用户名: 密码: 验证码:
可见光响应光催化剂Bi_(20)TiO_(32)的制备及分解水中有机物效能与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用光催化作用进行水处理的核心任务是寻找性能优良的光催化剂,光催化剂的可见光响应程度是光催化技术实现太阳能的充分利用,走向实用化的关键,所以具备可见光响应的高效光催化剂的筛选及制备是光催化研究的核心课题。
     Bi和Ti都因廉价无毒被称为“绿色金属”,Bi_2O_3和TiO_2复合可形成具有多种晶相结构的复合氧化物,钛酸铋晶相的一种Bi_(20)TiO_(32)尚未被系统研究过,本文制备并表征了钛酸铋Bi_(20)TiO_(32),研究了其光催化降解有机物的性能和机理。
     首先用溶胶凝胶法制备光催化剂Bi_(20)TiO_(32)。实验结果表明,在前躯体Bi/Ti比例为M时,300℃焙烧30分钟制备的催化剂—Bi_(20)TiO_(32)主峰(201晶面)成长较好,其它各个晶面均发育良好,且杂质峰较少。焙烧温度过高或保温时间过长都会导致氧丢失,引起晶相的转变;其它Bi/Ti前躯体比例则会使晶体发育不全或杂质过多。经表征该催化剂Bi_(20)TiO_(32)为锥形,颗粒大小约为90nm,比较容易聚结,BET比表面积为7.96m2/g,等电点pH值为7.9。紫外可见漫反射光谱和光电压光谱检测显示,所制备的Bi_(20)TiO_(32)具有高度可见光响应,响应波长达530nm,带隙能较窄为2.34eV。经计算其价带约为2.58V,价带空穴电位足以氧化有机物,导带0.24V,经测试费米能级在0.622V处,比较接近导带,电子逸出功小,催化剂给电子能力强。
     催化剂活性比较实验表明,所制备的钛酸铋Bi_(20)TiO_(32)和混晶钛酸铋相比,Bi_(20)TiO_(32)吸附能力较强,催化降解有机污染物性能也优于混晶催化剂。在相同催化剂质量的前提下,Bi_(20)TiO_(32)与P-25相比,在氙灯照射下降解甲基橙、苯酚时,P-25表观速率常数较大,由于Bi_(20)TiO_(32)比表面积较小,它的比活性大于P-25。而在波长大于400nm的可见光照射下,Bi_(20)TiO_(32)光催化降解苯酚、甲基橙的速度远远大于P-25。Bi_(20)TiO_(32)降解苯酚的表观速率常数为0.0133min~(-1),是P-25(0.0004min~(-1))的33.25倍,降解甲基橙的表观速率常数为0.0119min~(-1),是P-25(0.0038min~(-1))的3.13倍。说明钛酸铋Bi_(20)TiO_(32)具有良好的可见光催化降解有机物的性能。
     催化剂的组成、晶体结构对光催化剂性能影响很大,外界因素也影响着催化剂的活性,优化这些条件可以更好地发挥催化剂的性能。实验发现短波长光照降解效果更好;提高光强度,有助于提高降解速率。pH值对降解效果的影响相当显著,对催化剂的影响也是多方面的,其中最重要的一方面是不同pH值下催化剂表面电荷不同,影响了对目标有机物的吸附,因而针对不同物质的光降解存在不同的最佳pH值。Bi_(20)TiO_(32)降解甲基橙在酸性条件下效果最佳,降解苯酚则是在中性条件较好。污染物浓度越低反应速率越快,说明光催化反应只适合于处理微污染水。向反应体系中曝气不利于降解强吸附的甲基橙、苯酚,因为气泡阻隔了反应物与催化剂的接触。反应温度在40℃时比20℃和60℃反应速度快,温度过低不利于分子运动和中间产物从催化剂表面尽快脱附,而高温又影响了物理吸附。外加过氧化氢量低于4%(V/V)时,抑制了对甲基橙的降解;加入过氧化氢量超过6%(V/V)时,浓度越大越能促进光催化降解反应的进行。自来水和江水中的离子抑制了对甲基橙的降解,却促进了亚甲基蓝的光催化降解,这可能与光催化降解机理有关。
     研究光催化作用机理的一个重要方面就是反应活性物种,这关系到反应位点和进攻有机物的位置,以及相应的不同的降解路径、降解产物。经质谱分析,对羟基苯乙醇(4-hydroxybenzylalcohol , HBA)的降解产物为对羟基苯乙醛(4-hydroxybenzaldehyde HBZ),说明HBA被Bi_(20)TiO_(32)光催化降解是空穴和羟基自由基共同作用的结果。
     为考察Bi_(20)TiO_(32)光催化降解不同类型污染物活性物种的异同,目标污染物选择了阴离子有机物甲基橙、阳离子型染料亚甲基蓝和中性物苯酚,实验主要通过加入活性物种抑制剂的方法来进行。实验结果表明在去离子水中,强吸附的阴离子有机物甲基橙的光催化降解主要是光生空穴的直接氧化造成的,因而反应位点应在催化剂表面。超氧阴离子自由基对甲基橙的光催化降解也有贡献,但不是主要的活性物种。苯酚的光催化降解规律与甲基橙基本相同。弱吸附的阳离子型有机物亚甲基蓝的光催化降解中,羟基自由基是主要活性物种,反应可能发生在催化剂表面或是其附近的溶液中。
     在自来水和江水中,甲基橙和亚甲基蓝的降解速度变化规律不同,这与主要活性物种的变化有直接关系。由于自来水和江水中阴离子的竞争吸附,甲基橙对空穴的利用率迅速降低,甲基橙的降解速度也急剧下降,这时主要活性物种不再是空穴,而是次生的羟基自由基。亚甲基蓝则由于水中阴离子的媒介作用,能更好地吸附于催化剂表面,从而更有效地利用空穴的直接氧化作用,降解速度反而提高了,这时主要活性物种不再是羟基自由基,而是空穴。空穴的量子化效率高即浓度较高,所以降解速度显著加快。
     光催化技术要得到大规模工业化应用所需要克服的另一关键问题就是催化剂的失活。研究发现Bi_(20)TiO_(32)光催化剂在使用之后晶型未变,说明其结构比较稳定。采用乙醇在超声波中振荡清洗催化剂能较好地恢复其活性,说明失活主要是由于中间产物吸附所致,清除催化剂表面吸附的有机物即能较好地恢复活性。高温焙烧既去除了表面吸附的有机物,又使得晶型结构得以保持,是一种有效的再生方法。
The important mission in using photocatalysis for the water treatment is to find photocatalysts with excellent performance. Preparation of visible light responsive catalyst is the key to make the best use of sunlight and put it into application, so the synthesis of high performance photocatalysts which is visible light responsive is the main subject.
