用户名: 密码: 验证码:
秸秆制乙醇的超临界亚临界组合预处理与水解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆是最具开发潜力的生物质能源之一,其物质组成中木质素的缠绕作用和纤维素的结晶结构,决定了其必须经过预处理和水解,才能为其制取乙醇铺平道路。利用超临界水溶剂化能力强等性质,可使秸秆中的纤维素与木质素分离并快速溶解和水解,但同时水解产物六碳糖迅速即分解为不能进行乙醇发酵的物质。而在亚临界条件下,六碳糖的分解速率明显下降,有利于六碳糖的积累。由此本论文采用超临界亚临界组合工艺,秸秆首先在超临界水中预处理和水解,使其中的纤维素水解为低聚糖,再经亚临界条件进一步水解为六碳糖,突破了木质纤维素单独超临界水解和单独亚临界水解的技术瓶颈,实现了木质纤维废物超临界亚临界组合预处理与水解资源化。
     论文研究表明,固液比、反应温度和时间是影响秸秆中主要组分纤维素超临界水解的关键因素,高于而接近临界点的温度和相对较短的时间有利于低聚糖的积累。在组合预处理与水解试验研究中,选定380℃、16s为纤维素水解的最佳超临界条件,水解产物再在280℃的亚临界条件下继续水解44s可获得最大的六碳糖产率,约为40%。论文揭示了亚临界条件下低聚糖水解与六碳糖分解的反应动力学规律,在280℃至360℃内低聚糖水解反应速率常数比六碳糖分解反应速率常数更大,这是六碳糖得以积累的根本原因。利用动力学研究结果,确定了任一适用温度下低聚糖水解和六碳糖分解反应速率常数,获得了六碳糖最大产率及相应最佳反应条件的理论计算方法,这一成果对秸秆等实际木质纤维废物组合预处理与水解过程的参数选择和产率预期具有理论指导意义。
     经过破碎的玉米秸秆与小麦秸秆等实际木质纤维废物通过超临界亚临界组合预处理与水解,其天然木质纤维结构能够得到有效破坏,并能够在超临界阶段发生溶解和水解生成低聚糖,进而在亚临界阶段继续水解并获得可发酵糖。本研究中,在384℃的超临界条件下玉米秸秆反应17s的水解产物与淋洗液的混合液,和小麦秸秆超临界条件下反应19s的水解产物,分别于280℃下反应27s和54s,可分别获得占秸秆可水解组分66.7%和30.7%的可发酵糖,成功实现了木质纤维废物超临界亚临界组合预处理与水解资源化。
Ethanol production from lignocellulosic waste, one of the most important sources of bio-energy, is receiving much attention due to its feasibility and valuable products. Pretreatment and hydrolysis are the key processes of ethanol production from plant stalks because of the special structure of lignocellulose. Due to its high dissolving and catalyzing capacity, supercritical water can separate lignin from cellulose and rapidly hydrolyze the cellulose into water-soluble oligosaccharides and then to hexoses, primarily glucose. However, glucose decomposes rapidly into unfermentable products in supercritical water. In contrast, glucose decomposition rate is much lower in subcritical water. Therefore, a combined supercritical and subcritical process was applied in this study, in which lignocelluloses are pretreated and hydrolyzed in supercritical water to remove the lignin and to produce oligosaccharides from cellulose. This is followed by a second step using subcritical water that further converts the oligosaccharides into fermentable hexoses. This may prove to be a promissing strategy for utilizing lignocellulosic waste.
     The investigation of cellulose hydrolysis showed that solid/liquid ratio, temperature, and reaction time were the key parameters in the supercritical process. A temperature slightly above the critical point of water and a relatively short reaction time favored oligosaccharide production. In the combined supercritical and subcritical experiments, an approximately 40% yield of hexoses was obtained in the combined process under the conditions of 380°C, 16s (supercritical) and 280°C, 44s (subcritical). Kinetics of oligosaccharide hydrolysis and hexose decomposition under subcritical conditions revealed that the smaller reaction rate constants for hexoses decomposition compared to those for oligosaccharides hydrolysis allowed hexoses to accumulate. Based on the kinetic analysis, the theoretical value for the maximum yield of hexoses and the corresponding optimum reaction time can be both calculated, which can then be used to provide key parameters for the combined process of lignocellulosic waste conversion.
