用户名: 密码: 验证码:
虎纹捕鸟蛛毒素的基因克隆、表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虎纹捕鸟蛛(Ornithoctonus huwena)是分布在我国云南和广西省的一种毒蜘蛛。它的毒液是由许多生物活性成份组成的复杂混合物,通过蛋白质组学和多肽组学方法从粗毒中已经鉴定了90种蛋白质和47种多肽,但这仅仅为粗毒中的部分高丰度组份。为了克隆虎纹捕鸟蛛毒腺中编码多肽和蛋白质的基因,我们使用表达序列标签(EST)技术,构建了毒腺的定向全长cDNA文库。随机测序后获得468个EST,通过聚类分析,可分成69个族:24个族是重叠群(每个群包括2个EST以上)和65个族是单态(每个族只包括1个EST)。通过生物信息学分析,其中68%的EST属于的毒素转录子;13%的EST属于细胞转录子;19%的EST属于新的转录子。所有毒素转录子编码67个开放读码框(ORF),即67个前体肽。根据前体肽序列的差异,除了HWTX-XI和HWTX-XIII外,它们能被分成8个超家族:即HWTX-Ⅰ超家族、HWTX-II超家族、HWTX-X超家族、HWTX-XIV超家族、HWTX-XV超家族、HWTX-XVI超家族、HWTX-ⅩⅦ超家族和HWTX-ⅩⅧ超家族。67个前体肽能被推导出43个成熟肽,序列中含半胱氨酸残基丰富,因此命名为半胱氨酸结毒素(CKT),其中31个是新的成熟肽。非毒素转录子编码41个蛋白质,它们是细胞蛋白质或别的非CKT分子,用真核生物正向同源群(KOG)和基因本体论(GO)注释了这些蛋白质。通过毒腺转录组学和毒液蛋白组学比较发现:仅仅15个CKT分子同时存在于毒腺转录组和毒液蛋白质组中;29个编码CKT的转录子只在转录组中被发现,而它们的翻译产物在毒液蛋白质组中没有被发现。用两种方法却没有鉴定到一个相同分子量的细胞蛋白质或其它毒液成分。此外,首次在蜘蛛毒腺中发现了一个编码EF-hand蛋白质(命名为HWEFHP1)的转录子重叠群,它功能可能与毒素从毒腺组织分泌到毒液有关。
     当前关于蜘蛛毒素基因组DNA的报道很少。为了深入的研究虎纹捕鸟蛛中编码毒素的基因组DNA是否具有普遍的无内含子特性,我们根据cDNA序列设计特异或简并的引物,克隆并分析了编码三个超家族毒素(HWTX-XI超家族、HWTX-ⅩⅦ超家族和HWTX-ⅩⅧ超家族)的DNA序列,结果发现它们的基因组DNA中都不存在内含子。此外,也从基因组DNA中克隆到19个编码毒素的新基因。
     为了尽可能多的鉴定到HWTX-XI的亚型,我们设计了简并引物,进行了定向PCR、克隆和进化分析。克隆到编码38个HWTX-XI前体肽亚型的cDNA序列,这是虎纹捕鸟蛛中成员最多的超级族,推导形成31个成熟肽;HW11c21、HW11c25、HW11c40、HW11c50和HW11c10等在HWTX-XI的进化上可能具有重要意义。
     随着环境的改变,蜘蛛的种类和数量越来越少,仅靠天然资源远不能满足对毒素的全面研究和开发利用的需要。采用表达质粒pVT102Uα在酿酒酵母S78中表达HWTX-XI的产率达到每升12.5mg。为了探讨这个表达系统是否能成一个表达蜘蛛毒素的通用系统,我们克隆并表达了20个编码毒素样多肽的基因。最后,成功的表达出11个毒素基因。对这些表达产物进行了初步的动物水平和细胞水平的功能研究。HW11c4在10μM的浓度下能抑制约50%的Kv1.1电流;HWTX-ⅩⅦbl在10μM的浓度下对大鼠DRG细胞上的高电压激活的钙通道有明显的抑制作用;HW11c4、HWllc27和HW11c27m对trypsin有很强的抑制作用,且对chymotrysin和thrombin也有明显的抑制作用;其它的表达产物活性很弱或者还没有找到生物学活性。
     此外,为从虎纹捕鸟蛛毒腺中筛选到与电压门控钠离子通道结合的因子,我们分别构建了虎纹捕鸟蛛的毒腺酵母双杂交cDNA文库和Nav1.8胞外区的Bait质粒,并进行了初步筛选。
     综上所述,利用分子生物学、生物信息学、生物化学、质谱和膜片钳等技术,我们对虎纹捕鸟蛛毒腺的转录组和基因组DNA进行了研究,克隆了一批有价值的新基因,表达并初步分析了4个有重要应用前景的毒素分子的功能。
The Chinese bird spider Ornithoctonus huwena distributed in the hilly areas of Yunnan and Guangxi province in southern China is a venomous spider. The venom of O. huwena is a mixture of various components with different types of biological activities. In the previous work of this lab, using proteomic and peptidomic methods,90 proteins and 47 peptides have been identified from the spider venom, but usually only the most abundant components have been analyzed. In order to clone the genes encoding the proteins and peptides in the venom glands, a directional cDNA library of O. huwena venom glands was constructed by using the expressed sequence tag (EST) strategy and 468 ESTs were generated by a random sequencing. All ESTs were grouped into 24 clusters and 65 singletons, of which 68.0% of total ESTs belong to toxin-like genes,13.0% are cellular transcripts and 19.0% have no significant similarity to any known genes. Precursors of all toxin-like genes can be classified into eight superfamilies (HWTX-Ⅰsuperfamily, HWTX-Ⅱsuperfamily, HWTX-Ⅹsuperfamily, HWTX-ⅩⅣsuperfamily, HWTX-ⅩⅤsuperfamily, HWTX-ⅩⅥsuperfamily, HWTX-ⅩⅦsuperfamily, HWTX-ⅩⅧsuperfamily) except HWTX-Ⅺand HWTX-ⅩⅢ, according