用户名: 密码: 验证码:
温致变色木材的制备和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温致变色木材是一种新型的木质功能材料,与普通的木材产品相比,该材料赋予了木材两项新的功能——温敏可逆变色和智能热能转换。研究温致变色木材,创新木质功能化新材料,开拓智能化家居材料新领域,促进木材科学的发展和木材工业产品的创新具有重要学术意义和实际意义。本研究以毛白杨木材为基体,通过隐色剂、显色剂、醇溶剂配制木材温致变色剂,利用超声波浸渍法将木材温致变色剂引入木材基体上,研制温致变色木材,筛选适合木材的温致变色剂、研究温致变色木材制备工艺、分析温致变色木材的光老化性能和表面性能、探索温致变色木材的变色机理和结合机理。主要的研究结果如下:
     1木材温致变色剂成分研究
     (1)根据温致变色木材颜色与目标色色差△E*1,深红色、橙黄色和蓝色木材温致变色剂的隐色剂分别选择隐色剂2、隐色剂8和结晶紫内酯;根据温致变色木材变色色差△E*2,三种颜色木材温致变色剂的显色剂选择双酚A;根据温致变色木材变色温度T及变色时间t,三种颜色木材温致变色剂的溶剂选择十四醇。
     (2)根据温致变色木材变色色差△E*2,深红色、橙黄色和蓝色木材温致变色剂中隐色剂与显色剂的配比分别为1:8,1:12和1:6,但隐色剂与溶剂的配比均为1:40。
     2温致变色木材的制备工艺研究
     (1)对比热扩散法和超声波浸渍法,根据温致变色木材变色色差△E*2,温致变色木材的制备方法选择超声波浸渍法。
     (2)深红色温致变色木材的制备工艺为浸渍温度55.0℃、浸渍时间4.0h、超声波功率140.0W,橙黄色和蓝色温致变色木材的制备工艺均为浸渍温度75.0℃、浸渍时间4.0h、超声波功率120.0W。
     (3)研制成具有温致变色功能的木质新材料。该材料的起始变色温度约为26.0℃,终止温度约为32.0℃。温度从26.0℃升至32.0℃时,温致变色木材颜色逐渐由染色颜色(深红色、橙黄色和蓝色)变成木材本色;反之,温度从32.0℃降至26.0℃时,温致变色木材颜色逐渐由木材本色变成染色颜色(深红色、橙黄色和蓝色)。
     3温致变色木材的光老化性能
     (1)蓝色温致变色木材变色色差AE*2的损失率最小,其光老化性能最好;其次为深红色温致变色木材,最后为橙黄色温致变色木材。
     (2)随着氙光辐射时间的延长,变色前深红色温致变色木材表面色度学参数中明度指数L*3、红绿指数a*3、黄蓝指数b*3和表面颜色损失△E*3逐渐增加;橙黄色温致变色木材表面色度学参数中明度指数L*3、红绿指数a*3和黄蓝指数b3逐渐降低,表面颜色损失AE*3逐渐增加;蓝色温致变色木材表面色度学参数中的明度指数L*3、黄蓝指数b*3和表面颜色损失AE*3逐渐增加,红绿指数a*3逐渐降低。
     (3)随着氙光辐射时间的延长,变色后深红色、橙黄色和蓝色温致变色木材表面色度学参数中明度指数L*4逐渐降低;但红绿指数a*4、黄蓝指数b*4和表面颜色损失AE*4逐渐增加。
     (4)红外光谱分析表明,温致变色木材表面分子结构中的羟基O-H经过氙光辐射后,部分被氧化成羧酸COOH;分子结构中的一些自由基经过氧化后,生成了羰基等发色基团,羰基C-O特征峰的强度增加;同时苯环和芳香醚发生光氧化降解,使得苯环结构受到破坏、醚键C-O-C特征峰强度降低;温致变色木材光降解和变色的内因是其表面官能团的变化。
     4温致变色木材的表面性能
     (1)深红色温致变色木材表面润湿性能最好,其次为蓝色温致变色木材,最后为橙黄色温致变色木材;其静态接触角分别为52.0、53.4和55.3,动态接触角衰减速率常数K值分别为0.2362、0.2221和0.2069。
     (2)深红色温致变色木材表面自由能最大,其次为蓝色温致变色木材,最后为橙黄色温致变色木材;其值分别为29.85 mN/m,28.30 mN/m和21.05 mN/m。
     (3)三种颜色温致变色木材表面的极性官能团数量不同,造成了其润湿性和表面自由能的差异。深红色温致变色木材表面羟基数量最多,其表面润湿性最好、表面自由能最高;其次为蓝色温致变色木材;最后为橙黄色温致变色木材。
     5温致变色木材的变色机理
     (1)木材温致变色剂变色前后分子结构的变化是细微的,说明木材温致变色剂整个分子结构在变色前后并未发生根本性的重组变化,其变色机理为电子得失机理。
     (2)蓝色温致变色木材相变表观活化能最大,其次为橙黄色温致变色木材,最后为深红色温致变色木材;其值分别为13.58KJ/mol,12.37KJ/mol和11.72KJ/mol。
     (3)深红色、橙黄色和蓝色温致变色木材相变反应级数均接近于1,说明三种颜色温致变色木材的相变机理是相同的。
     (4)深红色、橙黄色和蓝色温致变色木材的热力学参数较与之对应颜色的木材温致变色剂低,说明木材降低温致变色剂相变最大值所需能量和由半结晶状态变成可溶状态所消耗的能量。
     (5)十四醇对应的深红色、橙黄色和蓝色温致变色木材相变热力学参数最低,其次为十六醇,最后为十八醇。
     (6)随着升温速度的增加,深红色、橙黄色和蓝色温致变色木材相变起始温度(T0)逐渐降低,但峰值温度(Tp)、相变终止温度(Tc)和相变热焓值(△H)均逐渐增加。
     (7)深红色、橙黄色和蓝色温致变色木材的变色时间与环境温度呈线性负相关关系,关系式分别为y1=-12.321x+830.64、y2=-12.929x+876.71和y3=-8.1929x+578.5。
     6温致变色木材的结合机理
     (1)深红色、橙黄色和蓝色温致变色木材的纵向渗透量最大;其次为径向;最后为弦向。三种颜色温致变色木材纵向、径向和弦向的增重率分别为30.34%、16.66%、15.79%,18.67%、7.65%、7.01%和20.39%、13.13%、12.12%。
     (2)红外光谱分析表明,温致变色剂与木材之间既形成化学结合又形成物理结合。化学结合主要表现在未处理木材的羟基O-H吸收频率区的强度降低,表示其分子结构中的羟基O-H被温致变色剂占据,形成了氢键结合;物理结合主要表现在未处理木材的甲基或亚甲基C-H吸收频率区的强度增加,表示温致变色剂与木材形成了机械吸附,产生了甲基或亚甲基C-H官能团叠加。
Thermochromic wood is a kind of new wood functional materials. Comparison with others wood products, thermochromic wood owns two new functions, that is, reversible color-change and thermal energy transformation with increasing or decreasing temperature. It is importantly academic and practical significance for exploring a new field of intelligent furnature material, promoting development of wood science and innovation of wood product to research and manufacture thermochromic wood, a new kind of wood functional material. Samples of Chinese white poplar were impregnated using wood thermochromic gent including thermochromic dye, chromogenic agent and 1-tetradecanol though method of ultrasonic impregnation. The ingredients of wood thermochromic agent were selected, its manufacturing process was investigated, its color-change and combining mechanism were studied and its photo-discoloration and surface properties were analyzed in the test. The main research conclusions were listed as follow:
     1 Study on ingredients of wood thermochromic agent
     (1) Research results showed that thermochromic dye 2, thermochromic dye 8 and crystal violet lactone were respectively selected in the black-red, orange-yellow and blue wood thermochromic agent according to color difference (△E*1) between thermochromic wood and objective. For all color wood thermochromic agent, biphenyl A was selected according to color-change value (△E*2) which means color difference before and after color-change of samples and 1-tetradecanol was selected according to color-change temperature (T) and time (t) of thermochromic wood.
     (2) The optimum mixture ratio of thermochromic dye and chromogenic agent respectively was 1:8,1:12 and 1:6 for black-red, orange-yellow and blue wood thermochromic agent. That of all color wood thermochromic agent, however, was that mixture ratio of thermochromic dye and 1-tetradecanol was 1:40
     2 Study on manufacturing process of thermochromic wood
     (1) Comparison with method of thermal diffusivity and ultrasonic impregnation, the ultrasonic impregnation method was selected using to manufacture thermochromic wood according to color-change value (△E*2) in the test.
     (2) The optimum manufacture process was impregnation temperature 55.0℃, impregnation time 4.0h, and power of ultrasonic 140.0W for black-red thermochromic wood. That of orange-yellow and blue thermochromic wood was impregnation temperature 75.0℃, impregnation time 4.Oh, and power of ultrasonic 120.0W.
     (3) The new material, thermochromic wood, was finally made in the laboratory. Its initial color-change temperature was 26.0℃, the final one was 32.0℃. Its surface color respectively changed from black-red, orange-yellow and blue to wood color with temperature increasing form 26.0℃to 32.0℃. Otherwise, that respectively changed from wood color to black-red, orange-yellow and blue with temperature decreasing form 32.0℃to 26.0℃.
     3 Study on phto-discoloration property of thermochromic wood
     (1) The lost rate of color-change value (△E*2) was least to blue thermochromic wood, which indicated that phto-discoloration property of blue thermochromic wood was best. The next was orange-yellow thermochromic wood, and the last was black-red thermochromic wood.
     (2) Before all thermochromic wood changed color, the brightness index (L*3), red-green index (a*3), yellow-blue index (b*3) and lost of surface color (△E*3) gradually increased with prolonging time of Xenon-light irradiation to black-red thermochromic wood. The brightness index (L*3), red-green index (a*3) and yellow-blue index (b*3) gradually decreased and lost of surface color (△E*3) gradually increased to orange-yellow thermochromic wood. The brightness index (L*3), yellow-blue index (b*3) and lost of surface color (△E*3) gradually increased and red-green index (a*3) gradually decreased to blue thermochromic wood.
     (3) After all thermochromic wood changed color, brightness index (L*4), red-green index (a*4), yellow-blue index (b*4) and lost of surface color (△E*4) gradually increased with prolonging time of Xenon-light irradiation.
     (4) The results of FTIR analysis showed that hydroxyl groups (O-H) of molecular structure were partly oxidized to carboxylic acid (COOH) on the surface of thermochromic wood when they were radiated by Xenon-light. Otherwise, some free radicals also were oxidized to carbonyl groups (C=O). At the same time, the pyridine ring and ether (C-O-C) structure were broken down during the process of Xenon-light irradiation. Phto-discoloration of thermochromic wood was closely correlated with the change of chemical function groups on their surface.
