用户名: 密码: 验证码:
西昆仑塔木—卡兰古铅锌铜矿带多级构造控矿模式及成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西昆仑地区是地质研究程度很低,却蕴含着巨大资源潜力的成矿区带。塔木—卡兰古铅锌铜矿带是西昆仑成矿区带的重要组成部分,是当前找矿勘查和成矿研究的热点地区,前人取得了不少找矿和研究成果,但这一区域的各级构造控矿规律一直是研究的薄弱环节,并制约了成矿预测及矿产勘查。
     正是基于这一背景,笔者在阿克陶县桂新矿业开发有限责任公司的支持下,选择“西昆仑塔木—卡兰古铅锌铜矿带多级构造控矿模式及成矿预测”进行专题研究。持续四年的研究工作主要包括:从区域地球物理和区域遥感分析区域构造格架及其对成矿的控制;从构造几何学和构造动力学分析矿田和矿床构造特征及其对成矿的控制;从矿床地质和地球化学特征分析矿床成因;在创新构造成矿动力学模式的基础上结合地球化学和地球物理找矿信息进行成矿预测。通过这些工作主要获得了如下9个方面的成果。
     (1)从区域岩石建造和构造变形特征阐述了塔木—卡兰古铅锌铜矿带地壳演化历经了超大陆裂解、板块俯冲、裂陷槽发育至闭合、造山挤压、盆山分异几个构造演化阶段,多期次的构造运动是造成矿带成矿特征复杂的主要原因。
     (2)ETM遥感图像显示塔木—卡兰古铅锌铜矿带处于NNW向区域性断裂构造带中,矿带的边界为两条NNW向边界断层,其地质特征显示出多期次复杂活动之性质,表明整个矿带构造控制的重要性和复杂性。
     (3)通过区域尺度、矿田尺度、矿床尺度和矿体尺度的构造特征及其与成矿间关系的分析,首次建立了四级构造控矿模式,即工级的NNW向克孜勒陶—库斯拉甫断裂控制了整个塔木—卡兰古铅锌铜矿带;Ⅱ级NNW向断裂与EW向断裂共同控制了矿田;NNW向Ⅱ级断裂所派生Ⅲ级断裂控制矿床;Ⅳ级的裂隙带、节理等构造控制富矿体。
     (4)通过对矿体地质的详细解剖,首次发现铅锌富矿体严格受近EW向的裂隙带控制,并将这一新发现规律应用于塔木、阿拉尔恰和卡拉牙斯卡克等矿床的探采工程,工程控矿效率提高了一倍,出矿品位提高了30%以上。
     (5)首次对塔木铅锌矿主矿体及相关断层F10、裂隙带等地质要素进行了三维形态模拟,更加清晰地揭示了矿体与构造之间的空间关系,表明NNW向断层F10控制了主矿体,F10派生的近EW向裂隙带控制了富矿体。
     (6)根据典型矿床的地质地球化学特征进一步论证了本区铅锌矿床为MVT,推测成矿物质来源于前泥盆系等上地壳层位;成矿流体主要由以大气降水为补给的深部热卤水及油田卤水的混合;流体为中低温、中高盐度;成矿元素以硫氢配合物形式迁移;成矿流体运移的最主要驱动力来源于构造运动。
     (7)从区域成矿规律和区域地壳演化规律论证了本区铅锌铜的主要成矿作用是喜马拉雅期造山运动的逆冲推覆所致,首次建立逆冲推覆构造成矿模式。
     (8)根据矿体的构造控矿模式和高频大地电磁测深(EH4)测量结果,预测了塔木主矿体(Ⅰ号矿体)深部的延伸变化,3个验证钻孔都证实了预测结论,储量接近翻番。应用构造控矿模式对阿拉尔恰和卡拉牙斯卡克的矿体预测也得了工程的证实,新增资源储量达12万吨铅+锌。
     (9)根据区域构造控矿模式,结合区域地球化学勘查结果进行区域成矿预测分析,圈定了2个A类预测靶区和一个B类预测靶区。
The West Kunlun region is poor understood but abundant in mineral resources, where the Tamu-Kalangu Pb-Zn-Cu ore belt, as one of its most important components, is becoming focus of exploration and research recently. However, the rules and ore-controlling mechanism of multi-scale structure on metallogeny in this region are not researched well enough for facilitating predictive exploration.