     Bi and Ti are both cheap and non-poisonous metal which are called“green metal”. Compound of Bi_2O_3 and TiO_2 can form many crystalline phase. One of the bismuth titanate is Bi_(20)TiO_(32), which has not been studied systematically yet. In this subject, bismuth titanate Bi_(20)TiO_(32) was prepared and characterized. Its performance and mechanism for photocatalytic degradation of organic pollutants was discussed.
     First of all, Bi_(20)TiO_(32) was prepared by sol-gel method. Optimum experiments demonstrate that when the precursor ratio of Bi/Ti is M, the catalyst crystal can be made by being calcined at 300℃for 30 minutes. Under this condition, the main crystalface of Bi_(20)TiO_(32) (201) will grow better, and the other peaks of it also develop well, while impurity peaks are very small. Higher calcination temperature or longer retention time will result in the loss of oxygen, which causes the transformation of crystalline phase. Under other precursor ratio of Bi/Ti, Bi_(20)TiO_(32) can not develop well or more impurity phase will grow up. The prepared catalyst Bi_(20)TiO_(32) is characterized to be nanocones, with the size around 90nm, and it is easy to coagulate. Its BET surface is 7.96m2/g, and zero point charge pH is tested to be 7.9. The curves of UV-diffuse reflection spectra and surface photovoltage spectra indicates Bi_(20)TiO_(32) is highly visible light responsive that its sensitive wavelength extends to 530nm, namely the energy gap is 2.34 eV. It was calculated that the valence band is at 2.58V, so the holes’potential there is high enough to oxidize organics. The conduction band is at 0.24V, and the Fermi level was tested to be at 0.622V, which is close to the conduction band. It means that electrons have low work function and the catalyst has strong ability to supply electrons.
     Experiments on the comparison of the catalytic activity of the prepared catalysts were made. The results show that Bi_(20)TiO_(32) has stronger adsorption ability, and its catalytic performance is higher than the mingled bismuth titanate. Under the irradiation of xenon lamp and the same weight of catalyst dose, the apparent rate constant of oxidation by P25 is higher than that of Bi_(20)TiO_(32) for the degradation of phenol and methyl orange. Due to smaller specific surface area of Bi_(20)TiO_(32), the specific activity of Bi_(20)TiO_(32) is higher than that of P-25. While under the visible light irradiation (>400nm), the photodegradation speed of phenol and methyl orange by Bi_(20)TiO_(32) is much faster than that achieved by P25. The apparent rate constant of degrading phenol by Bi_(20)TiO_(32) is 0.0133min~(-1), which is 33.25 times higher than that achieved by P25 (0.0004min~(-1)). The apparent rate constant of degrading methyl orange by Bi_(20)TiO_(32) is 0.0119min~(-1), which is 3.13 times higher than that achieved by P25 (0.0038min~(-1)). The experimental results demonstrate that Bi_(20)TiO_(32) is qualified to be a favourable photocatalyst.
     The component and crystal structure of the photocatalyst exert a tremendous influence on the performance, while external factors also affect its activity, and optimization of the conditions will help to give a better place to play its role. It is found that being illuminated by the short wavelength light can get better degradation result. Enhancing the intensity of the light contribute to the degradation rate. pH value has remarkable impact on the degradation and on the catalyst in many aspects, the most important one of which is that the catalyst surface will be directly affected by the charge under different pH. That the catalyst is positively or negatively charged will affect its ability to attract organic pollutants, so for different types of organics, the optimum pH is different. Acidic condition is good for the degradation of methyl orange, while neutral is good for phenol oxidation. Aeration goes against the degradation of methyl orange or phenol, because the air bubbles cut off the contact between reactant and the catalyst. The optimum reaction temperature is 40℃, comparing with the result at 20℃and 60℃. Because lower temperature is disadvantageous for the molecular movement and for desorption of intermediate product from the surface. While higher temperature does not facilitate adsorption of the reactant. Adding less than 4% (V/V) of hydrogen peroxide restrained the degradation of methyl orange. When the hydrogen peroxide concentration is larger than 6% (V/V), the more the hydrogen peroxide, the faster the photocatalyic degradation speed is. The degradation of methyl orange is depressed by the ions in the tap water and river water. On the contrary, the degradation speed of methylene blue is promoted in the tap water and river water,which may be related to the oxidation mechanism.
     The important aspect in the study of the mechanism of photocatalytic process is the active species generated during the oxidation, because it is related with the reaction site on the catalyst, the attacked position of organics, the corresponding degradation pathways and the degradation products. GC-MS analysis shows the photodegradation product of 4-hydroxybenzylalcohol (HBA) by Bi_(20)TiO_(32) is 4-hydroxybenzaldehyde (HBZ), which is the result of the cooperation of h+ and·OH.
     In order to investigate if there are different main active species for different pollutants in photodegradation by Bi_(20)TiO_(32), three kinds of organics were chosen as the target pollutants, namely anion methyl orange, cation methylene blue and neutral phenol. The testing was made by adding scavenger of the active species. Experiments indicate that in deionized water, anion methyl orange has strong adsorption ability on the Bi_(20)TiO_(32) catalyst surface, and holes are the main species, so the reaction site is on the surface of the catalyst. Superoxide anions also help to degrade methyl orange, but they are not the main species. It is basically the same with the case of phenol. Cation methylene blue is not easy to adsorbe onto the catalyst surface, and hydroxyl radicals are the main active species. The reaction site may be on the surface of the catalyst or in the solution near its surface.