     4 Study on surface property of thermochromic wood
     (1) The wettability of black-red thermochromic wood was best, the next was blue thermochromic wood and the last was orange-yellow thermochromic wood. The value of static contact angle respectively was 52.0,53.4 and 55.3 and the K value, lost rate of dynamic contact angle, respectively was0.2362,0.2221 and 0.2069.
     (2) The surface free energy of black-red thermochromic wood was highest, the next was blue thermochromic wood, and the last was orange-yellow thermochromic wood. The value of surface free energy respectively was 29.85 mN/m,28.30 mN/m and 21.05 mN/m.
     (3) The numbers of polar functional groups was different on black-red, orange-yellow and blue thermochromic wood surfaces. For example, the numbers of hydroxyl groups were most on the black-red thermochromic wood surface, its wetability was best and surface free energy was biggest, the next was blue thermochromic wood and the last was orange-yellow thermochromic wood. So different numbers of function groups resulted in change of wettability and free energy for three color of thermochromic wood.
     5 Study on color-change mechanism of thermochromic wood
     (1) The molecular structure of wood thermochromic agent was slightly changed, that is, its molecular structure was not restructured before and after color-change, which indicated that color-change mechanism of thermochromic wood was because of gain and loss electron of molecular structure.
     (2) The activation energy of blue thermochromic wood was biggest in the phase-transition. The next was orange-yellow thermochromic wood. The last was black-red thermochromic wood. The value of activation energy respectively was 13.58KJ/mol,12.37KJ/mol and 11.72KJ/mol.
     (3) The reaction order of all thermochromic wood was nearly 1, which expressed that the phase-transition mechanism of all thermochromic wood is the same.
     (4) The value of thermal property parameters of black-red, orange-yellow and blue thermochromic wood were lower than that of wood thermochromic agent, which showed that wood can reduce maximum energy of phase-transition and transition energy from semi-crystalline state to soluble state.
     (5) The value of thermal property parameters was least to black-red, orange-yellow and blue thermochromic wood manufactured though 1-tetradecanol. The next was 1-hexadecanolare and the last was 1-octadecanol.
     (6) With the increasing of heating rate, the initial temperature (To) of phase-transition gradually deceased, but peak temperature (Tp) and final temperature (Tc) of phase-transition and enthalpy (△H) gradually increased.
     (7) The relationship between color-change time and environment temperature was remarkable negative linear correlation to black-red, orange-yellow and blue thermochromic wood. The formula of them respectively was y1=-12.321x+830.64, y2=-12.929x+876.71 and y3=-8.1929x+578.5.
     6 Study on combinative mechanism of thermochromic wood
     (1) The longitudinal growth rate was most for black-red, orange-yellow and blue thermochromic wood. The next was redial direction and the last was tangential direction. The value of longitudinal, radial and tangential growth rate respectively was 30.34%,16.66%, 15.79%; 18.67%,7.65%,7.01% and 20.39%,13.13%,12.12%.
     (2) The FTIR result showed that there are chemical and physical combination between thermochromic agent and wood. The hydroxyl (O-H) absorption intensity decreasing indicated that hydrogen bonds between thermochromic agent and wood were formed, which expressed chemical combination. At the same time, methyl group (C-H) absorption intensity increasing indicated that mechanical adsorption came about between thermochromic agent and wood, which expressed physical combination.
引文
Betanews.未来的智能家居——您所向往的科幻生活[J].数字社区&智能家居,2008,34(5):27-28.
    Toensend,李春暖.变色纤维的开发和应用[J].染整技术,2006,(9):9-13.
    鲍甫成.木材流体可渗透性有效毛细管半径和数量的研究[J].林业科学,1993,29(6):521~527.
    鲍甫成,侯祝强.针叶树材纵向气体渗透的三维流阻网络[J].林业科学,2002,38(4):111~117.
    鲍甫成,吕建雄.木材渗透性可控制原理研究[J].林业科学,1992,28(4):336~343.
    鲍甫成,吕建雄,赵有科.长白鱼鳞云杉木材纹孔塞不同位置对渗透性的影响[J].植物学报,2001,43(2):119~126.
    鲍甫成,吕建雄.木材可压缩流体渗透中滑流的研究[J].林业科学,1993,29(3):248~256.
    鲍甫成,吕建雄.长白鱼鳞云杉木材的渗透性及苯—乙醇浸提对其影响的研究[J].木材工业,1991,5(4):28~33.
    鲍甫成,吕建雄.微生物对长自鱼鳞云杉木材渗透性的影响[J].林业科学,1991,26(7):615~622.
    鲍甫成,赵有科,吕建雄.杉木和马尾松木材渗透性与微细结构的关系研究[J].北京林业大学学报,2005,25(1):1~5.
    鲍甫成,王正,郭文静.杨木和杉木木材表面性质的研究[J].林业科学,2004,40(1):131-137.
    毕伟.我国应发展人工林用材林解决木材资源枯竭[J].科学新闻,2007,8
    曹金珍,D.Pascal Kamdem.不同水基防腐剂处理木材的表面自由能[J].北京林业大学学报,2006,28(4):1-5.
    曹新志.差热扫描分析(DSC)在食品研究中的应用[J].四川食品工业科技,1997,16(1):9-13.
    曹优明.无机热变色材料的制备[J].涂料工业,2005,35(11):22-24.
    池淑芬,刘强,吕洪全,赵吉存.炭石墨材料浸渍金属机理的探讨[J].炭素,2003,(2):24-29.
    池玉杰.6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析[J].林业科学,2005,41(3):136-141.
