拟方法[D].中国科学院武汉岩土力学研究所, 2008.
    [63] Bai M., Elsworth D. and Roegiers J.-C.. Multi-porosity/multi-permeability approach to the simulation of naturally fractured reservoirs [J]. Water Resource, 1993: 1621-1633.
    [64] Bai, M., D. Elsworth, H. I. Inyang and J.-C. Roegiers. A semi-analytical solution for contaminant migration with linear sorption in strongly heterogeneous media [J]. J. of Environ. Eng. ASCE 123,1997: 1116-1125.
    [65] Jim Douglas, Jr., Jeffrey L. Hensley, Todd Arbogast. A Dual-porosity model for water flooding in naturally fractured reservoirs [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 87:157-174.
    [66] Elsworth D.and Bai M. Flow-deformation response of dual-porosity media [J]. J. Geotech. Engng. ASCE, 118, 1992: 107-124.
    [67] Bai, M., J.-C. Roegiers and D. Elsworth. Poromechanical response of fractured-porous rock masses [J]. J. Petrol. Sci. Eng. 1995, 13: 155-168.
    [68] Eric P. Robertson, Richard L. Christiansen. A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media [C]. In: Proceedings of the 2006 SPE Eastern Regional Meeting, Ohio, 11–13 October, paper SPE 104380.
    [69] Ouyang, Z. and D. Elsworth. Evaluation of groundwater flow into mined panels. Int. J. Rock Mech. Min. Sci. and Geomech [J]. 1993, 30: 71-80.
    [70] Liu, J., D. Elsworth and B. H. Brady. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR [J]. Int. J. Rock Mech. Min. Sci., 1999, 36: 581-596.
    [71] Bai, M., and D. Elsworth. Modeling of subsidence and stress-dependent hydraulic conductivity of intact and fractured porous media [J]. Rock Mech. andRock Eng. 1994,27: 209-234.
    [72] Liu, J. and Elsworth, D. Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels [J]. Int. J. R. Mechs., Min. Sci. and Geomechs. Abstr., 1998, 34,(8): 1139 - 1152.
    [73] Liu, J. and Elsworth, D. Evaluation of pore water pressure fluctuation around an advancing longwall panel [J]. Adv. Water Res., 1999, 22(6,): 633– 644.
    [74] Eric Pili, Frederic Perrier, Patrick Richon. Dual porosity mechanism for transient groundwater and gas anomalies induced by external forcing [J]. Earth and Planetary Science Letters, 2004 227: 473- 480.
    [75] Cui X, Bustin RM., Gregory Dipple. Selective transport of CO_2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data [J]. Fuel, 2004, 83: 293-303.
    [76] Zhang H.B., Liu J., Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model [J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45:1226-1236
    [77] Harpalani S, Chen G. Influence of gas production induced volumetric strain on permeability of coal [J]. Geotech Geol Eng, 1997, 15: 303-325.
    [78] Clarkson C.R., Bustin R.M., The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study: Isotherms and pore volume distributions [J]. Fuel, 1999, 78: 1333-1344.
    [79] Faiz M, Saghafi A, Sherwood N, Wang I. The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia [J]. Int J Coal Geol, 2007, 70:193-208.
    [80] Harpalani S, Schraufnagel A. Measurement of parameters impacting methane recovery fromcoal seams. Int J Min Geol Eng, 1990, 8: 369-84.
    [81] Seidle, J.P. and Huitt, L.G., Experimental Measurement ofCoal Matrix Shrinkage Due to Gas Desorption and Implications for Cleat Permeability Increases [C]. Paper SPE 30010, presented at the 1995 International Meeting on Petroleum Engineering, Beijing, China (14-17 November 1995).
    [82] Gray, I. Reservoir Engineering in Coal Seams: Part 1– The Physical Process of Gas Storage and Movement in Coal Seams [C]. Paper SPE 12514, SPE Reservoir Engineering (February, 1987) : 28-34.