     Based on this background, supported by the Guixin Mineral Ltd., the author proceeded monographic study on model of multi-scale structural-controlling on ore formation and metallogenic prediction in Tamu-Kalangu Pb-Zn-Cu ore belt of West Kulun.The research includes analyzing the area structural architecture and its control on mineralization by regional geophysics and remote sense, analyzing the features of field-scale and deposit-scale structure and their control on mineralization by structural geometry and structural dynamics, deducing mineral deposit origin by analyzing mineral deposit geological and geochemical characteristics, conducting metallogenic prognosis based on innovating structural mineralization dynamics and prospecting information of geochemistry and geophysics. The research outcome mainly includes:
     (1) According to regional petrographic formation and structure distortion characteristics, Tamu-Kalangu Pb-Zn-Cu ore belt has experienced several orogenic stages including dehiscence of the supercontinent, plate subduction, rift trough growth to closure, orogenic extrusion, basin mountain differentiation. Complex mine belt mineralization characteristic is mainly due to multi-stages tectonic activity.
     (2) The ETM remote sensing image shows that West Kunlun Tamu-Kalangu Pb-Zn-Cu ore belt lies in regional fracture structural belt of NNW, on the boundary, there are two border faults of NNW, its geologic characteristic shows multi-stages tectonic activity and entire ore belt structural controlling significance.
     (3) By analyzing structural characteristics and their mineralization relationship of region scale, ore field scale, deposit scale and ore body scale, a four scales ore-controlling model is first established, that is,Ⅰ-NNW Keziletao-Kusilafu fracture controls whole Tamu-kalangu Pb-Zn-Cu ore belt;Ⅱ-NNW fracture together with EW fracture controls the ore field;Ⅲ-a series of secondary fractures related with II controls deposit;Ⅳ-rich ore body is controlled by zone of fracture and rock joint, etc.
     (4) By detailed dissection for ore body geology, it is first detected that Pb-Zn bonanza is rigorously controlled by EW zone of fracture. Moreover, after applying the new discover in exploring and mining engineering in the Tamu, Alaerqia and Kalayasikake mines, the rate of measuring ore reserves by engineering has been doubled, grade of ores mined has been increased about 30%.
     (5) The 3D morphology of main orebody, F10 fault and fracture zone in the Tamu Pb-Zn mine are first simulated, which more clearly reveals positional relation of orebody and structure. The result demonstrates that NNW fracture F10 controls main orebody, and EW zone of fracture derived F10 controls rich ore body.
     (6) On the basis of geological and geochemical characteristics of the typical ore deposits, it is further demonstrated that the Pb-Zn ore deposits in this district is MVT; and ore-forming elements are original from the upper crust horizon such as pre-devonian; the high salinity ore-forming fluids are mixture of oil field brine and deep hot brine recharged by meteoric water in middle-low temperature; migration with bisulfide complex form; the main driving force in migration of ore forming fluids origins tectonic stress.
     (7) By analyzing the regularities of regional metallogeny and crustal evolution, it is demonstrated that main mineralization of Pb-Zn-Cu is caused by thrusting of Himalayan orogenic movement, the mineralization model of thrust nappe structure is first built up.
     (8) According to the structural metallogenic model and EH4 surveying results, the deep extension of Tamu main ore body is predicted. The prediction has been confirmed by 3 drill holes and the reserves increased almost double. The ore prediction by structural mineralization models in the Alaerqia and Kalayasikake is also confirmed by exploration engineering and new about 120,000 tons of Pb and Zn have been discovered.
     (9) By using of the model of the regional structural controlling on mineralization and regional geochemical exploration results, regional metallogenic potential is predicted and two target-areas of first-order and and one target-area of second-order have been delineated.
引文
[1]国务院新闻办公室.《中国的矿产资源政策》白皮书.国土资源通讯,2004,(1):39-44.
    [2]段代雄,曹仕平.转变观念与时俱进用科学发展观加速矿业发展.矿产资源开发与综合利用—中国地质学会矿山地质专业委员会资源节约型矿山高层论坛会议文集.长沙:中南大学出版社,2006,28-33.
    [3]蔡爱良,刘亮明.矿业投资的风险与风险控制战略.地质找矿论丛,2009,24(2):172-178.
    [4]Liu L M, Yang G Y, Peng S L. Numerical modelling of coupled geodynamical processes and its role in facilitating predictive ore discovery:An example from Tongling, China. Resource Geology,2005,55 (1):21-31.
    [5]刘亮明.成矿理论的预测能力及其改善途径.地学前缘,2007,14(5):82-91.
    [6]刘亮明,蔡爱良.深部找矿:地质理论、勘查技术、投资决策的难题及对策.地质通报.2009,28(7):923-932.
    [7]丁道贵,王道轩,刘伟新,等.西昆仑造山带与盆地.北京:地质出版社,1996,72-105.