to the identity of their precursor sequences. All precursors were processed to achieve 43 mature peptides with abundant cysteines, named cystine knot toxins (CKTs), and 31 of them were novel CKTs. All cellular proteins or other possible venom components were annotated by KOG (eukaryotic orthologous group) and GO (gene ontology) terms. Comparison of the CKT repertoire and proteins revealed through a proteomic versus a transcriptomic approach, only 15 CKTs were identified by both approaches,29 transcripts coding for CKTs were found in the transcriptome but not as translated proteins in the venom proteome. However, no cellular proteins with identical molecular weights was identified by both approaches. In addition, a cellular transcript contig coding for an EF-hand protein (named HWEFHP1) had been identified for the first time from spider venom glands, which might be involved in the secretion of toxins from the gland into the venom.
     The genomic DNA of toxins from the spider O. huwena is seldom reported. To further investigate whether the genes encoding toxin-like peptides contain a common intronless feature, the genomic DNA encoding toxins of three superfamilies were cloned by using sequence specific or partially degenerate primers based on their cDNA sequences. An unexpected finding was that the intron was lacking in the genomic sequences of three superfamilies. In addition, we have cloned and analyzed 19 novel genes encoding toxin-like precursors by using the genomic DNA of the spider O. huwena.
     In order to indentify more HWTX-XI isoforms,38 cDNAs encoding HWTX-XI superfamily precursor were cloned by using partially degenerate primers and these precursors were processed to achieve 31 mature peptides. A phylogenetic tree was generated by using the neighbor-joining method, and HW11c21, HW11c25, HW11c40, HW11c50 and HW11c10 may play a very important role in the evolution relationship of HWTX-XI.
     With the changement of the enviroment, species and quantites of spiders decrease sharply, precise analysis and application of peptide toxins from spiders are frequently restricted because of the difficulties of obtaining sufficient venom material. The expression of HWTX-XI was successful by using the plasmid pVT102U/a in the Saccharomyces cerevisiae strain S78, and the yield reached 12.5mg/L. In order to investigate whether this expression system is versatile to express the spider toxin genes, we clone and express 20 genes encoding toxin-like peptides. At last,11 toxin genes were successfully expressed. The functions of these expressed products were also identified. The IC50 value of HW11c4 is 10.0μM for the Kv1.1 channel. HWTX-ⅩⅦb1 can reduce the peak currents of high voltage activated Ca2+ channels on adult rat dorsal root ganglion (DRG) neurons. HW11c4, HW11c27 and HW11c27m are potent trypsin inhibitors and can also inhibit the chymotrysin and thrombin. However, the functions of other expressed products are very low or are not found at all.
