用户名: 密码: 验证码:
基于网格和智能算法的遥感岩性分类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在遥感岩性分类的过程中,海量的遥感数据和面向应用的快速处理需求,需要强大的计算资源支持。而当研究区域从实验点增大到区域性范围时,现有的普通单机计算能力已远达不到时效性的需求。
     当前根据谱带强度的统计特征进行岩性分类的算法,在形成分类算子时需要对波段进行统计,而波段数的增加必然导致算法处理速度变慢。该缺陷决定了其应用范围常限于多光谱遥感,在高光谱中很难推广使用。而基于波型特征的岩性分类算法,在分类时也同样遇到因计算速度变慢而导致处理效率低的问题。
     如何解决因海量数据或算法本身而导致的此类问题,目前大部分的研究都集中在算法的优化上,而鲜有对高性能计算优化方法进行研究。本论文的着眼点和出发点在于:同时在算法和高性能计算两个方面对遥感岩性分类进行性能优化研究,并最终提出一种新的基于服务的网格遥感岩性分类模式。论文的主要贡献如下:
     (1)针对大区域遥感岩性分类计算量大、处理时间长、效率低的问题,提出了基于网格环境的遥感岩性分类应用模型。该模型支持分布式并行运算和集成,支持面向服务的模式以响应用户应用需求,支持按步骤、按过程和按数据三种方式对分类过程中的密集型计算进行分解部署。该模型的提出,在计算性能的层面,弥补了岩性分类过程中对海量数据处理计算能力的不足,并能满足各个应用层面对计算性能的高要求。
     (2)针对传统统计学的遥感岩性分类方法在样本有限的情况下难以取得理想分类精度的问题,提出了基于感兴趣区域的SVM岩性分类方法。该方法以二叉树的SVM分类算法为基础,通过参照已有区域地质资料,分别选取感兴趣区域一定数量的具有普遍性、代表性的不同类型岩石样本,再以各类样本在对应波段的波谱反射率生成各岩石类别的参考训练样本,进行训练和分类。该分类方法的应用消除了因样本不足对分类精度的影响。
     (3)针对SVM分类过程中,处理大规模训练样本集遇到的因样本维度高、消耗大量内存导致分类效率低下的问题,提出了基于PSO算法对训练样本集进行缩减的策略。该策略以k-折交叉验证作为算法的适应度评价机制。此策略的提出和应用,得到了训练样本中有效支持向量的最小化组合,提高了训练和分类速度,在算法的层面弥补了处理大规模数据对计算性能的高要求。
     (4)针对传统岩性分类方法其分类结果,过分依赖训练样本及因人为失误或偏差导致分类实效下降的问题,提出了网格环境下基于多种群协同进化粒子群算法的岩性分类模型。该模型以光谱相似尺度方法构建分类规则,种群的多样性依托于网格环境,将计算分布并行处理。这种分类方法的提出是统计学分类方法的有效补充,提高了效率,降低了人为因素对分类质量的影响。
     (5)针对目前大量PC资源被闲置、已有历史遥感地质数据和岩性分类相关资料没有实现充分共享,导致资源浪费和重复建设的现状,提出了面向服务的分布式并行网格岩性分类框架,并对网格服务进行了语义层次的扩展和改进。该框架的提出实现了对闲散资源的有效利用,扩展后的网格服务更有利于被网格用户发现和使用。
     在研究的过程中,针对上述各种算法和模型在青海阿尔金成矿带的三个研究区域(采石场、阿卡腾能山和小赛什腾)进行了遥感数据预处理、样本缩减、岩性分类等应用及大量的实验验证,并给出了该研究区域遥感岩性分类自动解译图和综合解译图。实验结果表明,本文所提出的基于网格和智能算法的遥感岩性分类方法,节约了大量处理时间,提高了处理效率和分类准确度,优化了岩性分类性能,为实现更大区域岩性分类的并行处理和资源共享奠定了理论和实践的基础。
The rapid process of mass data and requirement of orient applications need the support of powerful computation resource during the lithological discrimination of remote sensing, when the study area expands from the experimental points to the region, the existing PC computing power is far less than the requirement of time efficiency.
     Currently, most of lithological discrimination algorithms are based on statistical characteristics of multi-band intensity, these algorithms need to statistic bands before classification. With the increasing of the bands, algorithm processing speed will be slow. The defect induces that it is often applied to multi-spectral remote sensing, instead of high-resolution spectral remote sensing. The lithological characteristics of wave-based discrimination algorithms, in the discrimination are also inefficient due to slow calculation speed.