    [8]汪玉珍,方锡廉.西昆仑山、喀喇昆仑山花岗岩类时空分布规律的初步探讨.新疆地质,1987,5(1):10-24.
    [9]钱壮志,汤中立,李文渊,等.秦祁昆成矿域古生代区域成矿规律.西北地质,2003,36(1):34-40.
    [10]郭坤一.西昆仑造山带东段地质组成与构造演化[博士学位论文].长春:吉林大学,2003.
    [11]Chang C F, Shackleton R M, Dewey J F, et al. The geological evolution of Tibet. Phil Trans R Soc London,1988, A327:1-378.
    [12]Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of Tibetan Plateau. Phil Trans R Soc London,1988, A32 (3):379-413.
    [13]Matte Ph, Topponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Plane Sci Letts,1996,142:311-330.
    [14]Matters F, Schneider W, Li Y, et al. A traverse through the western Kunlun (Xinjiang, China):tentative geodynamic implications for the Paleozoic and Mesozoic. Geol Fundsch,1996,85:705-722.
    [15]潘裕生,王毅.青藏高原第五缝合带的发现及证据.地球物理学报,1994,37(2):241-250.
    [16]Pan Yusheng. Geological Evolution of the Karakorum and Kunlun Mountains. Beijing:Seismological Press,1996,1-288.
    [17]姜春发,杨经绥,冯秉贵,等.昆仑开合构造.北京:地质出版,1992,101-125.
    [18]姜春发,王宗起,李锦铁,等.中央造山带开合构造.北京:地质出版社,2000.
    [19]潘裕生.昆仑山区构造区划初探.自然资源学报,1989,4(3):196-203.
    [20]潘裕生.西昆仑山构造特征与演化.地质科学,1990,(3):224-232.
    [21]潘裕生,王毅,Matte Ph,等.青藏高原叶城-狮泉河路线地质特征及区域构造演化.地质学报,1994,68(4):295-307.
    [22]潘裕生.喀喇昆仑山—昆仑山地区地质演化.北京:科学出版社,2000
    [23]邓万明.喀喇昆仑山—西昆仑地区基性—超基性岩初步考察.自然资源学报,1989,4(3):1-11.
    [24]邓万明.西昆仑蛇绿岩研究的新进展.中国西部特提斯构造演化及成矿作用.北京:电子科技出版社,1991.
    [25]邓万明.青藏北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究.岩石学报,1993,9(4):379-387.
    [26]邓万明.西昆仑—喀喇昆仑地区蛇绿岩的地质特征及其大地构造意义.岩石学报,1995,11(增刊):98-111.
    [27]刘训,吴绍祖,傅德荣,等.塔里木板块周缘的沉积—构造演化.新疆:新疆科技卫生出版社,1997.
    [28]陈哲夫,成守德,梁云海,等.新疆开合构造与成矿.新疆:新疆科技卫生出版社,1997.
    [29]贾群子,李文明,于浦生,等.西昆仑块状硫化物矿床成矿条件和成矿预测.北京:地质出版社,1999.
    [30]成都矿产地质研究所.1:150万青藏高原及邻区地质图.北京:地质出版社,1997.
    [31]潘桂棠,陈智梁,李兴振,等.东特提斯组成与地质演化.北京:地质出版社,2000,1-287.
    [32]肖序常,王军,苏犁.再论西昆仑库地蛇绿岩及其构造意义.地质通报,2003,22(10):745-750.
    [33]肖序常,王军.西昆仑—喀喇昆仑及邻区岩石圈结构、演化中几个问题的讨论.地质论评,2004,50(3):285-294.
    [34]肖序常,李廷栋.青藏高原的构造演化与隆升机制.广东:广东科技出版社,2005.
    [35]李继亮,孙枢,郝杰,等.论碰撞造山带的类型.地质科学,1999,34(2): 129-138.
    [36]李继亮.碰撞造山带大地构造相.现代地质学文集(上).南京:南京大学出版社,1992.
    [37]李继亮.增生造山带基本特征.地质通报,2004,23(9-10):947-951.
    [38]肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程.中国科学(D辑):地球科学,2000,30(增刊):22-28.
    [39]肖文交,李继亮,侯泉林.西昆仑东南构造样式及其对增生弧造山作用的意义.地球物理学报,1998,41(增刊):132-141.
    [40]方爱民.西昆仑库地西北依萨克群首次发现放射虫化石.地质科学,1998,33(3):384.
    [41]方爱民,李继亮,侯泉林.新疆西昆仑“依沙克群”中放射虫组合及其形成时代探讨.地质科学,2000,35(2):212-218.