    [83] Sawyer, W.K. Development and Application of a 3D Coalbed Simulator [C]. Paper CIM/SPE 90-119, presented at the 1990 International Technical Meeting hosted jointly by the Petroleum Society of CIM and the Society of Petroleum Engineers, Calgary, Alberta, Canada (10-13 June).
    [84] Palmer, I. and Mansoori, J. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model [C]. Paper SPE 52607, SPE Reservoir Evaluation & Engineering (December, 1998): 539-544.
    [85] Pekot, L.J. and Reeves, S.R. Modeling the Effects of Matrix Shrinkage and Differential Swelling on Coalbed Methane Recovery and Carbon Sequestration [C]. Paper 0328, proc. 2003 International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama (May).
    [86] Shi, J.Q. and Durucan, S. Changes in Permeability of Coalbeds During Primary Recovery– Part 1: Model Formulation and Analysis [C]. Paper 0341 proc. 2003 International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama (May).
    [87] Shi, J., Durucan, S. A model for changes in coalbed permeability during primary and enhanced methane recovery [C]. SPE Reservoir Evaluation Engineering, 2005, 8:291-299.
    [88] Shi JQ, Durucan S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery [J]. Transp Porous Media 2004, 56:1-16.
    [89] Choi, E. S., Cheema, T., Islam, M. R., A new dual-porosity/dual permeability model with non-Darcian flow through fractures [J]. Journal of Petroleum Science and Engineering, 17(1997) 331-344. Available from WEBCT.
    [90] Cui X, Bustin RM. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [C]. AAPG Bull, 2005, 89:1181–202.
    [91] Robertson EP, Christiansen RL. Modeling permeability in coal using sorption-induced strain data [C]. In: Proceedings of the 2005 SPE annual technical conference and exhibition, Dallas, 9-12 October, paper SPE 97068.
    [92] Zimmerman, R. W., Coupling in poroelasticity and thermoelasticity [J]. International Journalof Rock Mechanics and Mining Sciences, 2000, 37: 79–87.
    [93] Zimmerman, R. W., W. H. Somerton, M. S. King, Compressibility of porous rocks [J]. Journal of Geophysical Research, 1986, 91:12,765- 12,777.
    [94] Detournay E, Cheng AHD. Fundamentals of poroelasticity [M]. In: Fairhurst C, editor. Comprehensive rock engineering, 1993, 2 : 113–71.
    [95] Biot MA. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12:155–64.
    [96] George V. Chilingar, Relationship between Porosity, Permeability, and Grain Size Distribution of Sands and Sandstones [J]. Development in Sedimentology, Volume 1: 71-74
    [97] Muller E.A., Hung F.R., Gubbins K.E., Adsorption of water vapor-methane mixtures on activated carbons [J].Langmuir 16 (2000) 5418-5424.
    [98] Goodman A.L., Busch A., Duffy G.J., Fitzgerald J.E., Gasem K.A.M., Gensterblum Y., Krooss B.M., Levy J., Ozdemir E., Pan Z., Robinson Jr. R.L., Schroeder K., Sudibandriyo M., White C.M., An inter-laboratory comparison of CO_2 isotherms measured on Argonne Premium coal samples [J]. Energy and Fuels 18 (2004) 1175-1182.
    [99] Ozdemir E., Schroeder K., Effect of moisture on adsorption isotherms and adsorption capacities of CO_2 on coals [J]. Energy Fuels 23 (2009) 2821–2831.
    [100] Ettinger I., Lidin I.L., Dmitriev A.M., Shaupakhina E.S., in: US Bureau of Mines Translation No. 1505/National Coal Board Translation A1606SEH, 1958.
    [101] Joubert J.I., Grein C.T., Bienstock D., Effect of moisture on the methane capacity of American coals [J]. Fuel 53 (1974) 186-191.
    [102] Levy J.H., Day S.J., Killingley J.S., Methane capacities of Bowen Basin coals related to coal properties [J]. Fuel 76 (1997) 813-819.