     At present, how to deal with the problem of slow processing speed and efficiency caused by the massive data or algorithm itself, most studies have focused on the optimization algorithm instead of optimization methods of high-performance calculation. This paper puts forward a distributed parallel computing environment by grid technique, and intelligent algorithms, and proposes a new discrimination method of lithology. Finally, a new service-based grid lithological discrimination model of remote sensing is proposed. The main contributions of this paper are as follows:
     (1) In order to resolve the problems of the remote sensing lithological discrimination, such as the massive calculation, long processing time and low efficiency, a grid-based lithological discrimination application model of remote sensing is proposed. The model supports distributed parallel computing and integration, supports service-oriented model in response to user application requirements and supports decomposition of calculation-intensive in the course of large-scale remote sensing lithological discrimination by step, process and data. The model makes up the deficiencies of the massive computing power lithological discrimination processing, and can meet the high demand of computing performance on each individual application.
     (2)In the traditional statistical discrimination of remote sensing lithology, limited samples are difficult to obtain good discrimination accuracy, so, the remote sensing lithology discrimination method is presented for the interest region based on support vector machines binary decision tree algorithm. Referring to the existing regional geological data, a certain number of universal, representative of the different types of rock samples are selected in the interest regions area. and then, various types of samples in the corresponding band Spectral reflectance of various rock types generated training samples, Participate in training and discrimination. The method eliminates the impact of discrimination accuracy because of insufficient sample.
     (3)Typical computational problems, such as consuming large amounts of memory due to high sample dimensions during large-scale training sets SVM discrimination, are overcome for the first time with the strategy of reducing large-scale SVM training samples based on PSO. In order to decrease the dimension of the discrimination computation, a training model is constructed based on the resulting samples. A fast, efficient and accurate discrimination is established in combination of using K-fold cross validation as the fitness evaluation mechanism. That gives an effective optimization method for extracting lithological information from large areas by using large-scale training sets.
     (4) To overcome the problem of the lithological discrimination of traditional over-reliance on training samples, and decreased effectiveness of discrimination results in human error or bias, a feasibility analysis on the parallel computation realization of the large-scale lithological discrimination based on PSO is performed. A discussion referring to realizing the multi-PSO lithological discrimination is made. The flow, result and evaluating method of discrimination are also given in this paper. The discrimination of rocks, combined with the computational efficiency of analysis and visual interpretation of the accuracy compared to verify the model using lithological discrimination, this discrimination method proposed based on multi-PSO and grid is an effective supplement of statistical discrimination methods, it can reduce the computation time and reduce man-made factors on the quality of discrimination.
     (5) In order to make use of idle PC resources, available remote sensing of geological data and lithological discrimination documents, avoid waste of resources and duplication, a service-based distributed parallel lithological discrimination framework is proposed, the grid computational-resource sharing mode based on the syntax and service quality combined extension is also presented. It achieves the efficient usage of idle resources, the extension of the grid service makes it easy to be found and be used by the grid users.
     In this paper, remote sensing lithological discrimination workflow is established based on the grid computation and the above-mentioned algorithms. Preprocessing remote sensing data, sample reduction and lithological discrimination are applied to several typical targeted areas. Through applying the united parallel processing to the Arkin metallogenetic zone, experiments results demonstrate the new method can save processing time, improve efficiency and discrimination accuracy. This method also provides the theoretical and practical base for the united parallel processing of lithological discrimination in the whole district.
引文
[1]Huang C,Davis L S,Townshend J R G.An assessment of support vector machines for land cover classification[J].Int J Remote Sens,2002,23:725-749.
    [2]Melgani F,Bruzzone L.Classification of hyperspectral remote sensing images with support vector machines [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42:1778-1790.
    [3]Bandyopadhyay S,Pal S.Pixel classification using variable string genetic algorithms with chromosome differentiation[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):303-308.
    [4]Ramos V,Almeida F. Artificial ant colonies in digital image habitats-a mass behavior effect study on pattern recognition [A]. Dorico M,Birattari M,Blum C. Proc of ANTS 2000-2nd Int Workshop on Ant Algorithms [C],2000:113-116.
    [5]刘小平,黎夏,彭晓鹃.一种基于生物群集智能优化的遥感分类方法[J].中国科学(D辑:地球科学),2007,37(10):1400-1408.
    [6]Niehol BG.An object-oriented interface for network based image proeessing[J].Proeeedings of CG International'88.1988:202-206.