    [42]方爱民,李继亮,侯泉林,等.西昆仑库地复理石源区性质及构造背景分析.岩石学报,2003,11(1):153-166.
    [43]方爱民,李继亮,刘小汉.新疆库地混杂岩中基性火山岩构造环境分析.岩石学报,2003,19(13):409-417.
    [44]孙海田,李纯杰,吴海,等.西昆仑金属成矿省概论.北京:地质出版社,2003.
    [45]翟裕生,邓军,李晓波.区域成矿学.北京:地质出版社,1999,1-287.
    [46]祝新友,汪东波,王书来.新疆塔木—卡兰古MVT铅锌矿带地质特征.有色金属矿产与勘查,1997,6(4):202-207.
    [47]祝新友,汪东波,王书来.新疆阿克陶县塔木—卡兰古铅锌矿带矿床地质和硫同位素特征[J].矿床地质,1998,17(3):204-214.
    [48]祝新友,汪东坡,王书来,等.新疆阿克陶县塔木—卡兰古铅锌矿体地质特征.地质与勘探,2000,36(6):32-35.
    [49]王书来,汪东坡,祝新友,等.新疆塔木—卡兰古铅锌矿床成矿流体地球化学特征.地质地球化学,2002,30(4):34-39.
    [50]印建平,李明,李丰收,等.西昆仑晚古生代铜铅锌矿含矿建造及成矿机制.矿床地质,2002,21(增刊):527-531.
    [51]匡文龙,刘继顺,朱自强.西昆仑地区卡兰古MVT型铅锌矿床成矿作用过程和成矿物质来源探讨.大地构造与成矿学,2002,26(4):341-346.
    [52]刘继顺,匡文龙,高珍权,等.新疆重点成矿区(带)成矿条件与靶区优选.长沙:中南大学出版社,2002,53-57.
    [53]匡文龙,刘继顺,朱自强.西昆仑地区塔木MVT型铅锌矿床成矿作用过程和成矿物质来源探讨.岩石矿物地球化学通报,2002,21(4):253-257.
    [54]印建平,田培仁,盛学祥,等.西昆仑塔木—卡兰古铅锌铜含矿岩系地质地球化学特征[J].现代地质,2003,17(2):143-150.
    [55]匡文龙,刘继顺,朱自强.塔里木西南缘MVT型铅锌矿床成矿机制研究.新疆地质,2003,21(1):136-140.
    [56]常雪生.新疆西昆仑地区铅锌矿成矿特征与找矿前景.新疆有色金属,2003,(1):1-8.
    [57]匡文龙.西昆仑地区成矿地质条件与密西西比河谷型铅锌矿床成矿模式研究[博士学位论文].长沙:中南大学,2003.
    [58]袁波.新疆西昆仑卡兰古-塔木铅锌矿地质特征和矿化富集规律研究[硕士学位论文].长春:吉林大学,2007.
    [59]Leach D L and Sangster D F.1993. Mississippi Valley-type lead-zinc deposits. Geological Association of Canada Special Paper,40:289-314.
    [60]Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen CR, Gatzmer J and Wallters S.2005. Sediment-hosted lead-zink deposit:A global perspective. Economic Geology 100th Anniversary Volume:561-607.
    [61]Garven G.1985. The role of regional fluid flow in the genesis of the Pine Point deposit, western Canada sedimentary basin. Econ. Geol.,80:307-324.
    [62]Ge S and Garven G.1992. Hydromechanical modeling of tectonically-driven groundwater flow with application to the Arkoma basin.J. Geophys. Res.,97: 9119-9144.
    [63]Appold M S and Garven G..1999. The hydrology of ore formation in the Southeast Missouri district:numerical models of topography-driven fluid flow during the Ouachita orogen. Econ. Geol.,94:913-936.
    [64]王奖臻,李朝阳,李泽琴,等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨.地质地球化学,2001,29(2):41-45.
    [65]Bradley D C and Leach D L.2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineralium Deposita,38: 652-667.
    [66]Nakai.S, Halliday A N, Kesler S F, Halliday A N and Jones H D.1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits. Nature,346:354-357.
    [67]Nakai S, Halliday A N, Kesler S E, JonesHD, Kyle J R and Lane T E.1993. Rb-Sr.dating of sphalerites from Mississippi Valley-type (MVT) ore deposits. Geochimi. Cosmochimi. Acta,57:417-427.
    [68]Brannon J C, Podosek F A and McLimans R K.1992. A Permian Rb-Sr age for sphalerite from the Upper Mississippi Valley zinc-lead district, southwest Wisconsin. Nature,356:509-511.