     In tap water or river water, the degradation rate of methyl orange and methylene blue change differently, which has direct relation with the transformation of active species. In tap water or river water, owing to the competitive adsorption of anions, the utilization rate of holes is reduced promptly, so the degradation rate of methyl orange droped sharply. At this time, the main active species are not holes any more, but are secondary hydroxyl radicals. While due to the anions’medium function, methylene blue can adsorb onto the catalyst surface easily, and can be oxidized efficiently by holes. At this time, the main active species are holes instead of hydroxyl radicals. The quantization proportion of holes is higher, namely the concerntration of holes is larger, so the degradation rate speeds up.
     Another key problem for photocatalyst application is inactivation. It’s found that the crystal phase doesn’t change after reaction, which shows the structure of the catalyst is stable. Using ethanol and ultrasound can recover its activity, as illustrates that inactivation is just due to adsorption of intermediate products. Calcination can remove the intermediates and maintain the structure of the crystal, so it is also an effective method for the regeneration of catalyst.
引文
1 K. C. Jones, P. De Voogt. Persistent Organic Pollutants (Pops): State of Science. Environmental Pollution. 1999, 100(1-3): 209~221
    2 P. M. Fedorak. The Effects of Phenol and Some Alky Phenolics on Batch Anaerobic Methanogenesis. Water Research. 1984, 18(3): 361~367
    3 R. Barreiro.Toxic Effects of Chemicals on Microorganisms.Water Environ Res. 1992, 64(4): 632~641
    4 T. Reemtsmal. Dissolved Organics in Tannery Wastewaters and Their Alteration by a Combined Anaerobic and Aerobic Treatment.Water Research. 1997, 31, (5): 1035~1046
    5 P. R. Del, V. Diez. Organic Matter Removal in Combined Anaerobic—Aerobic Fixed~Film Bioreactors. Water Research. 2003, 37: 356l~3568
    6 V. Sarria, S. Parra. Recent Developments in the Coupling of Photoassisted and Aerobic Biological Processes for the Treatment of Biorecaleitrant Compounds. Catalysis Today. 2002, 76: 301~315
    7曹兰花.高级氧化法处理难降解有机废水技术.甘肃科技. 2003, 19(10): 47~48
    8关自斌.湿式催化氧化法处理高浓度有机废水技术的研究与应用.铀矿冶炼. 2004, 23(2): 101~105
    9 J. C. Matinst Wille. Development of a Structure-reactivity Relationship for the Photohydrolysis of Substituted Aromatic Halides. Environ. Sci Technol. 1992, 26(11): 2116~2121
    10郭强,谢从武.有毒难降解工业废水处理技术研究进展.精细石油化工进展. 2005, 6(4): 11~14
    11蒋朝俊.光催化降解染料废水的研究.化学工业与工程技术. 2004, 23(1): 21~24
    12 J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB’S in the Presence of Titanium Dioxide in Aqueous Suspension. Bull. Environ. Contam. Toxicol. 1976, 16: 697~701
    13 R. W. Mattews. Photo-Oxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide [J]. Water Research. 1990, 24(5): 653~657
    14 M. Taha, E-Morsi, I. Wesretal. Photocatalytic Degradation of 1, 10-Dichloroda -cane in Aqueous Suspensions of TiO_2: A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals. Environ. Sci. Technol. 2000, 34(6): 1018~1022
    15 S. Irmak, E. Kusvuran. Degradation of 4-chloro-2-methylphenol in AqueousSolution by UV Irradiation in the Presence of Titanium Dioxide. Applied Catalysis B: Environmental. 2004, 54: 85~91
    16 C. S. Turchi, D. F. Ollis. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. J. Catal, 1990, 122: 178~192
    17 A. V. Vorontsov, I. V. Stoyanova, D. V. Kozlov. Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide. J. Catal. 2000, 189: 360~369
    18 M. Gartzel. Heterogenous Photochemical Electron Transfer. CRC Press, Inc. Boac Raton Florida. 1989: 20~21
    19张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展.环境科学进展. 1997, 5(3): 1~10
    20 A. Hagfeldt, M. Gratzel. Light-induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews. 1995, 95 (1): 49~68
    21高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002: 104~105
    22 A. L. Linsebigler, G. Lu, J. T. Yates Jr. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95: 735~758
    23 E. Brillas, E. Mur, R. Sauleda. Aniline Mineralization by AOP's: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes. Appl. Catal. B: Environ, 1998, 16: 31~42
    24 R. M. Alberici, W. F. Jardim. Photocatalytic Destruction of VOCs in the Gas-Phase Using Titanium Dioxide. Appl.Catal.B: Environ, 1997, 14: 55~68
    25 M. N. Hoffmann, S. T. Martin, W. Y. Choi, et al. Environmental of Semiconductor Photocatalysis. Chmemical Reviews.1995, 95: 69~96
    26陈小泉,古国榜.以钛氧有机物为前驱物制备具有高光催化活性的纳米二氧化钛晶体.催化学报. 2002, 23(4): 312~316
    27 U. Diebold. The Surface Science of Titanium Dioxide. Surface Science Reports. 2003(48): 53~229
    28 L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy. The Hardest Known Oxide. Nature. 2001, 410(6829): 653~654