    [7]李军,李德仁.分布式遥感图像处理中的若干关键技术[J].武汉测绘科技大学学报,1999,24(01):15-19.
    [8]HuntGR,Salisloury JW.Visibal and near-infrared spectra of rocks and minerals[J].Modern Geology,1970,(1):283-300.
    [9]CLARK R N.ROUSH T L.Reflectance spectroscopy:quantitative analysis techniques for remote sensing applications [J].Journal of Geophysical Research,1984,89(B7):6329-6340.
    [10]Gaffey S J. Spectral reflectance of carbonates minerals in the visible and near infrared (0.35-2.55 microns):Calcite,Aragonite,and Dolomite[J].American Mineralogist,1986,71:151-162.
    [11]Gaffey S J. Spectral reflectance of carbonates minerals in the visible and near-infrared (0.35-2.55μm):Anhydrous Carbonate Minerals [J]. J Geophysics Research,1987,92(B2):1426-1440.
    [12]D. A. Rothery Improved discrimination of rock units using Landsat thematic mapper imagery of the Oman ophiolite[J]. Journal of the Geological Society,1987,144(4):587-597.
    [13]Lawrence C. Rowan,Carmen Anton-Pacheco,et al. Digital classification of contact metamorphic rocks in Extremadura,Spain,using Landsat thematic mapper data[J]. Geophysics,1987,52(7):885-897.
    [14]An.P,Chung C.F.,Renz A.N.Digital lithology mapping from airborne geophysical and remote sensing data in the Melville Peninsula,northern Canadian using a neural network approach[J]. Remote Sensing of Environment, 19956,53:76-84.
    [15]Paul M.Mather Brandt Tso Magaly Koch. An evaluation of Landsat TM spectral data and SAR-derived textural information for lithological discrimination in the Red Sea Hills,Sudan[J].International Journal of Remote Sensing,1998,19(4):587-604.
    [16]M.Chica-Olmo,F.Abarca-Hernandez.Computing geostatistical image texture for remotely sensed data classification[J].Computers Geoscien, 2000,26(4):373-383.
    [17]A.Albertia, V.Alessandro,U.Pieruccini,et al.Landsat TM data processing for lithological discrimination in the Caraculo area (Namibe Province,SW Angola).Journal of African Earth Sciences,1993,17(3):261-274.
    [18]Ernst M S.CHANG-Jo F C.KWANG E.Integration of Landsat TM.Gamma-Ray Magnetic and field data to discriminate lithological units in vegetated Granite-Gneiss Terrain[J].Remote Sensing of Environment,2000,71(1):89-105.
    [19]Chein-I C. Real-time processing algorithms for target detection and Classification in hyperspectral imagery[J] IEEE Trans Geosci Remote Sens,2001,39(4):760-768.
    [20]Mars J C.Geologic mapping of the sierra san jose mountain range.mexico using ASTER data:a remote sensing tool to assist geologic mapping in the field [R].The US Colorado Convention Center:Remotely Sensed Data for Geologic and Environmental Studies,2002.
    [21]Rowan L C.MARS J C.Lithologic mapping in the mountain pass.california area using ASTER data[J].Remote Sensing of Environment,2003,84 (3): 350-366.
    [22]Lawrence C R.Colin J S.Mars J C.Hyperspectral analysis of the ultramafic complex and adjacent lithologies at MordNT[J].RemoteSensing of Enviroment,2004,91(3):419-431.
    [23]Rowan L C.Simpson C J.Mars J C.Hyperspec-tral analysis of the ultramafic complex and adjacent lithologies at MordNT [J]. Remote Sensing of Environment,2004,91(3/4):419-431.
    [24]Nahid D S.Mohamed G A.Remote sensing analysis of the gorge of the Nile,Ethiopia with emphasis on Dejen-Gohatsion region [J]. Journal of African Earth Sciences,2006,44(2):135-150.
    [25]Sabreen Gada,Timothy Kuskya. ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield,the Neoproterozoic Wadi Kid area,Sinai,Egypt[J]. Gondwana Research,2007,11(3):326-335.
    [26]R Amer,T Kusky, A Ghulam. Lithological mapping in the central eastern desert of egypt using ASTER data [J]. Journal of African Earth Sciences,2009,06(04):1-8.
    [27]吴德文.遥感与地面观测数据.找矿信息提取和处理技术及应用:[博士学位论文].北京:中国地质大学,2006.
    [28]杨建民,张玉君,姚佛军.利用ETM+遥感技术进行尾亚杂岩体的岩性识别[J].岩石学报,2007,023(10):2397-2399.