    陈纯馨,陈忻,刘爱文等.高温多变色可逆示温材料的研制[J].化工新型材料,2004,12(32):50-52,57.
    陈纯馨,陈忻,刘爱文等.酸类复配物的固相制备及其热变色性能研究[J].化工新型材料,2006,34(2):46-48.
    陈建梅,曹荣.Bi-V类无机可逆热变色材料的研制[J].化学工业与工程技术,1996,17(3):12-15.
    陈旭东,沈家瑞,夏成林.未来属于智能材料[J].化工新型材料,1995(5):39-42.
    陈燕琼,张子勇.胆甾型液晶的合成及显色示温液晶组成[J].化学世界,2003,44(7):373-376.
    陈志林,傅峰,叶克林.我国木材资源利用现状和木材回收利用技术措施[J].中国人造板,2007,14(5):1-3.
    程瑞香,顾继友.落叶松、桦木和柞木木材表面的润湿性[J].东北林业大学学报,2002,30(3):29-31.
    崔会旺,杜官本.MWP处理对云南松木材表面润湿性的影响[J].西北林学院学报,2008,23(4):163-166.
    崔晓亮,张宝砚,孟凡宝等.一种可逆热致变色材料的制备及微胶囊化研究[J].合成树脂及塑料,2002,9(3):24-27.
    董翠华,龙柱,庞志强,杨淑蕙.可逆热致变色材料及其应用现状[J].材料导报,2008,3(2):4-7.
    邓启平,李大纲,张金萍.FTIR法研究出土木材化学结构及化学成分的变化[J].西北林学院学报,2008,23(2):149-153.
    杜新瑜,王向伟,王江枫等.变色伪装材料研究关键技术[J].功能材料,2007,(38):3089-3093.
    段新芳.我国森林工业的可持续发展战略[J].前进论坛,2006,9(11):14-15.
    冯文昭,吴赞敏,葛婧媛.新型热敏变色材料的微胶囊化研究[J].天津工业大学学报,2008,27(2):32-36.
    顾超英.变色纤维与纺织品的开发与应用[J].济南纺织化纤科技,2005,(4):16-22.
    顾继友,耿志忠,高振华.DSC法研究苯基异氰酸酯与木素、纤维素、木粉的反应特性[J].林业科学,2007,43(9):57-62.
    顾继友,程瑞香.采用DSC和FTIR对木材和API胶粘剂间反应的研究[J].中国胶粘剂,2005,14(4):10-14.
    郭洪武,王金林,李春生等.涂饰染色单板的光变色规律和影响因子[J].北京林业大学学报,2008,30(4):22-27.
    郭洪武,王金林,李春生等.杨木或樟子松单板的光变色规律[J].木材工业,2008,22(1):29-31.
    郭洪武,王金林,李春生等.涂饰染色单板光变色的规律和影响因子[J].北京林业大学学报,2008,30(4):22-28.
    郝志峰.甲酚红硼酸体系可逆热致变色颜料的研究[J].精细化工,2004,21(4):24-27.
    郝志峰,杨阳,余坚等.甲酚红-硼酸体系可逆热致变色颜料的研究[J].精细化工,2004,21(4):241-248.
    胡爱华,邢世岩,巩其亮.基于FTIR的银杏木材鉴别研究[J].中国农学通报,2009,25(4):88-92
    胡南,刘雪宁,杨治中.聚合物压电智能材料研究新进展[J].高分子通报,2004,(10):75-83.
    胡智荣,钟庭秀.水性低温可逆示温涂料的研究[J].涂料工业,2001,2(10):18-22.
    胡小安,陈栋华.对一叔丁基杯[6]热力学及热分析动力学研究[J].楚雄师范学院学报,2004,19(3):70-75.
    胡智荣,钟庭秀,李玉平.水性低温可逆示温涂料的研究[J].涂料工业,2001,(10):18-21.
    候祝强,庄作峰.木材渗透性研究的现状与趋势[J].林业科学,1999,12,(1):33~37.
    侯祝强,鲍甫成.针叶树材径向和弦向气体渗透的三维流阻网络[J].林业科学,2002,38(6):37~42.
    姜笑梅,鲍甫成,吕建雄.两种难浸注木材的显微和超微构造及其与渗透性的关系[J].林业科学,1993,29(4):331~338.
    江涛,周志芳,王清文.高强度微波辐射对落叶松木材渗透性的影响[J].林业科学,2006,42(11):87~92.
    李承范,姚艳红,张敬东.不同产地桦褐孔茵的傅里叶变换红外光谱法鉴别研究[J].时珍国医国药,2009,20(12):3097-3098.
    李成祥,孟庆元,杨立军.Au快速凝固及晶体生长的分子动力学模拟[J].哈尔滨工业大学学报,2008,40(5):705-709.
    李秋歌,杨伟,刘峰.Fe-B合金非平衡凝固过程的DSC研究[J].材料导报,2009,23(9):65-69.
    李天文,刘鸿生.变色材料的研究与应用[J].现代化工,2004,24(2):62-65.
    李天文,王向荣,和丽霞等.无机光色材料和热色材料的发展[J].无机盐工业,1995,27(3):13-27.
    李小华.溴甲酚紫-Co(Ⅱ)-十八醇复配物制备及热色性能[J].化工时刊,2006,6:33-38.
    李晓东.木材构造对木材化学阻燃浸渍处理方法的影响[J].广州化工,2005,33(5):57~61.