     Combined supercritical and subcritical experiments with either corn stalks or wheat straw as a starting maerial were proven to be efficient for lignin separation and cellulose hydrolysis. Cellulose in these plant materials could be converted into oligosaccharides in supercritical water and then to fermentable hexoses in subcritical water. In the combined processes, the mixture of the supercritical hydrolyzate from corn stalks (obtained at 384°C, 17s) and the water extraction containing soluble sugars was treated at 280°C for 27s to obtain a high yield of fermentable hexoses (66.7% of the available compositions). In wheat straw, 30.7% of the available components were converted into fermentable hexoses when a supercritcal hydrolyzate from wheat straw (obtained at 384°C, 19s) was further hydrolyzed at 280°C for 54s. This research demonstrated the successful pretreatment and hydrolysis of lignocellulosic waste using a combined supercritical and subcritical technology.
引文
Ahring B K, Jensen K, Nielsen P, et al. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresource Technology. 1996, 58: 107-113.
    Arvelakis S, Koukios E G. Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass and Bioenergy. 2002, 22: 331-348.
    Ballesteros I, Oliva J M, Negro M J, et al. Enzymic hydrolysis of steam exploded herbaceous agricultural waste at different particule sizes. Process Biochemistry. 2002, 38(2): 187-192.
    Bonn G, Concin R, Bobleter O. Hydrothermolysis-a new process for the utilization of biomass. Wood Science and Technology. 1983, 17: 195-202.
    Carrillo F, Lis M J, Colom X, et al. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study. Process Biochemistry. 2005, 40: 3360-3364.
    Chen H, Liu L, Yang X., et al. New process of maize stalk amination treatment by steam explosion. Biomass and Bioenergy. 2005, 28: 411-417.
    Curreli N, Agelli M, Pisu B, et al. Complete and efficient enzymic hydrolysis of pretreated wheat straw. Process Biochemistry. 2002, 37: 937 - 941.
    Ehara K, Saka S. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose. 2002, 9: 301-311.
    Ehara K, Saka S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. Journal of Wood Science. 2005, 51: 148-153.
    Feng W, Van Der Kooi H J, De Swaan Arons J. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chemical Engineering and Processing. 2004a, 43: 1459-1467.
    Feng W, Van Der Kooi H J, De Swaan Arons J. Phase equilibria for biomass conversion processes in subcritical and supercritical water. Chemical Engineering Journal. 2004b, 98: 105-113.
    Fisher J W, Pisharody S A, Abraham M A. Particle size effect on supercritical water oxidation: wheat straw particles. SAE Transactions. 1995, 104(1): 1314-1322.
    Galbe M, Sassner P, Wingren A, et al. Process engineering economics of bioethanol production. Advances in Biochemical Engineering/Biotechnology. 2007a, 108: 303-327.
    Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol. Advances in Biochemical Engineering/Biotechnology. 2007b, 108: 41-65.
    Garrote G, Domínguez H, ParajóJ C. Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff. 1999, 57(3): 191-202.
    Goto M, Obuchi R, Hirose T, et al. Hydrothermal conversion of municipal organic waste into resources. Bioresource Technology. 2004, 93(3): 279-284.
    Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews. 2006, 106(9): 4044-4098.
    Ishikawa Y, Saka S. Chemical conversion of cellulose as treated in supercritical methanol. Cellulose. 2001, 8: 189-195.
    Jensen P A, Sander B, Dam-Johansen K. Pretreatment of straw for power production by pyrolysis and char wash. Biomass and Bioenergy. 2001, 20: 431-446.
    Jin F, Kishita A, Moriya T, et al. Kinetics of oxidation of food wastes with H2O2 in supercritical water. Journal of Supercritical Fluids. 2001, 19: 251 - 262.
    Jin F, Kishita A, Moriya T, et al. A new process for producing Ca/Mg acetate deicer with Ca/Mg waste and acetic acid produced by wet oxidation of organic waste. Chemistry Letters. 2002a, 31(1): 88-89.
    Jin F, Zheng J, Enomoto H, et al. Hydrothermal process for increasing acetic acid yield from lignocellulosic wastes. Chemistry Letters. 2002b, 31(5): 504-505.
    Jin F, Moriya T, Enomoto H. Oxidation reaction of high molecular weight carboxylic acids in supercritical water. Environmental Science and Technology. 2003, 37(14): 3220-3231.
    Jin F, Cao J, Zhou Z, et al. Effect of lignin on acetic acid production in wet oxidation of lignocellulosic wastes. Chemistry Letters. 2004a, 33(7): 910-911.