    29周志强.纳米TiO_2光催化剂制备及其可见光响应改性研究[D].哈尔滨理工大学硕士论文, 2006:12~13
    30沈伟韧,赵文宽,贺飞,等. TiO_2光催化反应及其在废水处理中的应用.化学进展. 1998, 10: 349~361
    31高伟,吴凤清,罗臻,等.TiO_2晶型与光催化活性关系的研究.高等学校化学学报. 2001, 22: 660~662
    32 S.A. Bilmes, P. Mandelbaum, F. Alvarez. Surface and Electronic Structure of Titanium Dioxide Photocatalysts. J. Phys.Chem.B. 2000, 104: 9851~9854
    33范崇政,肖建平,丁延伟,等.纳米TiO_2的制备与光催化反应研究进展.科学通报. 2001, 46: 265~273
    34 G. Pecchi, P. Reyes, P. Sanhueza.Photocatalytic Degradation of Penta-chloro -phenol on TiO_2 Sol-Gel Catalysts. J. Chemosphere. 2001, 43: 141 ~146
    35戴智铭,朱中南,古宏晨,等.半导体气固相光催化氧化反应介绍.化学反应工程与工艺. 2000, 16: 185~192
    36 I. B. Bickley, C. T. Gonzalez, J. S. Lees. Structural Investigation of Titanium Dioxide Photocatalysis. Journal of Solid State Chemistry. 1991, 92(1): 178~190
    37陶跃武,赵梦月,陈士夫,等.空气中有害物质的光催化去除.催化学报. 1997, 18(4): 345~347
    38 C. Rothenberger, J. Moser, M. Gratzel. Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles. Journal of American Chemical Society. 1985(107): 8054~8059
    39李凤生.超细粉体技术.北京:国防工业出版社. 2000: 72~76
    40 M. Tomkiewicz. Scaling Properties in Photocatalysis. Catal. Today. 2000, 58: 115~123
    41 H. C. Yatmaz, C. Wallis, C. R. Howarth. The Spinning Disc Reactor-Studies on a Novel TiO_2 Photocatalytic Reactor. Chemosphere. 2001, 42: 397~403
    42 D. W. Bahneman. Mechanisms of Organic Transformation on Semiconductor Particles. Sol Ener Mat. 1991, 24 (3): 564~583
    43 K. Vinodgopal. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO_2/TiO_2 Coupled Semiconductor Thin Films. Environ Sci Technol. 1995, 29(3): 841~845
    44余家国,赵修建,赵青南,等. TiO_2纳米薄膜的溶胶-凝胶工艺制备和表征.物理化学学报. 2000, 16(9): 792~797
    45 K. Young, C-B Hsich. Photocatalytic Decomposition of 2,4-Dichlorophenol in Aqueous TiO_2 Suspensions. Water Research.1992, 26:1451~1456
    46 J.Grzechulska, A W Morawski. Photocatalytic Decomposition of Azo-Dye Acid Black 1 in Water Over Modified Titanium Dioxide. Appl. Catal. B: Environ. 2002, 36: 45~51
    47 Sandra Gomes de Moraes, Renato Sanches Freire, Nelsonuran. Degradation and Toxicity Reduction of Textile Effluent by Combined Photocatalytic and Ozonation Process. Chemosphere. 2000, 40: 369~373
    48 C. Wu, X. Liu. Solar Photocatalytic Degradation and Disinfection Processes. Water Research. 2001, (35): 3927~3930
    49 Y. X. Li, G. X. Lu. Photocatalytic Hydrogen Generation and Decomposition of Oxalic Acid Over Platinized TiO_2. Applied Catalysis A: General. 2001,214: 179~185
    50 F. Wei, L. Ni, P. Cui. Preparation and Characterization of N-S-Codoped TiO_2 Photocatalyst and its Photocatalytic Activity. Journal of Hazardous Materials. 2008, 156: 135~140
    51 P. S. Suri Rominder, J. B. Liu, J. C. Crittenden. Removal and Destruction of Organic Contaminants in Water Using Adsorption, Steam Regeneration, and Photocatalytic Oxidation: A Pilot Svale Study. Journal of the Air & Waste Management Association. 1999, 49 (5): 1246~1248
    52 V. Subramanian, E. E. Wolf, P. V. Kamat. Catalysis with TiO_2/Gold Nanocom -posites: Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126: 4943~4969
    53刘守新,曲振平,韩秀文,等. Ag担载对TiO_2光催化活性的影响.催化学报. 2004, 25(2): 133~137
    54孙奉玉,吴鸣,李文钊,等.二氧化钛表面光学特性与光催化活性的关系.催化学报. 1998, 19 (2): 199~233
    55 J. Bahnemann, W. Detlef. Current Challenges in Photocatalysis: Improved Photocatalysts and Appropriate Photoreactor Engineering. Res Chem Intermed. 2000, 26 (2): 207~209
    56 K. Wilke, H. D. Breuer. The Influence of Transition Metal Doping on the Physical and Photocatalytic Properties of Titania. Journal of Photochemistry and Photobiology A: Chemistry. 1999, 121: 49~53
    57 A. D. Paola, E. Garcia-Lopez, S. Ikeda. Photocatalytic Degradation of Organic Compounds in Aqueous Systems by Transition Metal Doped Polycrystalline TiO_2. Catalysis Today. 2002, 75: 87~93
    58刘守新,孙承林.光催化剂TiO_2改性的研究进展.东北林业大学学报. 2003, 31(1): 53~56
    59 E. Piera, M. I. Tejedo-Tejedor, M. E. Zorn. Relationship Concerning the Nature and Concentration of Fe (III) Species on the Surface of TiO_2 Particles and Photocatalytic Activity of the Catalyst. Applied Catalysis B: Environment. 2003, 46: 671~685
    60 X. A. Wu, Y.Gao, L. H. Qin. The Preparation, Characterization, and Their Photocatalytic Activities of Rare-Earth-Doped TiO_2 Nanoparticles. Journal of Catalysis. 2002, 207: 151~157
    61 R. Asahi, T. Morikawa, T .Ohwaki. Visiblelight Photocatalysis in Nitrogen- DopedTitanium Oxides. Science. 2001, 293: 269~271
    62 S. U. M. Khan, M. Al. Shahry, W. B. Ingler. Efficient Photochemical Water Splitting by a Chemically Modified TiO_2. Science. 2002, 297: 2243~2245
    63 H. Irie, Y. Watanabe, K. Hashimoto. Carbon-doped Anatase TiO_2 Powders as a Visible-Light Sensitive Photocatalyst. Chem. Lett. 2003, 32: 772~773