    李青,马晓光.低温热敏变色材料复配物的制备研究[J].染整技术,2009,31(6):1-5.
    黎云昆.我国人工林建设与木材工业的发展[J].木材工业,2003,17(2):4-8.
    林暖丹,简淑娟.甲基多巴的红外光谱鉴别[J].中国现代医药应用,2009,3(20):43-44.
    刘国杰.特种功能性涂料[M].北京:化学工业出版社,2002.
    刘军,赵曙辉.结晶紫内酯可逆热变色复配物的DSC研究[J].印染助剂,2003,20(6):39-41.
    刘巧宾,龚春所.智能高分子材料[J].杭州化工,2007,37(1):20-23,27.
    刘正堂.示温涂料的应用与发展[J].精细与专用化学品,2004,12(21):3-6.
    龚培宁,陶朱.热致变色复配液晶多孔膜制备工艺中的扫描电镜研究[J].电子显微学报,1997,16(1):44-48.
    吕建雄.长白鱼鳞云杉木材渗透性改善方法的初步研究[D].中国林业科学研究院硕士论文,1989.
    吕建雄,鲍甫成.纹孔塞位置回弹对改善长白鳞云杉木材渗透性作用初探[J].木材工业,1992,6(1):29~34.
    吕建雄,鲍甫成,姜笑梅,周明.汽蒸处理对木材渗透性的影响[J].林业科学,1994,30(4):352~358.
    吕建雄,鲍甫成,姜笑梅,赵有科.3种不同处理方法对木材渗透性影响的研究[J].林业科学,2000,36(4):67~77.
    马一平,朱蓓蓉,吴科如.常温可逆温致变色建筑涂料的研究[J].建筑材料学报,2001,4(3):211-217.
    马一平,朱蓓蓉,吴科如.内酯型化合物温致变色的表征及研究[J].涂料工业,2000,(6):35-39.
    毛庆禄,赵贵文.可逆热变色材料[J].化学世界,1994,(4):169-173.
    苗平,顾炼.百马尾松木材横向液体渗透性研究[J].中南林学院学报,2001,21(4):40~44.
    欧阳光,陈志良,吴立新等.中国化工产品大会(上)[M].北京:化学工业出版社,1994,338-339.
    乔永平.发展人工林:解决我国木材供需矛盾的长远战略选择[J].林业经济问题,2006,26(3).269-273.
    秦特夫,阎吴鹏.木材酯化及接枝共聚处理对木材表面自由能影响的研究[J].林业科学,2001,37(2):97-100.
    任先培,刘刚,周在进等.病害烟叶的傅里叶变换红外光谱研究[J].激光与红外,2009,39(9):943-947.
    石敏.速生丰产用材林建设工程相关政策与融资机制[J].绿色中国,2003,(12):17-18.
    宋健,李光天.可逆热变色复配物变色机理的研究—一相变与变色现象之间的关系[J].染料工业,1998,35(4):11-14.
    宋健,李光天,程侣柏.利用核磁共振研究可逆热变色物质的变化机理[J].天津大学学报,1995,32(3):366-368.
    宋文学.可逆示温材料BiV04[J].青岛化工学院学报,1996,2(5):17-21.
    王凯军,张明祖,管丹.热致变色材料制备及微胶囊包封[J].印染助剂,2008,25(7):41-45.
    王海滨,刘树信,霍冀川.无机热致变色材料的研究及应用进展[J].中国陶瓷,2006,42(4):11-13.
    王洁瑛,赵广杰,中野隆人.热处理过程中杉木压缩木材的材色及红外光谱[J].北京林业大学学报,2001,23(1):59-65.
    王金满,刘一星,戴澄月.抽提物对木材渗透性影响的研究[J].东北林业大学学报,1991,19(3):41-48.
    王诗太,杨济活.新型热敏染料的研究[J].华中科技大学学报(自然科学版),2002,30(12):114-116.
    王小青,费本华,任海清.杉木光变色的FTIR光谱分析[J].光谱学与光谱分析,2009,29(5): 1272-1275.
    吴伟光,蒋琴儿,黄睿敏,曹艳春,岑丽娟.浙江省林产品贸易现状及其国际竞争力提升途径[J].林业经济问题,2004,24(1):6-8,34.
    武林,于志明.计算机配色技术在木材连缸染色中的应用研究[J].北京林业大学学报,2007,29(1):146-151.
    姚康德,许美壹.智能材料研究进展[J].材料导报,1994,(23):7-10.
    杨亲民.智能材料的研究与开发[J].功能材料,1999,30(6):576-579.
    杨群,王恰林.不同发酵茶叶的红外光谱特征[J].楚雄师范学院学报,2009,24(9):45-50.
    杨淑蕙,郝晓秀,刘洪斌.可逆温致变色材料的合成及其在纸料体系中的应用[J].中国造纸,2005,24(11):13-16.
    杨永安,杨发成,司民真.4种活血祛瘀类中药的红外光谱研究[J].光谱实验室,2009,26(5):1240-1244.
    于修烛,杜双奎,李志西.基于傅里叶红外光谱重组技术的食用油检测改进研究[J].农业机械学报,2009,40(10):129-135.
    于志明,赵立,李文军.木材染色过程中染液渗透机理的研究北京林业大学学报,2002,24(1):79-83.
    曾盛,胡小玲,邓娟利.示温材料的制备及应用研究进展[J].材料导报,2005,19(1):43-46,53.
    曾盛,胡小玲,邓娟利.示温材料的制备及应用研究进展[J].材料导报,2005,19(1):43-46,53.