    [29]邵芸,朱亮璞,崔承禹.航空多光潜遥感识别沉积岩地层岩性的研究[J].环境遥感,1989,4(2):144-156.
    [30]周成当,成菊安.模糊神经网络岩性识别系统[J].石油天然气学报,1993,15(04):40-45.
    [31]金浩,童庆禧.郑兰芬等.成像光谱和热红外多光谱技术地质制图研究[J].遥感学报,1994,9(04):138-143.
    [32]李果,孙家抦.东南极拉斯曼丘陵米勒半岛遥感影象岩性自动分类初探[J].极地研究,1994,6(04):37-42.
    [33]江平,石世民.fBm纹理分析模型及其在岩性识别中的应用[J].遥感学报,1995,10(1):38-44.
    [34]丑晓伟,傅碧宏.郑建京.沉积岩石信息的热红外多光谱遥感探测及有效性评价[J].遥感技术与应用,1996,11(01):7-13.
    [35]王青华,王润生,郭小方.高光谱遥感技术在岩石识别中的应用[J].国土资源遥感,2000,46(04):39-43.
    [36]王志刚,朱振海.光谱角度填图方法及其在岩性识别中的应用[J].遥感学报,1999,3(01):60-65.
    [37]卢新卫,胡明星.锡矿山硅化灰岩识别的人工神经网络模型[J].地质与勘 探,1999,35(06):52-54.
    [38]王翠珍,郭华东.极化雷达目标分解方法用于岩性分类[J].遥感学报,2000,4(03):219-223.247.
    [39]甘甫平,王润生.江思宏等.基于完全谱形特征的成像光谱遥感岩矿识别技术及其应用[J].地质科学,2000,35(03):376-384.
    [40]姚国清.神经网络技术在成像光谱数据的岩石矿物识别中的应用[J].计算机仿真,2001,18(06):33-35.
    [41]Peijun Li,Zhengxiao Li.Wooil M. Moon,Lithological discrimination of Altun area in northwest China using Landsat TM data and geostatistical textural information.Geosciences Journal,2001,5(4):293-300.
    [42]马超飞,马建文.应用多源数据提取高植被覆盖地区岩性信息-以湖南衿阳地区为例[J].地质科学,2002,37(3):365-371.
    [43]黄颖端,李培军.基于地统计学的图像纹理在岩性分类中的应用[J].国土资源遥感,2003,57(3):45-49.
    [44]张振飞,胡光道.杨明国.基于进化策略的CHC遗传算法及岩性波谱识别[J].中国地质大学学报,2003,28(3):351-355.
    [45]李培军.用ASETR图像和地统计学纹理进行岩性分类[J].矿物岩石,2004,24(3):114-120.
    [46]赵建华,杨树锋.陈汉林.基于分形纹理的遥感图像岩性识别方法[J].遥感信息,2004,(2):1-4.
    [47]王钦军,蔺启忠.包尔图地区Aster遥感岩性提取[J].地理与地理信息科学,2006,22(02):9-12.
    [48]崔林丽,唐娉,赵忠明等.一种基于对象和多种特征整合的分类识别方法研究[J].遥感学报,2006,10(1):104-110.
    [49]王钦军,蔺启忠,黎明晓等.光谱相关能级匹配遥感目标提取算法[J].光电工程,2007,34(10):.16-24.
    [50]马德锋,李培军.加入多尺度图像纹理的岩性分类评论[J].岩石学报,2008,24(6):1425-1430.
    [51]王贤敏,牛瑞卿.三峡库区遥感岩性分类规则挖掘[J].计算机工程与应用,2008,44(35):13-16.
    [52]刘超群,马祖陆,莫源富.遥感岩性识别研究进展与展望[J].广西科学院学报,2007,(2):120-125.
    [53]库向阳,薛惠锋,雷学武等.基于分类规则挖掘的遥感影像分类研究[J].遥感学报,2006,10(3):332-338.
    [54]I.Foster and C.Kesselman.editors.The grid:blueprint for a future computing infrastructure[M].Morgan Kaufmann Publishers,1998.
    [55]I. Foster,C. Kesselman. Globus:A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications,1997,11 (2):115-128.
    [56]Michael Lewis,Andrew Grimshaw.The Core Legion Object Model[J]. Proceedings of the Fifth IEEE International Symposium on High Performance Distributed Computing, IEEE,1996,551-561.