    64 T. Umebayashi, T. Yamaki, H. Itoh. Band Gap Narrowing of Titanium Dioxide by Sulfur Doping. Appl Phys Lett . 2002, 81 (3) : 454~456
    65 T. Umebayashi, Yamaki T , Tanaka S. Visible Light-Induced Degradation of Methylene Blue on S-doped TiO_2. Chem Lett. 2003, 32 (4): 330~331
    66 T. Ohno, T. Mitsui, M. Matsumura. Photocatalytic Activity of S-doped TiO_2 Photocatalyst under Visible Light. Chem Lett. 2003 ,32 (4): 364~365
    67 T. Ohno, M. Akiyoshi, T. Umebayashi. Preparation of S-doped TiO_2 Photocatalysts and Their Photocatalytic Activities under Visible Light. Appl Catal A: Gen. 2004, 265 (1): 115~121
    68 T. Ohno, M. Akiyoshi, T. Umebayashi. Preparation of Visible Light Active S-Doped TiO_2 Photocatalysts and Their Photocatalytic Activities.Water Sci Technol. 2004, 49 (4): 159~163
    69 K. Won, Y. T. Song, K. Y. Lee, W. I. Choi. Photocatalytic Behavior of WO3-Loaded TiO_2 in an Oxidation Reaction. J. Catal. 2000, 191: 192~198
    70 T. Hirai, K. Suzuki, I. Komasawa. Preparation and Photocatalytic Properties of Composite CdS Nanoparticles-Titanium Dioxide Particles. J. Colloid Interface Sci. 2001, 244: 262~267
    71 T. Tanaka, T. I. S. Takenaka, T. Funabiki. Photocatalytic Oxidation of Alkane at a Steady Rate over Alkali - Ion - Modified Vanadium Oxide Supported on Silica. Catal. Today. 2000 , 61 (4) : 109~115
    72 Y. A. Cao, X. T. Zhang, W. S. Yang. Bicomponent TiO_2/SnO_2 Particulate Film for Photocatalysis. Chem. Mater. 2000, 12, 3445-3448
    73 K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee. Preparation of Transparent Particulate MoO3/TiO_2 and WO3/TiO_2 Films and Their Photocatalytic Properties. Chem. Mater. 2001, 13: 2349~2354
    74 X. Fu, L. Clark, Q. Yang, M. Anderson. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO_2/SiO_2 and TiO_2/ZrO_2. Environ. Sci. Technol. 1996, 30: 647~651
    75 J. T. Dawley, R. Radspinner. Sol-Gel Derived Bismuth Titanate in Films with C-axis orientation. Journal of Sol-Gel Science and Technology. 2001, 20 (1): 85~93
    76 T. Mazumder, K. Baishakhi. Oxidative Dehydrodimerisation and Aromatisat -ion of Isobutene on Bi_2O_3-SnO_2 Catalysts [J]. Applied Catalysis A: General. 2003, 245 (1) : 87~102
    77 H. Jungk, C. F. Feldmann. Polyolmediated Synthesis of Submicrometer Bi_2O_3 particles. Journal of Material Science. 2001, 36: 297~299
    78 Y. Hyuk-Joon, R. Clive. Dielectric Relaxation and Microwave Dielectric Properties of Bi_2O_3 -ZnO -Ta2O5 Ceramics. Journal of Materials Research. 2002, 17 (6) : 1502~1506
    79 C. Xia, Y. Zhang, M. Liu. Composite Cathode Based on Yttria Stabilized Bismuth Oxide for Low -Temperature Solid Oxide Fuel Cells [J].Applied Physics Letters. 2003, 82 (6): 901~903
    80 V. Rose Noelle, C. Edouard. Oxide Ion Transport in Bismuth-Based Materials. Materials Research Society Symposium Proceedings. 2003, 756: 95~103
    81倪天增,罗冬冬,范力仁,等.纳米氧化铋的制备及应用.中南民族大学学报(自然科学版). 2004, 23(1): 26~29
    82崔玉民,徐立杰.用光催化剂Bi_2O_3处理含亚硝酸盐废水的研究.工业水处理. 2000, 20 (8) : 17~19
    83王俊珍,付希贤,杨秋华. Bi_2O_3对染料的光催化降解性能.应用化学. 2002 19(5):483~485
    84高红,张天胜. Bi_2O_3光催化氧化降解亚甲基蓝的动力学研究.净水技术,2007, 26(3): 8~11
    85 C.Zhang, Y. F. Zhu. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light–Driven Photocatalysts. Chem. Mater. 2005, 17: 3537~ 3545
    86 J. G. Yu. Hydrothermal Preparation and Visiblelight Photocatalytic Activity of Bi2WO6 Powders. Journal of Solid State Chemistry. 2005, 178: 1968~1972
    87 H. Fu, L. Zhang, W. Yao, Y. Zhu. Photocatalytic Properties of Nanosized Bi2WO6 Catalysts Synthesized via a Hydrothermal Process. Applied Catalysis B: Environmental. 2006,66: 100~110
    88 W. F. Yao, X. H. Xu, J. T. Zhou, X. N. Yang. Photocatalytic Property of Sillenite Bi24AlO39 Crystals. Journal of Molecular Catalysis A: Chemical. 2004, 212: 323~328
    89 A. Kudo, K. Omori, H. Kato. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121: 11459~11467
    90 W. F. Yao, H. Wang, X. H. Xu, X. F. Cheng. Photocatalytic Property of BismuthTitanate Bi12TiO_20 Crystals. Applied Catalysis A: General. 2003, 243: 185~190
    91 W. F. Yao, H. Wang, X. H. Xu, J. T. Zhou. Sillenites Materials as Novel Photocatalysts for Methyl Orange Decomposition. Chemical Physics Letters. 2003, 377: 501~506
    92 X. P. Lin, F. Q. Huang, W. D. Wang, J. L. Su. Photocatalytic Activity of Bi24Ga_2O_39 for Degrading Methylene Blue. Scripta Material. 2007, 56: 189~192
    93 C. H. He, M Y Gu. Photocatalytic Activity of Bismuth Germinate Bi12GeO_20 Powders. Scripta Mater. 2006, 54: 1221~1225
    94 R. L. Hou, C. Z. Yuan, Y. Peng. Synthesis and Photocatalytic Property of Bi38ZnO58 Photocatalyst. Chinese Journal of Applied Chemistry. 2007, 24: 206~209
    95 Z. K. Zou, J. Ye, H. Arakawa. Preparation, Structural and Optical Properties of a New Class of Compounds, Bi2MNbO7 (M- Al, Ga, ln). Materials Science and Engineering B. 2001, 79: 83~85.