    [69]Brannon J C, Frank A, Podosek F Aand McLimans R K.1992. A clueto the origin of dark and light bands of the 270 Ma Upper Mississippi Valley (UMV) zinc-lead district, southwest Wisconsin. Ab-stracts with programs-Geological Society of America,24:35.
    [70]Christensen J N, Halliday A N, Stephen E K and Sangster D F.1993.Further evaluation of the Rb-Sr dating of sphalerite:The Nanisivik Precambrian MVT deposit, Baffin Island, Canada. Abstracts with programs-Geological Society of America,25:471.
    [71]Christensen J N, Halliday A N, Kenneth E L, Roderick N R and Stephen E K. 1995. Direct dating of sulfides by Rb-Sr:A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit[J].Geochimi. Cosmochim. Acta,59: 5191-5197.
    [72]Christensen J N, Halliday A N, Vearncombe J R and Stephen E K.1995. Testing models of large-scale crustal fluid flow using direct dating of sulfides:Rb-Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning basin, Australia [J]. Econ. Geol.,90:877-884.
    [73]李文博,黄智龙,王银喜,等.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义.地质论评,2004,50(2):189-196.
    [74]张长青,毛景文,吴锁平,等.川滇黔地区MVT铅锌矿分布、特征及成因.矿床地质,2005,24(3):336-349.
    [75]张长青,毛景文,刘峰,等.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义.矿床地质,2005,24(3):317-325.
    [76]Leach D L, Premo W R, Lewchuk M T, Henry B LeGoff M, Rouvier H, Macquar J C and Thibieroz J.2001. Evidence for Mississippi Valley-type lead-zinc mineralization in the Cevennes region, southern France, during Pyrenees Orogeny. Mineral deposits at the beginning of the 21st century,6 Balkema, Rotterdam.157-160.
    [77]Leach D L, Bradley D C, Lewchuk M T, Symons, D T A and Brannon J.2001. Mississippi Valley-type lead-zinc deposits through geological time:implications from recent age-dating research. Mineralium Deposita,36:711-740..
    [78]Basuki N I and Spooner E T C.2004. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits:Identifying thresholds for metal transport. Exploration and Mining Geology,11:1-17.
    [79]Hanor J S.1979. The sedimentary genesis of hydrothermal fluids[A].In:Barnes HL ed. Geochemistry of hydrothermal ore deposits. New York:Wiley-Inter science.137-142.
    [80]Sangster D F.1990. Mississippi Valley-type and SEDEX lead-zinc deposits:A comparative examination. Transactions of the Institution of Mining and Metallurgy, Sec. B,99:21-42.
    [81]Oliver J.1986. Fluids expelled tectonically from orogenic belts:their role in hydrocarbon migration and other geologic phenomena. Geology,14:99-102.
    [82]Garven G and Raffensperger J P.1997. Hydrogeology and geochemistry of ore genesis in sedimentary basins. In:BarnesHL, ed. Geochemistry of hydrothermal ore. New York:Wiley.125-189.
    [83]Beales F W.1975. Precipitation mechanisms for Mississippi Valley-type ore deposits. Econ. Geol.,70:943-948.
    [84]Barton P B.1967. Possible role of organic matter in the precipitation of the Mississippi Valley ores. Econ. Geol. Monographs,3:371-377.
    [85]Anderson G M and Cermignani C.1991. Mineralogical thermodynamic onstraints on the metasomatic origin of the York River nepheline gneisses, Bancroft, Ontario. Canadian Mineralogist,29:965-980.
    [86]Ohmoto H and Rye R O.1979. Isotopes of sulfur and carbon[A]. In:Barnes H L, ed.Geochemistry of hydrothermal ore deposits.New York:Wiley-Inter science.509-567.
    [87]Emsbo P.2000. Gold in Sedex deposits. Soc. Econ. Geol. Rev.,13:427-437.
    [88]Adams J J and Eccles.D R 2002. Control.on Fluid Flow systems in northern Alberta as Relberta as Related to MVT mineralization:A contribution to the Carbonate-Hosted Pb-Zn (MVT) Targeted Geoscience intiative. EUB/AGS Geo-note.21:1-55.
    [89]Gregg J M and Schelton K L.2008. Epigenetic Dolomitization and Mississippi valley-Type Mineralization Cambro-Ordoviian Carbonate of North America Search and Discovery Article#50140:1-24.
    [90]朱志澄.逆冲推覆构造.武汉:中国地质大学出版社,1989,11-69.
    [91]朱志澄.逆冲推覆构造研究进展和今后探索趋势.地学前缘,1995,2(1):51-58.