     In addition, in order to get the molecules from the venom glands of the spider O. huwena interacting with voltage-gated sodium channels, a yeat two-hybrid cDNA library and 4 bait plasmids of Nav1.8 were constructed respectively, and then were screened.
     In summary, by using molecular biology, bioinformactics, biochemistry, mass spectra and patch-clamp, etc, we have investigated transcriptomes and genomic DNAs of the O. huwena venom glands. We also have cloned and expressed some novel genes, and then analyzed the functions of the expressed products.
引文
[1]. Escoubas, P., Quinton, L., and Nicholson, G. M. Venomics:unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom,2008,43:279-95.
    [2]. Menez, A., Stocklin, R., and Mebs, D.'Venomics'or:The venomous systems genome project. Toxicon,2006,47:255-9.
    [3]. Calvete, J. J., Juarez, P., and Sanz, L. Snake venomics. Strategy and applications. J Mass Spectrom,2007,42:1405-14.
    [4]. Snake venomics uncoils venom composition, evolution. J Proteome Res,2008,7:3067.
    [5]. Escoubas, P., Sollod, B., and King, G. F. Venom landscapes:mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon,2006,47: 650-63.
    [6]. Yuan, C., Jin, Q., Tang, X., Hu, W., Cao, R., Yang, S., Xiong, J., Xie, C., Xie, J., and Liang, S. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res,2007,6:2792-801.
    [7]. Liao, Z., Cao, J., Li, S., Yan, X., Hu, W., He, Q., Chen, J., Tang, J., Xie, J., and Liang, S. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics,2007,7:1892-907.
    [8]. Vianna Braga, M. C., Konno, K., Portaro, F. C., de Freitas, J. C., Yamane, T., Olivera, B. M., and Pimenta, D. C. Mass spectrometric and high performance liquid chromatography profiling of the venom of the Brazilian vermivorous mollusk Conus regius:feeding behavior and identification of one novel conotoxin. Toxicon,2005,45:113-22.
    [9]. Romeo, C., Di Francesco, L., Oliverio, M., Palazzo, P., Massilia, G. R., Ascenzi, P., Polticelli, F., and Schinina, M. E. Conus ventricosus venom peptides profiling by HPLC-MS:a new insight in the intraspecific variation. J Sep Sci,2008,31:488-98.
    [10]. Batista, C. V, D'Suze, G., Gomez-Lagunas, F., Zamudio, F. Z., Encarnacion, S., Sevcik, C., and Possani, L. D. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics,2006,6:3718-27.
    [11]. Batista, C. V., Roman-Gonzalez, S. A., Salas-Castillo, S. P., Zamudio, F. Z., Gomez-Lagunas, F., and Possani, L. D. Proteomic analysis of the venom from the scorpion Tityus stigmurus:biochemical and physiological comparison with other Tityus species. Comp Biochem Physiol C Toxicol Pharmacol,2007,146:147-57.
    [12]. Barona, J., Batista, C. V, Zamudio, F. Z., Gomez-Lagunas, F., Wanke, E., Otero, R., and Possani, L. D. Proteomic analysis of the venom and characterization of toxins specific for Na+-and K+-channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta,2006,1764:76-84.
    [13]. Bosmans, F., and Tytgat, J. Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels. Toxicon,2007,49:550-60.
    [14]. Wiese, M. D., Chataway, T. K., Davies, N. W., Milne, R. W., Brown, S. G., Gai, W. P., and Heddle, R. J. Proteomic analysis of Myrmecia pilosula (jack jumper) ant venom. Toxicon, 2006,47:208-17.
    [15]. Davies, N. W., Wiese, M. D., and Brown, S. G. Characterisation of major peptides in'jack jumper'ant venom by mass spectrometry. Toxicon,2004,43:173-83.
    [16]. Fernandes-Pedrosa Mde, F., Junqueira-de-Azevedo Ide, L., Goncalves-de-Andrade, R. M., Kobashi, L. S., Almeida, D. D., Ho, P. L., and Tambourgi, D. V. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics,2008,9:279.
    [17]. Jiang, L., Peng, L., Chen, J., Zhang, Y., Xiong, X., and Liang, S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon,2008,51:1479-89.