    [57]Keith Seymour,Asim YarKhan,Sudesh Agrawal,et al.NetSolve:Grid enabling scientific computing environments[J].Advances in Parallel Computing,2005, 14:33-51.
    [58]Earth System Grid (ESG) [DB/OL]. http://www.earthsystemgrid.org.
    [59]System Overview [DB/OL]. http://www.neesgrid.org/news/documents.php.
    [60]Global Information Grid[DB/OL].http://www.nsa.gov/ia/programs/global_industry_grid/index.shtml,2008.
    [61]C. Catlett. The TeraGrid:A Primer [DB/OL]. http://www.teragrid.org/,2006.
    [62]DataGrid Official Project Presentation[EB/OL]. http://150.146.1.82/ grid/internal/Deliverables/D11.1/DataGrid-11-PRE-0 1 0 3-1_1-ProjectPresentation.htm,2007.
    [63]徐志伟,李伟.织女星网格的体系结构研究[J].计算机研究与发展,2002,.39(8):923-929.
    [64]陆忠华.国家网格步入佳境[J].中国计算机用户,2005.20:21.
    [65]金海.搭建资源共享平台—中国教育科研网格ChinaGrid[J].中国教育网络,2006,9:25-26.
    [66]唐宇,何凯涛,肖侬等.国家地质调查应用网格体系及关键技术研究[J].计算机研究与发展,2003,40(12):1682-1688.
    [67]中科院两科技奥运项目通过验收[EB/OL].http://www.cas.cn/10000/10003/10000/2009/133381.htm,2009.
    [68]关于发布中国科学院“十一五”超级计算网格环境建设项目指南的通知[EB/OL].http://www.cas.cn/10000/10000/10010/2009/133525.htm,2009.
    [69]Kennedy J.Eberhart R C.A discrete binary version of the particle swarm algorithm[C].Proceedings of the Word Multiconference on Systemics.Cybernetics and Informatics.Piscataway.NJ,1997.
    [70]周先东.粒子群优化算法的研究及其应用:[硕士学位论文].重庆:重庆大学硕士,2008.
    [71]Ozcan E.Mohan C.K.Particle Swarm Optimization:surfing the waves[J].in Proc IEEE Congress on Evolutionary Computation.Picataway.NJ.1999.1939-1944.
    [72]Trelea I C.The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2003.85:317-325.
    [73]熊勇.粒子群优化算法的行为分析与应用实例:[博士学位论文].浙江:浙江大学,2005.
    [74]潘峰,陈杰,甘明刚等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):369-378.
    [75]Higashi N,Iba H. Particle Swarm Optimization with Gaussian Mutation[C]. Proceedings of the 2003 Congress on Evolutionary Computation [A]. Piscataway,NJ:IEEE Press,2003:72-79.
    [76]Eberhart R C,Shi Y. Guest Editorial Special Issue on Particle Swarm Optimization [J]. IEEE Transaction on Evolutionary Computation,2004,8(3):201-203.
    [77]Baskar S.Suganthan P N.A Novel Concurrent Particle Swarm Optimization[C].Proceedings of the 2004 Congress on Evolutionary Computation.Piscataway.NJ IEEE Press,2004,792-796.
    [78]赫然,王永吉,王青等.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044.
    [79]赵鹏军.优化问题的几种智能算法:[硕士学位论文].西安:西安电子科技大学,2009.
    [80]张中山,燕琴,余洁等.基于粒子群训练的人工神经网络应用于多光谱遥感影像分类研究[J].遥感信息,2008,(5):3-7.
    [81]李林宜,李德仁.基于粒子群优化算法的航空影像纹理分类[J].计算机工程,2008,34(6):196-199.
    [82]高隽.人工神经网络原理及其仿真实例[M].北京:机械工业出版社,2007,84-91.
    [83]张睿,马建文.支持向量机在遥感数据分类中的应用新进展[J].地球科学进展,2009,24(05):555-562.
    [84]Gualtieri J A and Cromp R F.Support vector machines for hyperspectral remote sensing classification [A].In:Proceedings of the SPIE.27th AIPR Workshop [C].1998:221-232.
    [85]胡自申,张迁.基于SVM的遥感影像的分类[J].遥感信息,2003.(2):14-19.
    [86]Camps-Valls G,Gomez-Chova L,Calpe-Maravilla J. Support Vector Machines
    for crop classification using hyperspectral data [J]. Pattern Recognition and Image Analysis,2003:134-141.
    [87]祁亨年,杨建刚.方陆明.基于多类支持向量机的遥感图像分类及其半监督式改进策略[J].复旦学报(自然科学版),2004.43(5):781-784.