    [92]吴运高,李继亮,樊敬亮.造山带逆冲推覆构造研究的主要新进展.地球科学进展,2000,15(4):426-433.
    [93]Platt J P, Coward MP, Deramond J, et al. (ed). Thrusting and deformation. Journal of Structural Geology (special issue),1986,8 (3/4):215-483
    [94]Homza T X, Wzllace W K. Geometric and kinematic models for detachment folds with fixed and variable detachment depth.Journal of Structural Geology, 1995,17 (4):575-588.
    [95]Epard J L, Escher A. Transition from basement to cover:a geometric model. Journal of Structural Geology,1996,18 (5):533-548.
    [96]Escher A, Masson H, Steck A. Nappe geometry in the West-ern Swiss Alps. J Struct Geol,1993,15 (3-5):501-509.
    [97]Eshcer A, Beaumont C. Formation, burial and exhumation of basement nappes at crustal scale:a geometric model based on the Western Swiss-Italian Alps. J Struct Geol,1997,19 (7):955-97.
    [98]Hatcher R D Jr, Hooper R J. Evolution of crystalline thrust sheets in the internal parts of mountain chains. In:Mc-clay K R, ed. Thrust Tectonics. London:Chapman and Hall,1992,217-233.
    [99]Hatcher R D Jr, Williams R T. Mechanical model for single thrust sheets Part 1: Crystalline thrust sheets and their relationships to the mechanical/thermal behaviour of orogenic belts. Geol Soc Amer Bull,1986,97:975-985.
    [100]Hatcher R D Jr. Structural geology-principles, concepts, and problems. New Jersey:Prentice-Hall Inc,1995,525.
    [101]Mcclay K R, Price N J, eds. Thrust and nappe tectoniccs. London:Blackwell Scientific Publications,1981,539.
    [102]Mcclay K R, ed. Thrust Tectonics. London:Chapman and Hall,1992,447.
    [103]Platt J P, Coward M P, Deramond J, et al. Thrusting and deformation. Journal of Structural Geology,1986,8:215-483.
    [104]郝杰,刘小汉.桐柏—大别碰撞造山带大型推覆—滑覆构造及其演化.地质科学,1988,23(1):1-9.
    [105]陶晓风.龙门山南段推覆构造与前陆盆地演化.成都理工学院学报,1999,26(1):73-77.
    [106]陈海泓,孙枢,李继亮,等.雪峰山大地构造的基本特征初探.地质科学,1993,28(3):201-209.
    [107]刘和甫,梁慧社,蔡国立,等.天山两侧前陆冲断席的构造样式与前陆盆 地演化.地球科学,1994,19(6):727-741.
    [108]张开均,王启年,夏邦栋,等.羌塘中部后中新世叠瓦式逆冲推覆构造.南京大学学报(自然科学),2002,38(2):266-269.
    [109]卢华复,阎吉柱,李鹏举,等.四川前龙门山中南段推覆构造及其与天然气藏关系.南京大学学报(地球科学版),1993,5(2):141-147.
    [110]王国芝,胡瑞忠,王成善,等.云南金顶超大型铅锌矿床的成矿地质背景.矿物学报,2001,21(4):571-577.
    [111]徐启东,李建成.云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带—流体包裹体和稳定同位素依据.矿床地质,2003,22(4):365-376.
    [112]何龙清,陈开旭,余凤鸣,等.云南兰坪盆地推覆构造及其控矿作用.地质与勘探,2004,40(4):7-12.
    [113]杨金中,沈远超,刘铁兵.胶东地区滑脱构造与金矿成矿浅析.黄金地质,2000,6(2):21-25.
    [114]朱大岗,孟宪刚,彭少梅,等.粤西推覆构造系统对金银及多金属矿床的控制.地质力学学报,2001,7(1):22-32.
    [115]张长青,余金杰,毛景文,等.密西西比型(MVT)铅锌矿床研究进展矿床地质,2009,28(2):195-210.
    [116]赵鹏大,孟宪国.地质异常与矿产预测.地球科学:中国地质大学学报,1993,18(1):39-47.
    [117]赵鹏大.王京贵,饶明辉,等.中国地质异常.地球科学:中国地质大学学报,1995,20(2):117-127.
    [118]程裕淇,陈毓川,赵一鸣.初论矿床成矿系列问题.中国地质科学院报,1979,1(1):32-58.
    [119]陈毓川,朱裕生,等.中国矿床成矿模式.北京:地质出版社,1993,1-33.
    [120]DennisP, Cox and Donald A. Singer, Editors. Mineral Deposit Models. S[J].Geological Survey Bulletin,1987,1693-1699.