    [18]. Chen, J., Deng, M., He, Q., Meng, E., Jiang, L., Liao, Z., Rong, M., and Liang, S. Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao. Cell Mol Life Sci,2008,65:2431-44.
    [19]. Gold, M. S., Zhang, L., Wrigley, D. L., and Traub, R. J. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons. J Neurophysiol,2002,88:1512-22.
    [20]. Wagstaff, S. C., and Harrison, R. A. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9betal integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases. Gene, 2006,377:21-32.
    [21]. Sanz, L., Escolano, J., Ferretti, M., Biscoglio, M. J., Rivera, E., Crescenti, E. J., Angulo, Y., Lomonte, B., Gutierrez, J. M., and Calvete, J. J. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics,2008,71:46-60.
    [22]. Pahari, S., Mackessy, S. P., and Kini, R. M. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii):towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol Biol, 2007,8:115.
    [23]. Cidade, D. A., Simao, T. A., Davila, A. M., Wagner, G., Junqueira-de-Azevedo, I. L., Ho, P. L., Bon, C., Zingali, R. B., and Albano, R. M. Bothrops jararaca venom gland transcriptome:analysis of the gene expression pattern. Toxicon,2006,48:437-61.
    [24]. Conticello, S. G., Gilad, Y., Avidan, N., Ben-Asher, E., Levy, Z., and Fainzilber, M. Mechanisms for evolving hypervariability:the case of conopeptides. Mol Biol Evol,2001, 18:120-31.
    [25]. Pi, C., Liu, Y, Peng, C., Jiang, X., Liu, J., Xu, B., Yu, X., Yu, Y., Jiang, X., Wang, L. Dong, M., Chen, S., and Xu, A. L. Analysis of expressed sequence tags from the venom ducts of Conus striatus:focusing on the expression profile of conotoxins. Biochimie,2006, 88:131-40.
    [26]. Schwartz, E. F., Diego-Garcia, E., Rodriguez de la Vega, R. C., and Possani, L. D. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida:Scorpiones). BMC Genomics,2007,8:119.
    [27]. Batista, I. F., Chudzinski-Tavassi, A. M., Faria, F., Simons, S. M., Barros-Batestti, D. M., Labruna, M. B., Leao, L. I., Ho, P. L., and Junqueira-de-Azevedo, I. L. Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae). Toxicon,2008,51:823-34.
    [28]. Magalhaes, G. S., Junqueira-de-Azevedo, I. L., Lopes-Ferreira, M., Lorenzini, D. M., Ho, P. L., and Moura-da-Silva, A. M. Transcriptome analysis of expressed sequence tags from the venom glands of the fish Thalassophryne nattereri. Biochimie,2006,88:693-9.
    [29]. King, G. F. The wonderful world of spiders:preface to the special Toxicon issue on spider venoms. Toxicon,2004,43:471-5.
    [30]. Isbister, G. K., and White, J. Clinical consequences of spider bites:recent advances in our understanding. Toxicon,2004,43:477-92.
    [31]. Jungo, F., and Bairoch, A. Tox-Prot, the toxin protein annotation program of the Swiss-Prot protein knowledgebase. Toxicon,2005,45:293-301.
    [32]. He, Q. Y, He, Q. Z., Deng, X. C., Yao, L., Meng, E., Liu, Z. H., and Liang, S. P. ATDB:a uni-database platform for animal toxins. Nucleic Acids Res,2008,36:D293-7.
    [33]. King, G. F., Gentz, M. C., Escoubas, P., and Nicholson, G. M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon,2008.
    [34]. Escoubas, P., and Rash, L. Tarantulas:eight-legged pharmacists and combinatorial chemists. Toxicon,2004,43:555-74.
    [35]. Silva, L. M., Botelho, A. C., Nacif-Pimenta, R., Martins, G. F., Alves, L. C., Brayner, F. A., Fortes-Dias, C. L., and Pimenta, P. F. Structural analysis of the venom glands of the armed spider Phoneutria nigriventer (Keyserling,1891):microanatomy, fine structure and confocal observations. Toxicon,2008,51:693-706.
    [36]. dos Santo, V. L., Franco, C. R., Viggiano, R. L., da Silveira, R. B., Cantao, M. P., Mangili, O. C., Veiga, S. S., and Gremski, W. Structural and ultrastructural description of the venom gland of Loxosceles intermedia (brown spider). Toxicon,2000,38:265-85.