    张宝心.以孔雀绿内酯为变色剂的可逆示温涂料的研究[J].化工新型材料,1996,6(10):37-40.
    张团红,胡小玲,管萍等.可逆示温材料的变色机理及应用进展[J].涂料涂装与电镀,2006,4(4):15-20.
    张久荣.森林—人工林—可持续发展[J].中国林业产业,2005,(2):16-18.
    张三.我国工业人工林发展现状与对策[J].中国农村经济,2001,4.
    张广成,刘铁民,陈挺等.HDPE/EPDM材料的形状记忆特性研究[J].机械科学与技术,2004,23(7):825-829.
    张慧萍,李正宇,李永明等.无机低温热变色材料的研究及应用[J].云南师范大学学报:自然科学版,2000,20(5):59-61.
    张求慧,赵广杰,何静.三倍体毛白杨及杉木苯酚液化物的结构分析[J].北京林业大学学报,2006,28(3):139-145.
    张洋,华毓坤.用DSC法研究麦秸人造板用胶的热反应特征[J].南京林业大学学报,2000,24(5): 17-20.
    赵有科,鲍甫成.针叶树木材流体纵向渗透性与其构造关系的理论分析[J].林业科学,1998,34(4):88-96.
    赵有科,鲍甫成,吕建雄.溶剂置换材和气干材气体渗透性的比较研究[J].林业科学,2003,39(1):114-118.
    周其风,王新久.液晶高分子[M].北京:科学出版社,1999.
    周兆兵,张洋,贾翀.木质材料动态润湿性能的表征[J].南京林业大学学报(自然科学版),2007,31(5):71-74.
    周宇,王金林,李春生.1-214杨染色单板光变色规律的研究[J].林业科学,42(3):2006,29-35.
    邹献武,杨智,秦特夫.木材正辛醇液化产物的红外光谱分析[J].光谱学与光谱分析,2009,29(6):1545-1548.
    黑田俊正,山田浩一.感温变色性热可逆材料[J].日本特许公报,1991,平3-82812,51-58.
    太田浩一,桥本正敏,舟山勉.可逆性示温材[J].日本特许公报,1986,昭61-14284,649-655.
    高崎嗣郎.热可逆变色性色材[J].日本特许公报,1987,昭62-73992,529-531.
    饭岛茂美.感热记录材料[J].日本特许公报,1992,平4-191086,509-513.
    太田浩一.可逆性示温剂[J].日本特许公报,1987,昭62-246979,659-667.
    Alex P J Hun. fabric area network—a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing[J]. Computers networks,2001, (35):391-399.
    Ali Temiza, Nasko Terziev, Morten Eikenes et al. Effect of accelerated weathering on surface chemistry of modified wood [J]. Applied Surface Science,2007,253:5355-5362
    Amistead, W H; Stookey. Photochromic Silicate Glasses Sensitized by Silver Halides [J]. Science,1964, 56:144-150.
    A. J. Hunter. An analytic model for air drying of impermeable wood [J]. Wood Science and Technology, 2000, (34):481-492.
    A. J. Bolton. A reexamination of some deviations from Darcy's Law in coniferous wood [J]. Wood Science and Technology,1988,22(4):311-322.
    Bao Fucheng, Zhao Youke, Lv Jiangxiong. Relations Between Permeability and Structure of Wood [J]. Forestry Studies in China,2003,5(1):34-38.
    Be'atrice George, Ed Suttie, Andre'Merlina, Xavier Deglise. Photodegradation and photostabilisation of wood-the state of the art [J]. Polymer Degradation and Stability,2005,88:268-274.
    Boehme C, Guido Hora. Water absorption and contact angle measurement of Native European, North American and Tropical wood species to predict gluing properties. Holzforchung,1996,50:269-276.
    Bruil H G, Van Artsen J J. The determination of contact angle of Aqueous surfactant solution on powders. Colloid & polyer Science,1974, (25)2:32-38.
    Boehme C, Guido Hora. Water absorption and contact angle measurement of Native European, North American and Tropical wood species to predict gluing properties. Holzforchung,1996,50:269-276.
    Cao Jin-zhen, Li Li-dan, Liu Zhi. Eflfect Of ACQ-D Treatment on the Surface Free Energy of Chinese Fir[J]. Forestry Studies in China,2005,7(4):29-34.
    Casilla R C, Chow S and Steiner P R. An immersion technique for studying wood wetteabillity. Wood Science and Technology,1981,15:31-43.
    C. F. Zhu, A. B. Wu. Studies on the synthesis and thermoctmmaic properties of crystal violet lactone and its reversible thermochromic complexes [J]. Thermochimica Acta,2005, (425):7-12.
    Charles R. Frihart. INTERACTION OF COPPER WOOD PRESERVATIVES AND ADHESIVES [J]. Macromolecules,1998,31:760-764
    Darwin G, Caldwell, Paul M Taylor. Chemically stimulated pseudo-muscular actuation [J]. Journal of Engineering Science,1990,28(8):797-808.
    David N, S. Hon and Shang-tzen Chang. Surface Degradation of Wood by Ultraviolet Light[J]. Journal of Polymer Science:Polymer Chemistry Edition,1984, (22):2227-2241.
    Dragica Jeremic, Paul Cooper, Usha Srinivasan. Comparative analysis of balsam fir wetwood, heartwood, and sapwood properties [J]. Canadian Journal of Forest Research,2004,34(6):1241~1341.