    [121]程裕淇,沈永和,张良臣,等.中国大陆的地质构造演化.中国区域地质,1995,(4):289-294.
    [122]中国冶金地质勘查工程总局新疆地质勘查院.新疆西昆仑北段以铜为主的矿产资源评价报告.2005.
    [123]褚少雄.西昆仑及其邻区成矿地质背景及成矿规律探讨[硕士学位论文].中国地质大学(北京),2008.
    [124]李永安,李向东.喀喇昆仑山羌塘地块及康西瓦缝合带构造演化新认识.新疆地质,1993,11(4):361.
    [125]张玉泉,谢应雯.三十里营房地区花岗岩类Rb-Sr等时年龄研究.自然资源学报,1989,4(3):222-227.
    [126]杨克明.论西昆仑大陆边缘构造演化及塔里木西南盆地类型.地质论评,1994,40(1):1-9.
    [127]中国科学青藏高原综合科学考察队.喀拉昆仑山—昆仑山地区地质演化.北京:科学出版社,2000.
    [128]毕华,王中刚,王元龙,等.西昆仑造山带构造-岩浆演化史.中国科学(D辑),1999,5(29):398-405.
    [129]邓振球,王欣观,谢德顺.新疆地球物理场特征.新疆地质,1992,10(3):232-243.
    [130]中国地质调查局.全国主要成矿远景区矿产资源调查评价重点选区研究(三).2003.
    [131]湖南有色217队.西昆仑库斯拉甫—大同地区金铜重点异常查证(内部资料).1996,1-18.
    [132]黄汲清,陈炳蔚.中国及邻区特提斯海的演化.北京:地质出版社,1987.
    [133]姚永耘,许靖华.昆仑山脉的成因:“弧-弧”、“弧-陆”碰撞.国外地质科技,1994,3:37-50.
    [134]任纪舜,等.中国及邻区大地构造图及说明书.北京:地质出版社,1997.
    [135]张洪涛,陈仁义,韩芳林.重新认识中国斑岩铜矿的成矿地质条件.矿床地质,2004,23(2):150-163.
    [136]胡庆雯,刘宏林,朱红英.塔木—卡兰古铅锌铜(银钴)矿成矿背景探讨.有色金属(矿山部分),2008,60(4):11-16.
    [137]李永安,李向东,孙东江,等.中国新疆西南部喀喇昆仑塘地块及康西瓦构造带构造演化.乌鲁木齐:新疆科技卫生出版社(K),1995,1-100.
    [138]王元龙,成守德.新疆北部及邻区贵重、有色金属成矿历史及前景.新疆地质,1996,14(1):28-34.
    [139]成守德,徐新.新疆及邻区大地构造编图研究.新疆地质,2001,19(1):33-38.
    [140]北京地质矿产地质研究所.塔木—卡兰古铅锌矿带成矿条件及评价研究.2000.
    [141]新疆区域地质调查二大队.1:20万新疆克孜勒幅区域地质调查报告.1989
    [142]肖安成,杨树锋,陈汉林,等.西昆仑山前冲断系的结构特征.地学前缘,2000,7(增刊):128-135.
    [143]尹安.喜马拉雅—青藏高原造山带地质演化.地球学报,2001,22(3):
    193-221.
    [144]张达景,胡健民,蒙义峰,等.塔里木盆地西南部齐姆根逆冲推覆构造的特征及其与油气的关系.地质通报,2007,26(3):266-274.
    [145]蔡爱良,刘亮明.西昆仑阿尔巴列克铜矿多级构造控矿模式.新疆地质,2009,27(3):241-244.
    [146]朱志澄.逆冲推覆构造.武汉:中国地质大学出版社,1991,1-113.
    [147]翟裕生,吕古贤.构造动力体制转换与成矿作用.地球学报,2002,23(2):97-102.
    [148]翟裕生.关于构造—流体—成矿作用研究的几个问题.地学前缘,1996,3:230-236.
    [149]张理刚.稳定同位素在地质科学中的应用-金属水利化热流成矿作用及找矿.西安:陕西科学技术出版社,1989.
    [150]Taylor H P.1979.Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits:in Barnes, H. L. Geochemistry of Hydrothermal ore deposits: New York, Wiley Interscience,236-277.
    [151]赵振华.微量元素地球化学原理.北京:科学出版社,1997,1-238.
    [152]何明友.若尔盖铀矿床含矿热液特性的热力学研究.矿物学报,1997,17(1):30-37.
    [153]何明友.西秦岭铀矿床含矿热液物理化学条件改变对铀沉淀影响.矿物岩石,1996,16(2):90-95.