    [37]. Rash, L. D., and Hodgson, W. C. Pharmacology and biochemistry of spider venoms. Toxicon,2002,40:225-54.
    [38]. Nagaraju, S., Mahadeswaraswamy, Y. H., Girish, K. S., and Kemparaju, K. Venom from spiders of the genus Hippasa:biochemical and pharmacological studies. Comp Biochem Physiol C Toxicol Pharmacol,2006,144:1-9.
    [39]. Escoubas, P., Diochot, S., and Corzo, G Structure and pharmacology of spider venom neurotoxins. Biochimie,2000,82:893-907.
    [40]. Wang, M., Guan, X., and Liang, S. The cross channel activities of spider neurotoxin huwentoxin-Ⅰ on rat dorsal root ganglion neurons. Biochem Biophys Res Commun,2007, 357:579-83.
    [41]. Peng, K., Lin, Y., and Liang, S. P. Nuclear magnetic resonance studies on huwentoxin-Ⅺ from the Chinese bird spider Ornithoctonus huwena:15N labeling and sequence-specific 1H,15N nuclear magnetic resonance assignments. Acta Biochim Biophys Sin (Shanghai), 2006,38:457-66.
    [42]. Choi, S. J., Parent, R., Guillaume, C., Deregnaucourt, C., Delarbre, C., Ojcius, D. M., Montagne, J. J., Celerier, M. L., Phelipot, A., Amiche, M., Molgo, J., Camadro, J. M., and Guette, C. Isolation and characterization of Psalmopeotoxin Ⅰ and Ⅱ:two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett,2004,572:109-17.
    [43]. Grishin, E. V. Black widow spider toxins:the present and the future. Toxicon,1998,36: 1693-701.
    [44]. Tambourgi, D. V., Magnoli, F. C., van den Berg, C. W., Morgan, B. P., de Araujo, P. S., Alves, E. W., and Da Silva, W. D. Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun,1998,251:366-73.
    [45]. Devaraja, S., Nagaraju, S., Mahadeswaraswamy, Y. H., Girish, K. S., and Kemparaju, K. A low molecular weight serine protease:Purification and characterization from Hippasa agelenoides (funnel web) spider venom gland extract. Toxicon,2008,52:130-8.
    [46]. Nagaraju, S., Devaraja, S., and Kemparaju, K. Purification and properties of hyaluronidase from Hippasa partita (funnel web spider) venom gland extract. Toxicon, 2007,50:383-93.
    [47]. Kozlov, S., Malyavka, A., McCutchen, B., Lu, A., Schepers, E., Herrmann, R., and Grishin, E. A novel strategy for the identification of toxinlike structures in spider venom. Proteins,2005,59:131-40.
    [48]. Corzo, G., Diego-Garcia, E., Clement, H., Peigneur, S., Odell, G, Tytgat, J., Possani, L. D., and Alagon, A. An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides,2008.
    [49]. da Silveira, R. B., Wille, A. C., Chaim, O. M., Appel, M. H., Silva, D. T., Franco, C. R., Toma, L., Mangili, O. C., Gremski, W., Dietrich, C. P., Nader, H. B., and Veiga, S. S. Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. Biochem J, 2007,406:355-63.
    [50]. da Silveira, R. B., Pigozzo, R. B., Chaim, O. M., Appel, M. H., Dreyfuss, J. L., Toma, L., Mangili, O. C, Gremski, W., Dietrich, C. P., Nader, H. B., and Veiga, S. S. Molecular cloning and functional characterization of two isoforms of dermonecrotic toxin from Loxosceles intermedia (brown spider) venom gland. Biochimie,2006,88:1241-53.
    [51]. Fernandes Pedrosa Mde, F., Junqueira de Azevedo Ide, L., Goncalves-de-Andrade, R. M., van den Berg, C. W., Ramos, C. R., Ho, P. L., and Tambourgi, D. V. Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom. Biochem Biophys Res Commun,2002,298:638-45.
    [52]. Satake, H., Villegas, E., Oshiro, N., Terada, K., Shinada, T., and Corzo, G. Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Toxicon,2004,44:149-56.
    [53]. Frohman, M. A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs:thermal RACE. Methods Enzymol,1993,218:340-56.