    Fernandez V, Jaque F, Calleja J M. Raman and optical absorption spectroscopic study of the thermochromic phasetransition of Ag2HgI4 [J]. Solid State Communications,1986,12(59): 803-809.
    Feroson J L, Mol. Cryst. Liq [J]. Cryst,1996, (1):293-297.
    Fogg P. J. Longitudinal air permeability of southern pinewood. Doctoral dissertation, School of Forestry and Wildlife Management, La, State Univ., Baton rouge, La.
    George Bramhall. The validity of Darcy's law in the axial penetration of wood [J]. Wood Science and Technology,1971,5(2):121-134.
    G. L. Comstock, W. A. Cote. Factors affecting permeability and pit aspiration in coniferous sapwood [J]. Wood Science and Technology,1968,2(4):279-291.
    Gehrke Stevin H, Palasis M aria, Akhtar M Kamal. Effect of synthesis conditions on properties of poly(N—isopropylacrylamide)gels[J]. Polymer lnternati-onal,1992,29:29-36.
    Gordon, Nelson. Application of microencapsulation in textiles [J]. International Journal of Pharmaceutics, 2002,242(1):55-62.
    Grinverg Natalia V, Dubovik Alexander S, Grinverg Valerij Ya, et al. Studies of the thermal volume transition of poly (N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorim-etryr [J]. Macromolecules,1999,32:1471-1475.
    G. I. Mantanis, R. A. Young. Wetting of wood [J]. Wood Science and Technology,1997, (31):339-353.
    Hadjoudis E, Vittorakis M et al, Photochromism and thermochromism of schiff hases in the solid and in rigid glasses[J]. tetrahedron,1987,43(7):1345-1360.
    Harvey D.Erickson. Permeability of southern pine Wood-A review [J].Wood Science,1970, 2(3):149~158.
    Hayashi S. Roomtemperaturefunctional shap-mmorypolymers [J]. PlasticS Engineering,1995,51(2): 29-31.
    H. Derbyshire, E. R. Miller. The Photodegradation of Wood During Solar Irradiation. Part I:Effects on the Structural Integrity of Thin Wood Strips [J]. Holz ats Roh-und Werkstoff,1981,39:341-350.
    Hisao Suzuki, Kenji Yamaguchi, Hidetoshi Miyazaki. Fabrication of thermochromic composite using monodispersed VO2 coated SiO2 nanoparticles prepared by modified chemical solution deposition [J]. Composites Science and Technology,2007,67(15):3487-3493.
    Hoshion H, Matsuushita S, Samura H. Reversible writeerage properties of Cu-TCNQ optical recording media [J]. Jpn. Appl. Phys,1986,25(4):341-342.
    Iuliana Dobrica, Paula Bugheanu, Ioana Stanculescu, et al. FTIR SPECTRAL DATA OF WOOD USED IN ROMANIAN TRADITIONAL VILLAGE CONSTRUCTIONS [J]. Analele UniversitaNii din Bucuresti,2008,1:33-37.
    Jesse H. Day. Thermochromic chemical Review [J]. Solid State Communications,1963,63(11):65-80.
    J.F. Rabolt. Studies of Chain Conformational Linetics in Poly (di-n-alkysilanes) by Spectroscopic Methods [J]. Micromolecule,1986, (19):611-616.
    J.Heiras, E.Pichardo, A.Mahmood, et al. Thermochromism in (Ba, Sr) Mn oxides [J]. Journal of Physics and Chemistry of Solids,2002,63:591-595. [1] Karekatti C K. Smart textiles:an overview [J]. Man-made Textiles in India,2004, (11):404-406.
    Jianxiong Lu, Stavros Avramidis. Non-Darcian Air Flow in Wood. Part 2. Nonlinear Flow [J]. Holzforschung,1999, (53):77-84.
    J. P. Hosli, C. Orfila. Mercury porosimetric approach on the validity of Darcy's law in the axial penetration of wood [J]. Wood Science and Technology,1985,19(4):347-352.
    J. A. Petty, G. S. Puritch. The effects of drying on the structure and permeability of the wood of Abies grandis [J]. Wood Science and Technology,1970,4(2):140-154.
    Joachim Oelichmann. Surface and depth-profile analysis using FTIR spectroscopy [J]. Fresenius Z Anal Chem,1989,333:353-359.
    Karana Carlborn, Laurent M. Matuana. Composite Materials Manufactured From Wood Particles Modified Through a Reactive Extrusion Process [J]. POLYMER COMPOSITES,2005,25: 533-540.
    Kathleen Van de Velde, Paul Kiekens. Wettability of natural fibres used as reinforcement for composites[J].2nd International Wood and Natural Fibre Composites Symposium,1999, June 28-29.
    Kenning D B R. Pool boiling heat transfer on a thinplate:features revealed by liquid crystalthermography[J]. Inr J Hear Mass Transfer,1996,15(39):3117-3124.
    Kito, Tsutomu, Nakasuji, et al. Reversible heatsensitive recording composition [J]. US 4,1989,9(12): 865-871.
    K. K. PANDEY. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy [J]. Journal of Applied Polymer Science,1999, (71):1969-1975.
    Kristian Krabbenhoft, Lars Damkilde. Double porosity models for the description of water infiltration in wood[J]. Wood Science and Technology,2004,38(8):641~659.
    Manfeld J, Forster I, Schellenberger A, et al. Immobilization ofinvertase by encapsulation in polyelectrolyte complexs microcapsules [J]. Enzyme Microbial Technology,1991, (13):240-247.
    Makoto Ohkoshi. FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood [J]. Journal of Wood Science,2002,48:394-401.