    96 L. Lorena, M. Leticia, D. Torres-Martinez. Photocatalytic Degradation of Methylene Blue on Bi2MNbO7 (M= Al, Fe, In, Sm) Sol-Gel Catalysts. Journal of Molecular Catalysis A: Chemical. 2006, 247: 283~290
    97 W. F. Yao, H. Wang, X. H. Xu. Synthesis and Photocatalytic Property of Bismuth Titanate Bi4Ti3O12. Materials Letters. 2003, 57: 1899~1902
    98 W. F. Yao, H. Wang, H. Xiao. Photocatalytic Property of Bismuth Titanate Bi2Ti2O7. Applied Catalysis A: General. 2004, 259, 29~33
    99 W. F. Yao, H. Wang, X. H. Xu. Characterization and Photocatalytic Properties of Ba doped Bi12TiO_20. Journal of Molecular Catalysis A: Chemical. 2003, 202: 305~311
    100周爱秋,许效红,姚伟峰,等. Bi12TiO_20纳米粉体的制备及其光吸收特性研究.化学物理学报. 2004, 17(3): 305~308
    101 N. Thanabodeekij, E. Gulari, S. Wongkasemjit. Bi12TiO_20 Synthesized Directly from Bismuth (III) Nitrate Pentahydrate and Titanium Glycolate and Its Activity. Powder Technology. 2005, 160: 203~208
    102许效红,姚伟峰,张寅,等.钛酸铋系化合物的光催化性能研究.化学学报. 2005, 63 (1): 5~10
    103 J. K. Zhou, Z. Zou, Ajay K. Ray. Preparation and Characterization of Polycrystalline Bismuth Titanate Bi12TiO_20 and Its Photocatalytic Properties under Visible Light Irradiation. Ind. Eng. Chem. Res. 2007, 46: 745~749
    104 M. Mullet, P. Fiever, A. Szymezyk. A Simple and Accurate Determination of the Point of Zero Charge of Ceramic Membranes. Desalination.1999, 121 (1): 41~48
    105张喜梅,陈玲,李琳,等.纳米材料制备研究现状及其发展方向.现代化工. 2000, 20(7): 13~16
    106万海保,曹立信,丁晗明,等. TiO_2纳米溶胶的界面粒子膜的研究.膜科学与技术. 1999, 19(1): 45~47
    107 A. I. Ekimov, A. L. Efros, A. Onushchenko.Quantum Size Effect in Semi condu -ctor Microcrystals. Solid State Communications. 1985, 56 (11): 921~924
    108 G. A. Niklasson. Optical Properties of Square Lattices of Gold Nanoparticles. Nanostructured Materials.1999, 11 (12): 725~733
    109郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展.化学通报.1996, 3: 1~4
    110吴凤清,阮圣平,李小平,等.纳米TiO_2的制备、表征及光催化性能的研究.功能材料. 2001, 32(1): 69~71
    111方晓明,瞿金清,陈焕钦.液相法合成纳米TiO_2的进展.硅酸盐通报. 2001, 6: 29~32
    112徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社. 2001: 80~85
    113任成军,钟本和,周大利,等.水热法制备高活性TiO_2光催化剂的研究进展.稀有金属. 2004, 28(5): 903~906
    114 B. L. Cushing, V. L. Kolesnichenko, Ch. J. Oconnor. Recent Advances in the Liguid-Phase Synthese of Inorganic Nanoparticles. Chem. Rev. 2004, 104: 3893~3946
    115张立德,牟季美.纳米材料和纳米结构.北京:科学出版社. 2002: 72-78
    116 Ch. Wang, Zh. X. Deng, Y. D. Li. The Synthesis of Nanocrystalline Anatase and Rutile Titania in Mixed Organic Media. Chem. 2001, 40: 5210-5214
    117廖润华,李月明,张玉平,等.溶胶-凝胶法合成( Na0.5Bi0.5)TiO3微粉.硅酸盐通报. 2006, 25(6): 72~75
    118韩辉,王民,许效红. MOD法制备钛酸铋超细粉体.硅酸盐通报, 2004, 2: 86~88
    119丁鹏.氧化铋系纳米粒子对气相有机污染物光催化氧化性质研究.吉林大学博士学位论文. 2005: 7~8
    120 Devi G. Sarala, S. V. Manorama, V. J. Rao. SnO_2:Bi_2O_3 Based CO Sensor: Laser-Raman, Temperature Programmed Desorption and X-Ray Photoelectron Spectroscopic Studies. Sensors and Actuators B. 1999, 56: 98~99
    121 S. K. Blower, C. Greaves.The Structure ofβ-Bi_2O_3 from Powder Neutron Diffraction Data. Acta Crystallographica. 1988, C44: 587~590
    122 R. A. Buker, C. Greaves. Reduction and Reoxidation Behavioour ofγ-Bi2MoO6. Journal of Catalysis.1987, 108: 249~252
    123 A. N. Romanov, Z. T. Fattakhova, Yu N. Rufov. Kinetics of the Thermal Desorption of Atomic Oxygen During Transformations BiO_2-x→β-Bi_2O_3→α-Bi_2O_3. Kinetics and Catalysis. 2001, 42 (2): 306~311
    124陈代容,谢惊雷,李博,等. Bi(OR)3作前驱体合成Bi_2O_3微粉.山东大学学报(自然科学版). 1997, 32(1): 88~91
    125李长青. Bi_2O_3和Bi2Sn2O7粉体的微乳液法制备、表征及其性质的研究.福州大学硕士学位论文. 2004: 6~7
    126 L. Leontie, G. I. Rusu. On the Electronic Transport Properties of Bismuth Oxide Thin Films. Journal of Non-Crystalline Solids. 2006, 352: 1475–1478
    127刘平,周廷云,林华香,等. TiO_2/SnO_2复合光催化剂的耦合效应.物理化学学报. 2001, 17 (3): 265~269
    128杨群保,李永祥,殷庆瑞,等.钛酸铋纳米粉体的水热合成研究.无机材料学报. 2002, 17(6): 32~38
    129 Y. Hou, M. Wang, X. H. Xu. Bi_(20)TiO_(32) Nanocones Prepared from Bi-Ti-O Mixture by Metalorganic Decomposition Method. Journal of Crystal Growth. 2002, 240: 489~494
    130 X. Chen, X. Y. Chen, C. Guo. TiO_2 Photocatalyst Prepared by Sol-Gel Process: Optimization of the Preparation Parameters. Sci. Tech. Engng. 2006, 18: 2813~2816
    131 L. Kronik, Y. Shapira. Surface Photovoltage Phenomena: Theory, Experiment, and Applications. Surf. Sci. Rep. 1999, 37:1~7
    132 L. Q. Jing, X. J. Sun, J. Shang, M. Wang. Review of Surface Photovoltage Spectra of Nanosized Semiconductor and Its Applications in Heterogeneous Photocatalysis. Sol. Energy Mater. Sol. Cells. 2003, 79, 133~137
    133 H. Gerischer. A Mechanism of Electron Hole Pair Separation in Illuminated Semiconductor Particles. J. Phys. Chem. 1984, 88: 6096~6099