    [54]. Pescatori, M., Bradbury, A., Bouet, F., Gargano, N., Mastrogiacomo, A., and Grasso, A. The cloning of a cDNA encoding a protein (latrodectin) which co-purifies with the alpha-latrotoxin from the black widow spider Latrodectus tredecimguttatus (Theridiidae). Eur J Biochem,1995,230:322-8.
    [55]. Diao, J., Lin, Y., Tang, J., and Liang, S. cDNA sequence analysis of seven peptide toxins from the spider Selenocosmia huwena. Toxicon,2003,42:715-23.
    [56]. Liu, Z., Dai, J., Dai, L., Deng, M., Hu, Z., Hu, W., and Liang, S. Function and solution structure of Huwentoxin-X, a specific blocker of N-type calcium channels, from the Chinese bird spider Ornithoctonus huwena. J Biol Chem,2006,281:8628-35.
    [57]. Liao, Z., Yuan, C., Deng, M., Li, J., Chen, J., Yang, Y., Hu, W., and Liang, S. Solution structure and functional characterization of jingzhaotoxin-XI:a novel gating modifier of both potassium and sodium channels. Biochemistry,2006,45:15591-600.
    [58]. Pan, Z., Barry, R., Lipkin, A., and Soloviev, M. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR:cloning a family of toxin-like sequences from Agelena orientalis. BMC Mol Biol,2007,8:32.
    [59]. Dutra, A. A., Sousa, L. O., Resende, R. R., Brandao, R. L., Kalapothakis, E., and Castro, I. M. Expression and characterization of LTx2, a neurotoxin from Lasiodora sp. effecting on calcium channels. Peptides,2008.
    [60]. Diniz, M. R., Paine, M. J., Diniz, C. R., Theakston, R. D., and Crampton, J. M. Sequence of the cDNA coding for the lethal neurotoxin Txl from the Brazilian "armed" spider Phoneutria nigriventer predicts the synthesis and processing of a preprotoxin. J Biol Chem,1993,268:15340-2.
    [61]. Khan, S. A., Zafar, Y, Briddon, R. W., Malik, K. A., and Mukhtar, Z. Spider venom toxin protects plants from insect attack. Transgenic Res,2006,15:349-57.
    [62]. Carneiro, A. M., Kushmerick, C., Koenen, J., Arndt, M. H., Cordeiro, M. N., Chavez-Olortegui, C., Diniz, C. R., Gomez, M. V., Kalapothakis, E., Prado, M. A., and Prado, V. F. Expression of a functional recombinant Phoneutria nigriventer toxin active on K+ channels. Toxicon,2003,41:305-13.
    [63]. Maggio, F., and King, G. F. Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function. J Biol Chem,2002,277: 22806-13.
    [64]. Li, M., Li, L. Y., Wu, X., and Liang, S. P. Cloning and functional expression of a synthetic gene encoding huwentoxin-Ⅰ, a neurotoxin from the Chinese bird spider (Selenocosmia huwena). Toxicon,2000,38:153-62.
    [65]. Appel, M. H., da Silveira, R. B., Chaim, O. M., Paludo, K. S., Silva, D. T., Chaves, D. M., da Silva, P. H., Mangili, O. C., Senff-Ribeiro, A., Gremski, W., Nader, H. B., and Veiga, S. S. Identification, cloning and functional characterization of a novel dermonecrotic toxin (phospholipase D) from brown spider (Loxosceles intermedia) venom. Biochim Biophys Acta,2008,1780:167-78.
    [66]. da Silveira, R. B., Pigozzo, R. B., Chaim, O. M., Appel, M. H., Silva, D. T., Dreyfuss, J. L., Toma, L., Dietrich, C. P., Nader, H. B., Veiga, S. S., and Gremski, W. Two novel dermonecrotic toxins LiRecDT4 and LiRecDT5 from brown spider(Loxosceles intermedia) venom:from cloning to functional characterization. Biochimie,2007,89: 289-300.
    [67]. Kalapothakis, E., Araujo, S. C., de Castro, C. S., Mendes, T. M., Gomez, M. V., Mangili, O. C., Gubert, I. C., and Chavez-Olortegui, C. Molecular cloning, expression and immunological properties of LiD1, a protein from the dermonecrotic family of Loxosceles intermedia spider venom. Toxicon,2002,40:1691-9.