    [88]徐芳,燕琴.基于支持向量机的航空影像纹理分类研究[J].武汉大学学报(信息科学版),2003,28(5):517-52.
    [89]张丽萍,李元诚.基于支持向量机的遥感图像压缩方法[J].计算机工程与应用,2006,(27):200-202.
    [90]傅文杰.遥感矿化蚀变信息提取中两种新方法的应用研究:[博士学位论文].长沙:中南大学,2006.
    [91]黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54.
    [92]Dalponte,M. Bruzzone,L. Gianelle,D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas[J]. Geoscience and Remote Sensing.2008,46(5):1416-1427.
    [93]薛云.基于蚁群算法和支持向量机的矿化蚀变信息提取研究:[博士学位论文].长沙:中南大学,2008.
    [94]唐攀科.成像光谱相似矿物识别及其矿物填图的不确定性研究:[博士学位论文].北京:中国地质大学,2006.
    [95]唐兰兰,张晓帆,刘云华.遥感岩性信息提取的基础和技术研究进展[J].矿业研究与开发,2006,6(3):68-70.
    [96]陈华慧.遥感地质学[M].北京:地质出版社,1984,14-19.
    [97]常青.甘肃北山南带岩(矿)石波谱特征的初步研究[J].甘肃地质学报,1999,8(1):49-55.
    [98]张治洮.阿尔金断裂的地质特征[J].中国地质科学院西安地质矿产研究所所刊,1985,9:20-32.
    [99]周勇,潘裕生.茫崖-肃北段阿尔金断裂右旋走滑运动的确定[J].地质科学,1998,33(1):9-16.
    [100]周勇,潘裕生.阿尔金断裂早期走滑运动方向及其活动时间探讨[J].地质论评,1999,45(1):1-9.
    [101]郭召杰,张志诚.阿尔金盆地群构造类型与演化[J].地质论评,1998,44(4):357-364.
    [102]虢顺民,向宏发.阿尔金构造系渐新世—中新世以来断裂左旋位错的空分布规律研究[J].地震地质,1998.20(1):9-18.
    [103]Foster I,Kesselman C. The Grid:Blueprint for a New Computing Infrastructure[M]. [S.l.]:San Francisco CA:Morgan Kaufmann Publishers,Inc.1999.
    [104]I. Foster.Service-Oriented Science[J].Science,2005.308(5723):814-817.
    [105]I. Foster. The grid:A new infrastructure for 21st century science. PhysicsToday, 2002,54(2):42-47.
    [106]李国杰.徐志伟.关于下一代网络体系结构与应用模式的思考[J].武汉理工大学学报,2002,24(3):1-6.
    [107]Foster I. What is the grid? A three-point checklist[J]. Grid Today-Daily News and Information For the Global Grid Community.2002,1(6):32-36.
    [108]都志辉,陈渝,刘鹏等.以服务为中心的网格体系结构OGSA[J].计算机科学,2003,30(7):26-29.
    [109]OGSA,WSRF and GT4 [DB/OL]. http://gdp.globus.org/gt4-tutorial/ multiplehtml/ch01s02.html
    [110]I Foster,C Kesselman,S Tuecke. The anatomy of the grid:Enabling scalable virtual organizations. International Journal of Supercomputer Applications,2001,15(3):200-222.
    [111]Karl Czajkowski,Don Ferguson,Ian Foster,et al.From Open Grid Services Infrastructure to WS-Resource Framework:Refactoring& Evolution[DB/OL]. http://www.cse.ohio-state.edu/-agrawal/788/Papers/week2/ogsi_to_wsrf_1.0.p df.
    [112]刘鹏,艾未华.网格应用发展现状与分析[J].信息技术与标准化,2005,9:18-22.
    [113]付志祥.网格环境下Master_Worker计算的研究和实现:[硕士毕业论文].福州:福州大学,2006.
    [114]Heather Kreger.Web Services Conceptual Architecture(WSCA 1.0).2001.
    [115]Zhang Xue gong.Introduction to statistical learning theory and support vector machines[J].Acta Automatica Sinica.2000,26 (1):32-42.
    [116]Vapnik V N. The Nature of Statistical Learning Theory [M]. NewYork:Sp ringer2Verlag,1995.
    [117]Nello Cristianini.John Shawe-Taylor.An introduction to Support Vector Machines and other Kernel-based learning methods[M].House of Electronics Industry.2005.