    134 J. Zhou, Z. Zou, A. K. Ray. Preparation and Characterization of Polycrystalline Bismuth Titanate Bi12TiO_20 and Its Photocatalytic Properties Under Visible Light Irradiation. Ind. Eng. Chem. Res. 2007, 46: 745~749
    135 H. Fu, L. Zhang, W. Yao. Photocatalytic Properties of Nanosized Bi2WO6 Catalysts Synthesized via a Hydrothermal Process. Applied Catalysis B: Environmental. 2006, 66:100~110
    136 H. G. Kim, D. W. Hwang, J. S. Lee.An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light. J. Am. Chem. Soc. 2004, 126: 8912~8913
    137 A. Kudo, K. Omori, H. Kato. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121: 11459~11467
    138 X. Lin, J. Xing, W. Wang. Photocatalytic Activities of Heterojunction Semi -conductors Bi_2O_3/BaTiO3: A Strategy for the Design of Efficient Combined Photocatalysts. J. Phys. Chem. 2007, 111:18288~18293
    139 Y. Xu, M. A. A. Schoonen. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist. 2000,85: 543~556
    140 A Fujishima, X Zhang. Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. C. R. Chimie. 2006, 9: 750~760
    141唐玉朝,胡春,王怡中. TiO_2光催化反应机理及动力学研究进展.化学进展. 2002, 14: 192~196
    142 X. Domenech, T. Peral. Kinetics of the Photocatalytic Oxidation of N(III) and S(IV) on Different Semiconductor Oxides. Chemosphere. 1999, 38: 1265~1269.
    143 A. V. Vorontsov, I. V. Stovanova, D. V. Kozlov. Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide. J. Catal. 2000, 189: 360~364
    144 V. E. Alexei, R. Vladimir, S. T. Sick. Factors Affecting the Efficiency of a Photocatalyzed Process in Aqueous Metal-Oxide Dispersions: Prospect of Distinguishing Between Two Kinetic Models. J. Photochem. Photobiol. A: Chem. 2000, 133: 89~91
    145 H. C. Yatmaz, C. Wallis, C. R. Howarth. The Spinning Disc Reactor-Studies on a Novel TiO_2 Photocatalytic Reactor [J]. Chemosphere. 2001, 42: 397~403
    146 D. W. Bahneman. Mechanisms of Organic Transformation on Semiconductor Particles [J]. Sol Ener Mat. 1991, 24(3): 564~583
    147 K. Vinodgopal. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO_2/TiO_2 Coupled Semiconductor Thin Films [J]. Environ Sci Technol. 1995, 29 (3): 841~845
    148 G. Sivalingam, K. Nagaveni, M. S. Hegde. Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO_2. Appl.Catal. B: Environ. 2003, 45(1): 23~38
    149方世杰,徐明霞,黄卫友,等.纳米TiO_2光催化降解甲基橙.硅酸盐学报. 2001, 29(5): 439~443
    150张建民,孙秀果,高俊刚.纳米二氧化钦粉体的光催化性能.钛工业进展. 2005, 22(4): 23~27
    151 X. Zhang, Y. Wang, G. Li. Effect of Operation Parameters on Microwave Assisted Photocatalytic Degradation of azo Dye X-3B with Grain TiO_2 Catalyst. J Mol Catal A-Chem. 2005, 237(1-2): 199~205
    152刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社. 2006: 63~64
    153刘守新,孙承林.担载Ag对TiO_2界面光生电子转移效率的影响.物理化学学报. 2004, 20(6): 621~625
    154 N M Mahmoodi, M Arami, N Y Limaee, et al. Kinetics of Heterogeneous Photocata -lytic Degradation of Reactive Dyes in an Immobilized TiO_2 Photocatalytic Reactor. J Colloid Interf Sci. 2006, 295(1): 159~164
    155 I. Arslan-Alaton. A Review of the Effects of Dye-Aassisting Chemicals on Advanced Oxidation of Reactive Dyes in Wastewater. Coloration Technology. 2003, 119(6): 345~353
    156 M. Abdullah, G. K.C.Low, R. W. Matthews, Effects of Common Inorganic Anions on Rates of Photocatalytic Oxidation of Organic Carbon Over Illuminated Titanium Dioxide. Journal of Physical Chemistry. 1990, 94: 6820~6825
    157 J. C. Crittenden, Y. Zhang, D. W. Hand, et al. Water Environmental Research. 1996, 68(3): 270~278
    158 M. Muruganandham, M. Swaminathan. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO_2-UV process. Dyes Pigments. 2006, 68(2-3): 133~142
    159 R. Terzian, N. Serpon, R. B. Draper. Pulse radiolytic Studies Of The Reaction of Pentahalophenols with OH Radicals: Formation of Pentahalophenoxyl, Dihydroxypentahalocyclohexadienyl, and Semiquinone Radicals. Langmuir. 1991,
    7: 3081~3089
    160 Y. Nosaka, S. Komori, K. Yawata. Photocatalytic·OH Radical Formation in TiO_2 Aqueous Suspension Studied by Several Detection Methods. Physical Chemistry Chemical Physics. 2003, 5(20): 4731~4735
    161 S. H. Szczepankiewicz, A. J .Colussi, M. R. Hoffmann. Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces. Journal of Physical Chemistry B. 2000, 104 (42): 9842~9850
    162 K. I. Ishibashi, A. Fujishima, T. Watanabe. Quantum Yields of Active Oxidative Species Formed on TiO_2 Photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry. 2000, 134: 139~142
    163 C. S. A Antunes, M. Bietti, M. Salamone, N. Scione. Early Stage in the TiO_2-Photocatalyzed Degradation of Simple Phenolic and Non-Phenolic Lignin Model Compounds. Journal of Photochemistry and Photobiology A: Chemistry. 2004, 163: 453~462
    164 Y. Nosaka, M. Nakamura, T. Hirakawa. Behavior of Superoxide Radicals Formed on TiO_2 Powder Photocatalysts Studied by a Chemiluminescent Probe Method. Physical Chemistry Chemical Physics. 2002, 4 (6): 1088~1092