    [103] Crosdale P.J., Moore T.A., Mares T.E., Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir [J]. International Journal of Coal Geology 76 (2008) 166-174.
    [104] Palmer, I. Permeability changes in coal: analytical modeling [J]. International Journal of Coal Geology,77(2009):119-126
    [105] Shi, J., Durucan, S. Exponential growth in San Juan Basin Fruitland coalbed permeability with reservoir drawdown-model match and new in insights [C]. Paper SPE 123206, presented at the 2009 SPE Rocky Mountain Petroleum Technology Conference, Danver, USA (14-16 April)
    [106] Clarkson, C.R., Bustin, R.M. The effect of pore structure and gas pressure upon. The transport properties of coal Adsorption rate modeling [J]. Fuel, 1999b, 78: 1345–1362.
    [107] Haralick R. M., Shapiro L. G. Glossary of computer vision terms [J]. Pattern Recognition, 1991, 24: 69-93.
    [108] Chang M., Deka J. R., Tszeng T. Z., Cheng P. R. Online monitoring of pore distribution inmicroporous membrane [J]. Desalination, 2008, 234: 66-73.
    [109] Keller A. High resolution, non-destructive measurement and characterization of fracture apertures [J]. Int. J. Rock Mech. Min. Sci. 1998,35 (8): 1037-1050.
    [110] Ohtani T., Nakashima Y., Muraoka H. Three-dimensional miarolitic cavity distribution in the Kakkonda granite from borehole WD-1a using X-ray computerized tomography [J]. Eng. Geol., 2000,56 (1 and 2): 1-9.
    [111] Van Geet, M., Swennen, R., wevers, M. Quantitative analysis of reservoir rocks by microfocus X-ray computerized tomography [J]. Sediment. Geol., 2000,132 (1 and 2): 25-36.
    [112] Van Geet M., Swennen R., Wevers M. Towards 3-D petrography: application of microfocus computer tomography in geological science [J]. Comput. Geosci., 2001, 27 (9): 1091-1099.
    [113] Ketcham R. A., Carlson W. D. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to geosciences [J]. Comput. Geosci., 2001, 27(4): 381-400.
    [114] Mogensen K., Stenby E.H., and Zhou D. Studies of water flooding in low-permeable chalk by use of X-ray CT scanning [J]. Journal of Petroleum Science and Engineering, 2001, 32 (1): 1-10.
    [115] Akin S., Kovscek A. R. Computed tomography in petroleum engineering research. In: Mees F., Swennen R., Van Geet M., Jacobs P. (Eds.), application of X-ray computed tomography in the geosciences [C]. Special Publication-Geological Society of London, 2003, 215: 23-38.
    [116] Taud, H., Martinez-Angeles, R., Parrot, J.F., Hernandez-Escobedo, L. Porosity estimation method by X-ray computed tomography [J]. Journal of Petroleum Science and Engineering, 2005, 47: 209-217.
    [117] Withjack E. M. Computed tomography for rock property determination and fluid flow visualization [C]. SPE Formation Evaluation. 1988, 3(4): 696-704.
    [118] Tang, C.A. Numerical simulation of progressive rock failure and associated seismicity [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34: 249-261.
    [119] Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y., Tham, L.G.. Numerical tests on micro-macro relationship of rock failure under uniaxial compression, part I: effect of heterogeneity [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 555-569.
    [120] Tang, C.A. Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C. Coupled analysis of flow, stress and damage (FSD) in rock failure [J]. International Journal of Rock Mechanics & Mining Sciences 39 (2002) 477-489.
    [121] Zhu, W.C., Tang, C.A. Micromechanical model for simulating the fracture process of rock [J]. Rock Mechanics and Rock Engineering, 2004, 37 (1): 25-56
    [122] Yang, T.H., Tham, L.G., Tang, C.A., Liang, Z.Z., Tsui, Y. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks [J]. Rock Mechanics andRock Engineering, 2004, 37 (4): 251-275.