    [118]Kamran Ullah Khan,YANG Jian.Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method[J].Tsinghua Science and Technology,2007,12(1):97-104.
    [119]彭新俊.支持向量机若干问题及应用研究:[博士学位论文].上海:上海大学,2008.
    [120]常群,王晓龙,林沂蒙等.支持向量分类和多宽度高斯核[J].电子学报,2007,35(3):484-487.
    [121]宋晓峰,陈德钊,胡上序.支持向量机泛化能力估计若干方法[J].计算机科学,2003,31(8):125-127.
    [122]Luntz A,Brailovsky V. On estimation of characters obtained in statistical procedure of recognition[M]. Technicheskaya Kibernetica.1969
    [123]Richards A. Remote Sensing Digital Image Analysis:an Introduction[M].2nd Ed.Berlin:Springer2Verlag,1993.
    [124]邓文胜,邵晓莉,刘海等.基于证据理论的遥感图像分类方法探讨[J].遥感学报,2007,11(4):568-573.
    [125]惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,8(2):93-195.
    [126]王晓丹,王积勤.支持向量机训练和实现算法综述[J].计算机工程与技术,2004,40(13):7:5-78.
    [127]H. Yu,J. Yang,and J. Han. Classifying large data sets using SVM with hierarchical clusters[J]. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2003:306-315.
    [128]孟媛媛.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2657.
    [129]张锦水,何春阳,潘耀忠等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57
    [130]Chih-Wei Hsu,Chih-Chung Chang,Chih-Jen Lin. A Practical Guide to Support Vector Classification[DB/OL].http://www.csie.ntu.edu.tw/-cjlin/,2007.
    [131]Akshay Luther.Rajkumar Buyya.Rajiv Ranjan,et al. Alchemi:A NET-based Grid Computing Framework and its Integration into Global Grids:Technical Report.GRIDS-TR-2003-8(2003)[R].2003.
    [132]Kennedy J.Eberhart R C.Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers.2001.
    [133]Kennedy J.Eberhart R C.A discrete binary version of the particle swarm algorithm[C].Proceedings of the Word Multiconference on Systemics.Cybernetics and Informatics.Piscataway.NJ.1997.
    [134]金欣磊.基于PSO的多目标优化算法研究及其应用:[博士学位论文].杭州:浙江大学,2006
    [135]Shi,Y and Eberhart.R.C. A modified particle swarm optimizer.Proceedings of IEEE International Conference on Evolutionary Computation (CEC 1998).Piscataway,NJ,1998,69-73.
    [136]张丽平.粒子群优化算法的理论及实现:[博士学位论文].杭州:浙江大学,2005.
    [137]Carlisle,A. and Dozier,C. An off-the-shelf PSO. Proceedings of the Workshop on Particle Swarm Optimization,Indianapolis,IN,2001,1-6.
    [138]Clerc M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization [A]. Proceeding of the Congress on Evolutionary Computation[C]. Washington DC,1999:1951-1957.
    [139]闰允一.粒子群优化及其在图像处理中的应用研究:[博士学位论文].西安:西安电子科技大学,2008.
    [140]Engelbrecht A P.Ismail A.Training product unit neural networks.Stability and Control:Theory and Application.1999,2:59-74.
    [141]Eberhart,R.C.,Hu,X. Human tremor analysis using particle swarm optimization [A]. Proceeding Congress on Evolutionary Computation [C]. Washington,DC,USA,1999,3:1927-1930.
    [142]曾建潮,介静,崔志华.微粒群算法[M].北京:科学出版社,2004:27-49.
    [143]王元元,曾建潮,谭瑛.多种群协同进化的微粒群算法[J].计算机工程与设计,2007,28(15):3661-3664.
    [144]许有准,曾文华.并行演化算法研究进展[J].模式识别与人工智能,2005,18(2):183-190.
    [145]Granahan J C, Sweet J N. An evaluation of atmospheric correction techniques using the spectral similarity scale[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium,2001,5:2022-2024.
    [146]N.Cristianini.J.Shawe-Taylor.An Introduction to Support Vector Machines[M].Cambridge University Press.Cambridge.UK.2000.
    [147]罗瑜,容易文德,王丹琛等.大规模数据集下支持向量机训练样本的缩减策略[J].计算机科学,2007,34(10):211-213.
    [148]Cortes C.Vapnik V. Support Vector Networks[J]. Machine Learning,1995,(20): 273-297.
    [149]Osuna E.,Freund, R., Girosi,F..Training support vector machines:An application to face detection. Proc. Computer Vision and Pattern Recognition'97:130-136.