    Jin F, Zhou Z, Enomoto H, et al. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chemistry Letters. 2004b, 33(2): 126-127.
    Jin F, Zhou Z, Higashijima H, et al. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environmental Science and Technology 2005, 39(6): 1893-1902.
    Jomaa S, Shanableh A, Khalil W, et al. Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Advances in Environmental Research. 2003, 7: 647-653.
    Kabyemela B M, Adschiri T, Malaluan R M, et al. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial and Engineering Chemistry Research. 1997, 36(5): 1552-1558.
    Kabyemela B M, Takigawa M, Adschiri T, et al. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Industrial and Engineering Chemistry Research. 1998, 37(2): 357-361.
    Kadar Z, Maltha S F, Szengyel Z, et al. Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH. Applied Biochemistry and Biotechnology. 2007, 137: 847-858.
    Karagoz S, Bhaskar T, Muto A, et al. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel. 2005, 84(7-8): 875-884.
    Kaur P. Enzymic hydrolysis of rice straw by crude cellulase from Trichoderma reesei. Bioresource Technology. 1998, 66(3): 267-269.
    Kim K H, Hong J. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology. 2001, 77: 139-144.
    Kim S B, Lee Y Y. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresource Technology. 2002, 83: 165-171.
    Kishida H, Jin F, Zhou Z, et al. Conversion of glycerin into lactic acid by alkaline hydrothermal reaction. Chemistry Letters. 2005, 34(11): 1560-1561.
    Macdonald D D, Kriksunov L B. Probing the chemical and electrochemical properties of SCWO systems. Electrochimica Acta. 2001, 47: 775-790.
    Martin C, Klinke H B, Marcet M, et al. Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung. 2007, 61(5): 483-487.
    Matsumura Y, Takami S, Umetsu M, et al. Supercritical water treatment of biomass for energy and material recovery. Combustion Science and Technology. 2006, 178: 509-536.
    Miyafuji H, Nakata T, Ehara K, et al. Fermentability of water-soluble portion to ethanol obtained by supercritical water treatment of lignocellulosics. Applied Biochemistry and Biotechnology. 2005, 121: 963-971.
    Mochidzuki K, Sakoda A, Suzuki M. Measurement of the hydrothermal reaction rate of cellulose using novel liquid-phase thermogravimetry. Thermochimica Acta. 2000, 348: 69-76.
    Mochidzuki K, Sakoda A, Suzuki M. Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water: a kinetic study. Advances in Environmental Research. 2003, 7: 421-428.
    Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 2005, 96(6): 673-686.
    Muratov G A. Bioconversion of cotton cellulose to glucose by supercritical CO2. Chemistry of Natural Compounds. 2007, 43(5): 641-642.
    Nakata T, Miyafuji H, Saka S. Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis. Applied Biochemistry and Biotechnology. 2006, 130(1-3): 476-485.
    Negro M J, Manzanares P, Ballesteros I, et al. Hydrothermal pretreatment conditions to enhance ethanol production from polar biomass. Applied Biochemistry and Biotechnology. 2003, 105-108: 87-100.
    Ogihara Y, Smith Jr. R L, Inomata H, et al. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities. Cellulose. 2005, 12: 595-606.
    Oomori T, Khajavi S H, Kimura Y, et al. Hydrolysis of disaccharides containing glucose residue in subcritical water. Biochemical Engineering Journal. 2004, 18(2): 143-147.
    Osada M, Sato T, Watanabe M, et al. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy and Fuels. 2004, 18: 327-333.
    Resende F L P, Neff M E, Savage P. E. Noncatalytic gasification of cellulose in supercritical water. Energy and Fuels. 2007, 21: 3637-3643.
    Robinson T, Chandran B, Nigam P. Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresource Technology. 2002, 85: 119-124.
    S?derstr?m J, Pilcher L, Galbe M, et al. Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy. 2003, 24: 475-486.
    Saha B C, Iten L B, Cotta M A, et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry. 2005, 40: 3693-3700.
    Saka S, Ueno T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose. 1999, 6: 177-191.
    Sasaki M, Kabyemela B, Malaluan R, et al. Cellulose hydrolysis in subcritical and supercritical water. The Journal of Supercritical Fluids. 1998, 13: 261-268.
    Sasaki M, Fang Z, Fukushima Y, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial and Engineering Chemistry Research. 2000, 39: 2883-2890.