    Martins A. Kalnins, William C. Feist. Increase in wettability of wood with weathering [J]. Forestry Products Journal,1993,43(2):55-57.
    Masahiro Matsunaga, Hiroshi Matsunaga, Yutaka Kataoka, Hiroaki Matsui. Improved water permeability of sugi heartwood by pretreatment with supercritical carbon dioxide[J]. Wood Science,2005,51: 195~197.
    Nixon J R. Micmencapsulation [J]. New York Marcel Dekker Inc,1976,6(3):135-138.
    Paul J Newton, Yan Youyou, Nia E Stevens et al. Transient heat transfer measurements using thermochromic liquid crystal [J]. International J Heat Fluid Flow,2003,13(24):14-24.
    Pascal Nzokou, Donatien Pascal Kamdem. Influence of Wood Extractives on the Photo-discoloration of Wood Surfaces Exposed to Artificial Weathering [J]. INDUSTRIAL APPLICATIONS,2006, (31): 425-435.
    Pascal Nzokou, Donatien Pascal Kamdem. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy [J]. Journal of Applied Polymer Science,1999,71: 1969-1975.
    Rawat M S M, Norula JI. Photochromism im bis-N, N-salicylideneaniline & N,N-Disalicylidenedi-aimines[J]. Indian Journal of Chemistry,1987, (2)6:232-234.
    Ruil H G, Van Artsen J J. The determination of contact angle of Aqueous surfactant solution on powders. Colloid & polyer Science,1974, (25)2:32-38.
    Shen Q, Jian Nylund and Jarl B Rosenholm. Estimation of the surface energy and acid-base properties of wood by means of wetting method. Holzforchung,1998,52:521-529.
    Szesztay M. DSC characterization of Urea/formaldehyde condensates [J] Holzforchunge,1996,54(6): 399-402.
    Tadao TANAKA, Seiya NAGAO, Hiromichi OGAWA. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Functional Groups of Humic Acid Dissolving in Aqueous Solution [J]. ANALYTICAL SCIENCES,2001,17:1081-1084.
    Tamotsu Lnabe, Naomo Hoshino et al. Structure and optical properties of a themochromic schiff Base. Low temperature structural studies of the N, N-disalicylidene-P-phenylenediamine and N, N-di-salicyli-Dene-1,6-pyrenediamine crystals[J]. Bull.Chem.Soc.Jpn,1989, (62):2245-2251.
    Thomas R. J. The structure of the pit membranes in longleaf pine:An electron microscope study [J]. Wood press,1967,63:20~29.
    Thornton J. The art of dyeing and staining marble, artificial stone, bone, horn, ivory and wood [J]. J AM INST CONSERV,2004,43(3):273-275.
    Toensend, P D; Kelly, J C. Color Centers and Imperfections in Insulatoes and Semiconductors [M]. London. Sussex University Press,1973:196.
    Toshiki Aoki, Katsuycshi Yamagjwa, Eiji Yoshino and Elao Oikawa. Polymer [J]. Polyhedran,1993, (34): 1538-1640.
    URSULA REH, GUNDA KRAEPELIN, INGOLF LAMPRECHT. Use of Differential Scanning Calorimetry for Structural Analysis of Fungally Degraded Wood [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,1986,52(5):1101-1106.
    Uzma Qureshi, Troy D. Manning, Christopher Blackman, et al. Composite thermochromic thin films: (TiO2, VO2) prepared from titanium isopropoxide, VOC13and water [J]. Polyhedran,2005,72(12): 67-71.
    Voglar E A, Martin D A, Montgonery D et al. A graphical method for predicting surfactant protein adsorption properties. Langumir,1993,9:497-507.
    Wendlandt W W, Bradley W S. High temperature reflectance spectroscopy:application to thermochromic compounds [J]. Thermochimica Acta,1970,6(1):529-537.
    W. B. Banksm J. F. Levy. The effects of cell wall swelling on the permeability of grand fir wood[J]. Wood Science and Technology,1980,14(1):49-62.
    W. B. Banks. Addressing the problem of non-steady state liquid flow in wood[J]. Wood Science and Technology,1981,15(3):171-177.
    X. Colom, F. Carrillo, F. Nogue's, et al. Structural analysis of photodegraded wood by means of FTIR spectroscopy [J]. Polymer Degradation and Stability,2003,80:543-549.
    Yutaka Kataoka, Makoto Kiguchi. Depth profiling of photo-induced degradation in wood by FTIR microspectroscopy [J]. Journal of Wood Science,2001,47:325-327.
    Yiping Ma, Beirong Zhu, and Keru Wu. Preparation of reversible thermochromic building coatings and their properties [J]. Journal of Coatings Technology,2000,72(12):67-71.
    Yu Ping WEI, Fa CHENG, Hou Ping LI, et al. Synthesis and Properties of Polyurethane Resins from Liquefied Benzylated Wood [J]. Chinese Chemical Letters,2005,16(3):401-404.
    Yupping Wei, Fa Cheng, Houping Li et al. Thermal properties and micromorphology of polyurethane resins basided on liquefied benzylated wood [J]. Journal of science & industrial research,2005,64: 435-439.
    Yutaka Kataoka, Tetsuo Kondo. FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation [J]. Macromolecules,1998,31:760-764
    ZHANG Yang, ZHOU Zhao-bing, YUAN Saho-fei et al. Study on the surface dynamic wettability and free energy of poplar [J]. Journal of Nanjing Forestry University (Natural Science Edition),2008, 32(1):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700