    165 T. Nakasako, Z. Hua, F. Shiraishi. Formation of Hydrogen Peroxide in Photocatalytic Reactions. Journal of Physical Chemistry A. 2003, 107 (50): 11072~11081
    166 A. Assabane, Y. A. Ichou, H. Tahiri. Photocatalytic Degradation of PolycarboxylicBenzoic Acids in UV-Irradiated Aqueous Suspensions of Titania: Identification of Intermediates and Reaction Pathway of the Photomineralization of Trimellitic Acid (1, 2, 4-benzene tricarboxylic acid). Applied Catalysis B: Environmental. 2000, 24(2): 71~78
    167 C. Richard. Regionselectivity of Oxidation by Positive Holes (h+) in Photocatalytic Aqueous Transformations. J. Photochem. Photobiol. A: Chem. 1993, 72: 179~182
    168 S. Kim, W. Chois. Dual Photocatalytic Pathways of Trichloroacetate Degradation on TiO_2: Effects of Nanosized Platinum Deposits on Kinetics and Mechanism. Journal of Physical Chemistry B. 2002,106 (51):13311~13317
    169 T. M. El-Morsi, W. R. Budakowski, A. S. Abd-el-aziz. Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO_2: A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals. Environmental Science & Technology. 2000, 34:1018~1022
    170 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-Catalysed Ozonation-Influence of Radical Scavengers. Water Research. 2000, 34(15): 3822~3828
    171 C. S. Turchi, D. F. Ollis. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. Journal of Catalysts. 1990, 122: 178~192
    172杨世迎. Ti02光催化降解有机污染物的初始步骤机理研究.浙江大学博士论文. 2005, 5: 38~39
    173 P. Qu, J. C. Zhao, T. Shen. TiO_2-Assisted Photodegradation of Dyes: A Study of Two Competitive Primary Processes in the Degradation of RB in an Aqueous TiO_2 Colloidal Solution. Journal of Molecular Catalysis A: Chemical. 1998, 129 (2-3): 257~268
    174 L. Zhang, P. Qu, J. C. Zhao. Photocatalytic Bleaching of p-Nitrosodimethyl aniline in TiO_2 Aqueous Suspensions: A Kinetic Treatment Involving Some Primary Events Photoinduced on the Particle Surface. Journal of Molecular Catalysis A: Chemical. 1997, 120 (1-3): 235~245
    175 O. Vajragupta, P. Boonchoong, L. J. Berliner. Manganese Complexes of Curcumin Analogues: Evaluation of Hydroxyl Radical Scavenging Ability, Superoxide Dismutase Activity and Stability Towards Hydrolysis. Free Radical Research. 2004, 38 (3): 303~314
    176 H. Goto, Y. Hanada, T. Ohno.Quantitative Analysis of Superoxide Ion and Hydrogen Peroxide Produced from Molecular Oxygen on Photoirradiated TiO_2 Particles. Journal of Catalysis. 2004, 225 (1): 223~229
    177唐玉朝,胡春,王怡中.无机阴离子对TiO_2/SiO_2光催化降解酸性红B活性的影响.环境化学. 2002, 21(4): 376~379
    178 Y. Sun, J. Pignatello. Evidence for a Surface Dual Hole-Radical Mechanism in the Titanium Dioxide Photocatalytic Oxidation of 2, 4-Dichlorophenoxyacetic Acid. Evironmental Science & Technology. 1995, 29 (8): 2065~2072
    179 L. Znaidi, R. Seraphimova, J. F. Bocquet. Semi-Continous Process for the Synthesis of Nanosize TiO_2 Powders and Their Use as Photocatalysts. Materials Research Bulletin. 2001, 36 (5-6): 811~825
    180 K. V. S. Rao, M. Subrahmanyam, P. Boule. Immobilized TiO_2 Photocatalyst During Long-Term Use: Decrease of its Activity. Applied Catalysis B: Environmental. 2004, 49(4): 239~249
    181 M. E. Calvo, R J Candal, S A Bilmes.Ehnacement of Salicylate Photodegradation under Bias in Binary Mixtures. Catalysis Today. 2002, 76: 133-139
    182 M. M. Ameen, G. B. Raupp. Reversible Catalyst Deactivation in the Photocatalytic Oxidation of Dilute O-Xylene in Air. Journal of Catalysis. 1999, 184(1): 112~122
    183 R. M. Alberici, M. C. Canela, M. N. Eberlin. Catalyst Deactivation in the Gas Phase Destruction of Nitrogen-Containing Organic Compounds Using TiO_2/UV-Vis. Applied Catalysis B: Environmental. 2001, 30(3-4): 389~397
    184 L. X. Cao, Z. Gao, S. L. Suib. Photocatalytic Oxidation of Toluene on Nanoscale TiO_2 Catalysts: Studies of Deactivation and Regeneration. Journal of Catalysis. 2000, 196(2): 253~261
    185 J. Shang, Y. Zhu, Y. Du. Comparative Studies on the Deactivation and Regeneration of TiO_2 Nanoparticles in Three Photocatalytic Oxidation Systems: C7H16, SO_2, and C7H16-SO_2. Journal of Solid State Chemistry. 2002, 166 (2): 395~399
    186 M. Lewandowski, D. F. Ollis. A Two-site Kinetic Model Simulating Apparent Deactivation During Photocatalytic Oxidation of Aromatics on Titanium Dioxide (TiO_2). Applied Catalysis B: Environmental. 2003, 43(4): 309~327
    187 M. Lewandowski, D. F. Ollis. Extension of a Two-site Transient Kinetic Model of TiO_2 Deactivation During Photocatalytic Oxidation of Aromatics: Concentration Variations and Catalyst Regeneration Studies. Applied Catalysis B: Environmental.2003, 45(3): 223~228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700