    [123] Reznik A A,Singh P K,Foley W L.An analysis of the effect of CO_2 injection on the recovery of in-situ methane from bituminous coal:an experimental simulation[J]. Society of Petroleum Engineering Journal.1984,(24):521-528.
    [124] Wolf K H, Hijman R, Barzandij O H, Bruining J. Laboratory experiments and simulations on the environmentally friendly improvement of coalbed methane production by carbon-dioxide injection[C]. Proceedings of the Coalbed Methane Symposium, May 3–7, 1999. Tuscaloosa, Alabama. 1999:279-290.
    [125] Mazumder S, Wolf K H, Wolf P H.Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/flue gas injection [J]. Transporting Porous Media.2008, 75(1):63-92.
    [126] Mazumder S, Wolf K H.Differential swelling and permeability change of coal inresponse to CO_2 injection for ECBM [J]. International Journal of Coal Geology.2008,(74):123-138.
    [127] Stevens S H,Spector D,Riemer P.Enhanced coalbed methane recovery using CO_2 injection: Worldwide resource and CO_2 sequestration potential[C]. Society of Petroleum Engineering. Proceedings of the International Oil&Gas Conference and Exhibition of the Society of Petroleum Engineers, November 2-6,1998.Beijing,China.SPE,1998:489-501.
    [128] Reeves S R.Geological sequestration of CO_2 in deep, unmineable coalbeds: An integrated research and commercial-scale field demonstration project[C]. Society of Petroleum Engineering.Proceedings of the Annual Technical Conference and Exhibition of the Society of Petroleum Engineers,September 30-October 3,2001.New Orleans,LA.SPE,2001:1-10.
    [129] Bradshaw,B E,Simon G,Bradshaw J,et al.GEODISC research:carbon dioxide sequestration potential of australia’s Coal Basins[C]//Proceedings of the Eighteenth Annual International Pittsburgh Coal Conference,December 3-7,2001.Newcastle,NSW,Australia.2001: 34-56.
    [130] Wong S, MacLeod, K, Wold M, et al.CO_2 enhanced coalbed methane recovery demonstration pilots: a case for Australia [C]. Proceedings of the International Coalbed Methane Symposium, May 14-18, 2001. University of Alabama, Tuscaloosa, AL.2001:75-86.
    [131] Pagnier H J M, Bergen F, Kreft E,et al. Field experiment of ECBM-CO_2 in the Upper Silessian Basin of Poland [C]. Society of Petroleum Engineering.SPE Europec/EAGE Annual Conference, June 13-18, 2005. Madrid, Spain. SPE,2005:1-3.
    [132] Langmuir, I., 1916. The constitution and fundamental properties of solids and liquids [J]. part I. solids. J. Am. Chem. Soc. 38, 2221-2295.
    [133] Butler J. A. V., Ockrent, C. Studies in Electrocapillarity. Part III. The Surface Tensions of Solutions Containing Two Surface-Active Solutes [J]. J. Phys. Chem. 1930.34: 2841-2845.
    [134] Do, D., 1998. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London.
    [135] Goodman, A.L., R. N. Favors, M. M. Hill, J. W. Larsen. 2005. Structure Changes inPittsburgh No. 8 Coal Caused by Sorption of CO_2 Gas [J]. Energy & Fuels, 19, 1759-1760.
    [136] Karacan, C.O. Heterogeneous sorption and swelling in a confined and stressed coal during CO_2 injection [J]. Energy Fuels, 2003, 17:1595–1608.
    [137] Mazumder, S., Bruining, J. Anomalous diffusion behavior of CO_2 in the macro- molecular network structure of coal and its significance for CO_2 sequestration [J]. Society of Petroleum Engineers paper SPE 109506 presented at the 2007 SPE Asia Pacific Oil & Gas Conference, Jakarta, Indonesia.