    Sasaki M, Adschiri T, Arai K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. American Institute of Chemical Engineers. 2004, 50(1): 192-202.
    Sjostrom E. Wood Chemistry, Fundamentals and Applications. New York/ London: Academic Press, 1993:
    Song C, Hu H, Zhu S, et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy and Fuels. 2004, 18(1): 90-96.
    Srokol Z, Bouche A G, Van Estrik A, et al. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydrate Research. 2004, 339(10): 1717-1726.
    Sun Y, Cheng J J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology. 2005, 96: 1599-1606.
    Takuya Y, Hiroshi N, Yukihiko M. Hydrothermal treatment of cellulose as a pretreatment for ethanol fermentation: cellulose hydrolysis experiments. Journal of the Japan Institute of Energy. 2005, 84(7): 544-548.
    Vallander L, Eriksson K E L. Enzymic hydrolysis of lignocellulosic materials: I. models for the hydrolysis process-a theoretical study. Biotechnology and Bioengineering. 1991, 38(2): 135-138.
    Varga E, Schmidtk A, Reczey K, et al. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology. 2003, 104(1): 37-50.
    Williams P T, Onwudili J. Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste. Energy and Fuels. 2006, 20: 1259-1265.
    Xu F, Sun R, Fowler P, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research. 2005, 340(1): 97-106.
    Zhu S, Wu Y, Yu Z, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry. 2005, 40: 3082-3086.
    白凤武.无载体固定化细胞的研究进展.生物工程进展. 2000, 20(2): 32-36.
    白凤武,秦金来,谢健,等.絮凝酵母颗粒悬浮床反应器中试及酒精连续发酵工艺的研究. 生物工程学报. 1995, 11(3): 255-259.
    边炳鑫,赵由才.农业固体废物的处理与综合利用.北京:化学工业出版社, 2005.
    陈洪章,邱卫华.秸秆发酵燃料乙醇关键问题及其进展.化学进展. 2007, 19(7/8): 1116-1121.
    陈洪章,徐建,姚建中,等.秸秆分层多级转化液体燃料新工艺的研究进展.生物加工过程. 2005, 3(1): 9-13.
    陈丽杰,白凤武, Anderson W,等.超高浓度培养基条件下酵母细胞生长及酒精生成的准稳态动力学研究.生物加工过程. 2004, 2(2): 25-29.
    陈新芳,田沈,王菊,等.提高木糖和葡萄糖乙醇产率的菌种驯化.太阳能学报. 2005, 26(2): 215-218.
    杜风光,史吉平,张龙,等.纤维质生产燃料乙醇产业化研究进展.中国麻业科学. 2007, 29(增刊): 72-73,85.
    杜皓明,欧志阳.用超临界水技术处理固体废弃物的发展现状.广州环境科学. 2006, 21(2): 36-39.
    段钢,孙长平.酶在生物质转化为燃料酒精中的应用.食品与发酵工业. 2005, 31(5): 73-77.
    葛红光,甄宝勤,郭小华,等.超临界水在降解废弃物及资源化中的应用.化学工业与工程技术. 2005, 26(5): 4-7.
    关宇,裴爱霞,郭烈锦.纤维素在超临界水中的催化气化制氢研究.高校化学工程学报. 2007, 21(3): 436-441.
    何涛,陈鸣才,胡红旗,等.超临界流体技术在纤维素中的应用.纤维素科学与技术. 2003, 11(3): 40-49.
    何勇,薛立新,李树俊.纤维素酶水解汽爆秸秆的研究.酿酒. 2007, 34(4): 97-99.
    胡长平.液相色谱法对糖类的测定.安徽化工. 2005, (134): 57-58.
    金辉,赵亚平,王大璞.纤维素超临界水解反应技术.现代化工. 2001, 21(12): 56-59.
    贾莉华.木质纤维素生产乙醇的研究进展.林产工业. 2007, 34(5): 10-11, 37.
    蒋国良,袁超,史景钊,等.生物质转化技术与应用研究进展.河南农业大学学报. 2005, 39(4): 464-471.
    康锋,吕惠生,张敏华.超临界水在化工领域中的应用.河北工业科技. 2004, 21(2): 41-45.
    李素玉,陈新芳,田沈,等.木质纤维素酒精发酵菌种的筛选.太阳能学报. 2003, 24(2): 218-221.
    李资玲,刘成梅,刘伟,等.纤维素酒精原料预处理技术研究概况.江西食品工业. 2004, (4): 36-38.