    [154]李保华,曹志敏,金景福,等.大水沟碲矿床成矿物理化学条件研究.地质科学,1999,34(4):463-472.
    [155]刘显凡,倪师军,朱赖民.微细浸染型金矿矿后热液和表生溶液的物理化学条件研究.长春科技大学学报,1998,28(4):393-398.
    [156]邵洁涟.金矿找矿矿物学.北京:中国地质大学出版社,1990,1-158.
    [157]何知礼.包体矿物学.北京:地质出版社,1982,1-304.
    [158]Vapnik Y, Moroz I. Compositions and formation conditions of fluid inclusions in emerald from the Maria deposit (Mozambique). Mineralogical Magazine, 2002,66 (1):201-203.
    [159]Sverjensky D A. The origin of a MVT in the Viburnum Trend, southeast Missouri:Economic Geology,1981,76:1848-1872.
    [160]Jackson S A.1966. Precipitation of lead-zinc ores in carbonate reservoirs as illustrated by Pine Point ore field, Canada[J].TIMM B,75:278-285.
    [161]Anderson G M.1983. Some geochemical aspects of sulfide precipitation in carbonate rocks[A]. In:Kisvarsanyi G, Grant S K, Pratt W P and Koenig J W, eds. International conference of MVT lead-zinc deposits[C]. Rolla:University of Missouri-Rolla.61-76.
    [162]Sawkins F J. Metal deposits in relation to plate tectonics [M]. New York:Springer,1984,1-325
    [163]胡庆雯,朱红英,周圣华.新疆塔木—卡兰古铅-锌(铜)带区域控矿条件矿产与地质,2007,21(5):551-554.
    [164]Sangster D F.密西西比河谷型矿床是一类地质特点差异很大的矿床.国外地质科技,1985(5):25-39.
    [165]Tompkins K S, Pedone V S, Roche M T et al. The Cadjebut Deposit as an example of Mississippi valley-type mineralization on the Lennard Shelf, western Australia-single episode or multiple event? Econ. Geol.,1994,89: 450-466.
    [166]Read J F.Evolution of Cambro-Ordovicianpassive margin, U.S.Appalachians Geological Society of America, Geology of North America F-2:42-57.
    [167]Spry P G, Fuhrmann G D. Additional fluid inclusion data from the Illinois-Kentucky fluorspar district:evidence for the lack of a regional thermal gradient. Econ. Geol.,1994,89:288-306.
    [168]Sverjensky D A.Genesis of Mississippi Valley-type lead-zinc deposits.Annual Review of Earth and Planetary Sciences,1986,14:177-199.
    [169]Hoagland A. D.阿巴拉契亚锌铅矿床.层控矿床与层状矿床.北京:地质出版社,1980,6:375-405.
    [170]Hayens F M, Kesler S E.Relation of mineralization to wall-rock alteration and brecciation, Mascot-Jefferson City Mississippi Valley-type district, Tennessee. Econ. Geol.,1994,89:51.
    [171]Garcia P F. Rio Tinto deposits. London:Institution of Mining and Metallurgy, 1990,17-35.
    [172]张贻侠.矿床模型导论.北京:地震出版社,1993,1-228.
    [173]陈毓川,翟裕生.中国矿床成矿模式.北京:地质出版社,1993,1-367.
    [174]葛良胜.成矿模式研究若干问题.黄金地质科技,1994,3:22-27.
    [175]朱裕生,梅燕雄.成矿模式研究的几个问题.地球学报,1995,2:182-189
    [176]裴荣富.中国矿床模式.北京:地质出版社,1995,1-357.
    [177]Thomas M D and Parkhill M. Gravity and magnetic prospecting for massive sulfided eposits. AtlanticGeology,1996,32 (1):87-88.
    [178]张均.矿床定位预测的研究现状与趋向.地球科学进展,1997,12(3):242-246.
    [179]Cooke D R and Large R R. Practical uses of chemical modeling; defining new exploration in sedimentary basins. A GSO J.Australian Geology and Geophysics,1998,17 (4):259-275.
    [180]Zaw K, Huston D L and Large R R. A chemical model of the Devonian remobilization process in the Cambrian volcanic_hosted massive sulfide Rosebery Deposit, western Tasmania. Economic Geology and the Bulletin of the Society of Economic Geologists,1999,94 (4):529-546.
    [181]翟裕生.走向21世纪的矿床学.矿床地质,2001,20(3):10-14.
    [182]叶天竺.固体矿产预测评价方法技术.北京:中国地质大学出版社,2004,1-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700