    [138] Shi, J.-Q., S. Mazumder, K.-H. Wolf, S. Durucan. Competitive Methane Desorption by Supercritical CO_2 Injection in Coal [J]. Trans. Porous Med, 2008,75: 35-54.
    [139] Raharjo R.D., Freeman B.D., Paul D.R., Sanders E.S. Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly [J]. Polymer. 2007,48: 7329-7344.
    [140]王烽,汤达祯,刘洪林,刘玲,李贵中,王勃.利用CO_2-ECBM技术在沁水盆地开采煤层气和埋藏CO_2的潜力[J].第29卷第4期天然气工业. 2009, 29(4):117-120
    [141]唐书恒,马彩霞,叶建平.注二氧化碳提高煤层甲烷采收率的实验模拟[J] .中国矿业大学学报,2006 ,35 (5) :607-616.
    [142]池卫国.沁水盆地煤层气的水文地质控制作用[J ] .石油勘探与开发,1998 ,25 (3) :15-18.
    [143]刘延锋,李小春,白冰.中国CO_2煤层储存容量初步评价[J] .岩石力学与工程学报,2005 ,24 (16) :2947-2951.
    [144] Wong S, Law D, Deng X, et al. Enhanced coalbed methane and CO_2 storage in anthracitic coals-Micro-pilot test at South Qinshui, Shanxi, China[J]. International Journal of Greenhouse Gas Control.2007(1):215-222.
    [145] Abraham, K.S. Coalbed Methane Activity Expands Further in North America [J]. World oil, 2006, 227(8):61-62
    [146] Aifantis, E. C. Introducing a multi-porous medium [J]. Developments in Mechanics, 1977, 37: 265-296.
    [147] Bai, M. and Elsworth, D. Coupled Processes in Subsurface Deformation [J]. Flow and Transport. ASCE Press. (2000):336 -354.
    [148] John Gale, Paul Freund.Coal-Bed Methane Enhancement with CO_2 Sequestration Worldwide Potential. Environmental Geosciences, 2001, 8(3):210–217.
    [149] Koros, W.J., Chan, A.H., Paul, D.R. Sorption and transport of various gases in polycarbonate [J]. Journal of Membrane Science, 1977, 2:165–190.
    [150] Mavor, M.J., Gunter, W.D. Secondary Porosity and Permeability of Coal vs. Gas Composition and Pressure [J]. SPE Reservoir Evaluation Engineering, 2006, 9:114–125.
    [151] Seidle JP, Jeansonne MW, Erickson DJ. Application of matchstick geometry to stress dependent permeability in coals [J]. In: Proceedings of the SPE rocky mountain regional meeting, Casper, Wyoming, paper SPE24361.
    [152] Wang G.X. , Massarotto P., Rudolph V. An improved permeability model of coal for coalbed methane recovery and CO_2 geosequestration [J]. International Journal of Coal Geology 77 (2009): 127-136
    [153] Wu Y., Liu J., Chen Z. et al. Dual poroelastic response of coal seam to CO_2 injection [C]. 43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC June 28th– July 1, 2009.
    [154] Zhao Y.S., Hu Y.Q., Zhao B., Yang D. Nonlinear Coupled Mathematical Model for Solid Deformation and Gas Seepage in Fractured Media [J]. Transport in Porous Media, 2004, 55: 119-136.
    [155]贠东风,刘听成.煤矿开采深度现状及发展趋势[J ] .煤,1997 ,6 (6) :38-41.
    [156]郭振中,张宏达,于开宁.山西岩溶大泉衰减的多因复成性[J] .工程勘察,2004 (2) : 22-25.
    [157]刘洪林,王红岩,李景明.利用碳封存技术开发我国深层煤层气资源的思考[J] .特种油气藏,2006 ,13 (4) :6-9.
    [158]石书灿,林晓英,李玉魁.沁水盆地南部煤层气藏特征[J] .西南石油大学学报,2007, 29 (2) :54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700