    刘娇,宋公明,马丽娟,等.不同预处理方法对玉米秸秆水解糖化效果的影响.饲料工业. 2008, 29(1): 31-32.
    刘孝碧,曲敬序,李栋,等.玉米秸在亚/超临界乙醇-水中液化的初步研究.农业工程学报. 2006, 22(5): 130-134.
    刘志敏,张建玲,韩布兴.超(近)临界水中的化学反应.化学进展. 2005, 17(2): 266-274.
    罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究.林业科技. 2005, 30(3): 53-56.
    曲先锋,彭辉,毕继诚,等.生物质在超临界水中热解行为的初步研究.燃料化学学报. 2003, 31(3): 230-233.
    任靓,王存文,王为国,等.超临界水非催化稻草秸秆一步法制备还原糖的研究.生物质化学工程. 2008, 42(4): 31-34.
    宋春财,胡浩权.生物质秸秆在水中热化学液化研究.四川大学学报(工程科学版). 2002, 34(5): 59-62.
    孙君社,苏东海,刘莉.秸秆生产乙醇预处理关键技术.化学进展. 2007, 19(7/8): 1122-1128.
    孙晓红,汪群慧,孟令辉,等.超(亚)临界水氧化法在固体废物资源化中的应用.现代化工. 2003, 23(5): 48-51.
    唐卫军,肖波,杨家宽,等.生物质转化利用技术研究进展.再生资源研究. 2003, (4): 30-32.
    田沈,王菊,陈新芳,等.固定化运动发酵单胞菌乙醇发酵研究.太阳能学报. 2005, 26(2): 219-223.
    田沈,徐鑫,孟繁燕,等.木质纤维素乙醇发酵研究进展.农业工程学报. 2006, 22(Z1): 221-224.
    田宜灵,冯季军,秦颖,等.超临界水的性质及其在化学反应中的应用.化学通报. 2002, (6): 396-402.
    汪利平,吕惠生,张敏华.纤维素超临界水解反应的研究进展.林产化学与工业. 2006, 26(4): 117-120.
    王洪涛,陆文静.农村固体废物处理处置与资源化技术.北京:中国环境科学出版社, 2006: 6-7.
    王激清,张宝英,刘社平,等.我国作物秸秆综合利用现状及问题分析.江西农业学报. 2008, 20(8): 126-128.
    王静,王晴,向文胜.色谱法在糖类化合物分析中的应用.分析化学. 2001, 29(2): 222-227.
    王树荣,庄新姝,骆仲泱,等.木质纤维素类生物质超低酸水解试验及产物分析研究.工程热物理学报. 2006, 27(5): 741-744.
    辛玮,王秀道,尹卓容,等.超临界CO2流体对纤维素酶催化反应的影响.生物工程学报. 2004, 20(5): 770-773.
    杨馗,徐明仙,林春绵.超临界水的物理化学性质.浙江工业大学学报. 2001, 29(4): 386-390.
    伊晓路,孙立,郭东彦,等.生物质秸秆预处理技术.可再生能源. 2005, (120): 31-33.
    詹怀宇,李志强,蔡再生.纤维化学与物理.北京:科学出版社, 2005: 41-42.
    张丽莉,陈丽,赵雪峰,等.超临界水的特性及应用.化学工业与工程. 2003, 20(1): 33-38, 54.
    张亮,伍小兵,翟井振.玉米秸秆发酵生产燃料乙醇的研究综述.安徽农业科学. 2007, 35(11): 3365-3366.
    张强,陆军,侯霖,等.玉米秸秆制酒精——秸秆预处理及水解方法的探讨.酿酒科技. 2004, (4): 57-58.
    张荣成,李秀金.作物秸秆能源转化技术研究进展.现代化工. 2005, 25(6): 14-17.
    郑冀鲁,朱锡锋,郭庆祥,等.生物质制取液体燃料技术发展趋势与分析.中国工程科学. 2005, 7(4): 5-10.
    周应学,邢建伟.超临界流体改性高分子聚合物研究进展.化学推进剂与高分子材料. 2006, 4(1): 26-30.
    周勇.清洁生物质秸秆能源研究进展.应用化工. 2005, 34(10): 595-597.
    朱道飞,王华,包桂蓉.纤维素亚临界和超临界水液化实验研究.能源工程. 2004, 5: 6-10.
    邹海明.农业秸秆资源化利用途径探讨.农业与技术. 2005, 25(5): 78-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700