    [150]Platt J C. Fast training of support vector machines using sequential minimal optimization. In Scholkopf,Burges C J C, A. J. Smola, editors, Advances in kernel method-support vector learning. Cambridge,MA:MIT Press,1999,185-208.
    [151]谢承旺.不同种类支持向量机算法的比较研究[J].小型微型计算机系统,2008,29(1):106-109.
    [152]Keerhi S S.Shevade S K.Bhattacharyya C el al.Improvements to platt's SMO algorithm for SVM classifier design[J].Neural Computation.2001,13:637-649.
    [153]Jain-Xiong Dong.Ching Y S.Adam K.A Fast SVM Training Algorithm[J].Internatinal Journal of Pattern Recognition and Artificial Intelligence.2003,17(3):367-384.
    [154]Shigeo Abe.Takuya Inoue.Fast Training of Support Vector Machines by Extracting Boundary Data.2001.
    [155]Theodoros Evgeniou.Massimiliano Pontil. Support Vector Machines with Clustering for Training with Very Large Datasets[J]. Lectures Notes in Artificial Intelligence,2002,2308,2:346-354.
    [156]YANG Xiaowei.LIN Daying,HAO Zhifeng,et al. A fast SVM training algorithm based on the set segmentation and k-means clustering[J].Progress in Natural Science.2003,13(10):30-35.
    [157]雷咏梅,王雄,郭恒明等.一种支持向量机的并行训练策略[J].上海大学学报,2007,13(5):545-549.
    [158]田建忠,王威,谢梅芳.基于粒子群算法的支持向量机训练和实现方法[J].武汉理工大学学报(信息与管理工程版),2007,29(10):85-88.
    [159]A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Peer-to-Peer Grid Computing and a.NET-based AlchemiFramework, High Performance Computing:Paradigm and Infrastructure. Laurence Yang and Minyi Guo(editors), Wiley Press, New Jersey, USA.,2004.
    [160]袁满,胡庆,李鹏飞等.网格环境下GridFTP传输机制的研究与实现[J].计算机应用,2007,27(14):32-34.
    [161]P. Koszek,K. Sandrasegaran.Grid Architecture Storage-Utilising Grid Computing for Dynamic Data Storage[J] Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05).2005.
    [162]韩毅,韩伟红,杨树强.面向OLAP的高效海量数据存储技术研究与实现[J].微电子学与计算机,2006,23(增刊):154-159.
    [163]Akshay Luther,Rajkumar Buyya,Rajiv Ranjan. Alchemi A.NET-Based Enterprise Grid Computing System[DB/OL]. http://www.alchemi.net/,2006.
    [164]Bill Allcock.Joe Bester.John Bresnahan.e tc. Data management and transfer in high-performance computational grid environments[J]. Parallel Computing,2002,28(5):749-771.
    [165]UDDIv3:The Registry Standard for SOA[DB/OL]. http://www.oasis-open.org/presentations/uddi v3 webcast 20050222.pdf.
    [166]Akshay Luther,Rajkumar Buyya,Rajiv Ranjan,et al.Alchemi:A. NET-based Grid Computing Framework and its Integrationinto Global Grids.:Australia,University of Melbourne:Grid Computing and Distributed Systems Laboratory.2003,1(1):1-17.
    [167]Cutler M.Shih Yung-ming.Meng Wei-yi.Using the structure of HTML documents to improve retrieval[C]//Proceedings of the 11st IEEE Conference on Tools with AI.1999:406-409.
    [168]Serena Pastore.The service discovery methods issue:A web services UDDI specification framework integrated in a grid environment.Network and Computer applications[J].2008.31(2):93-107.
    [169]Manmtha R.feng F.Rath T.Using models of score distributions in information retrieval[C]//Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press.2001:267-275.
    [170]Brickley,D. and Guha,R.V.Resource Description Framework (RDF) Schema Specification. Proposed Recommendation, World Wide Web Consortium[DB/OL].http://www.w3.org/TR/PR-rdf-schema,2004.
    [171]王郁晰,鲍泓.基于UDDI的语义元数据定义及映射[J].计算机工程与应用,2007,43(11):171-174.
    [172]L.Moreau.S.Miles.J.Papay,et al.Publishing Semantic Descriptions of Services[M].In:Semantic Grid Workshop,New York:Academic Press,2003,:48-54.
    [173]严体华,王宝树.一种支持QoS的军事网格UDDI改进方法[J].系统工程与电子技术,2007,29(10):1674-1676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700