    [68]. Olvera, A., Ramos-Cerrillo, B., Estevez, J., Clement, H., de Roodt, A., Paniagua-Solis, J., Vazquez, H., Zavaleta, A., Arruz, M. S., Stock, R. P., and Alagon, A. North and South American Loxosceles spiders:development of a polyvalent antivenom with recombinant sphingomyelinases D as antigens. Toxicon,2006,48:64-74.
    [69]. Tambourgi, D. V., de, F. F. P. M., van den Berg, C. W., Goncalves-de-Andrade, R. M., Ferracini, M., Paixao-Cavalcante, D., Morgan, B. P., and Rushmere, N. K. Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands. Mol Immunol,2004,41:831-40.
    [70]. Shlyapnikov, Y. M., Andreev, Y. A., Kozlov, S. A., Vassilevski, A. A., and Grishin, E. V. Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. Protein Expr Purif,2008,60:89-95.
    [71]. Hitzeman, R. A., Hagie, F. E., Levine, H. L., Goeddel, D. V., Ammerer, G., and Hall, B. D. Expression of a human gene for interferon in yeast. Nature,1981,293:717-22.
    [72]. Park, S. P., Kim, B. M., Koo, J. Y, Cho, H., Lee, C. H., Kim, M., Na, H. S., and Oh, U. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain,2008, 137:208-17.
    [73]. Fitches, E., Edwards, M. G., Mee, C., Grishin, E., Gatehouse, A. M., Edwards, J. P., and Gatehouse, J. A. Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol,2004,50:61-71.
    [74]. Down, R. E., Fitches, E. C., Wiles, D. P., Corti, P., Bell, H. A., Gatehouse, J. A., and Edwards, J. P. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera:Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera:Delphacidae). Pest Manag Sci,2006,62: 77-85.
    [75]. Nie, D. S., Li, M., Xu, H. M., He, N. J., and Liang, S. P. [Expression and purification of recombinant huwentoxin-I in Pichia pastoris]. Sheng Wu Gong Cheng Xue Bao,2002,18: 172-7.
    [76]. Smith, G. E., Summers, M. D., and Fraser, M. J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol,1983,3: 2156-65.
    [77]. Volynski, K. E., Nosyreva, E. D., Ushkaryov, Y. A., and Grishin, E. V. Functional expression of alpha-latrotoxin in baculovirus system. FEBS Lett,1999,442:25-8.
    [78]. Ji, W., Zhang, X., Hu, H., Chen, J., Gao, Y., Liang, S., and An, C. Expression and purification of Huwentoxin-Ⅰ in baculovirus system. Protein Expr Purif,2005,41:454-8.
    [79]. Escoubas, P., Bernard, C., Lambeau, G., Lazdunski, M., and Darbon, H. Recombinant production and solution structure of PcTxl, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci,2003,12:1332-43.
    [80]. Kock, M. A., Hew, B. E., Bammert, H., Fritzinger, D. C., and Vogel, C. W. Structure and function of recombinant cobra venom factor. J Biol Chem,2004,279:30836-43.
    [81]. Tedford, H. W., Sollod, B. L., Maggio, F., and King, G. F. Australian funnel-web spiders: master insecticide chemists. Toxicon,2004,43:601-18.
    [82]. Liang, S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon,2004,43: 575-85.
    [83]. Peng, K., Chen, X. D., and Liang, S. P. The effect of Huwentoxin-Ⅰ on Ca(2+) channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon,2001,39:491-8.
    [84]. Shu, Q., and Liang, S. P. Purification and characterization of huwentoxin-Ⅱ, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. J Pept Res, 1999,53:486-91.
    [85]. Peng, K., Shu, Q., Liu, Z., and Liang, S. Function and solution structure of huwentoxin-Ⅳ, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena. J Biol Chem,2002,277:47564-71.
    [86]. Lu, S., Liang, S., and Gu, X. Three-dimensional structure of Selenocosmia huwena lectin-Ⅰ (SHL-Ⅰ) from the venom of the spider Selenocosmia huwena by 2D-NMR. J Protein Chem,1999,18:609-17.
    [87]. Qu, Y., Liang, S., Ding, J., Ma, L., Zhang, R., and Gu, X. Proton nuclear magnetic resonance studies on huwentoxin-Ⅰ from the venom of the spider Selenocosmia huwena:1. Sequence-specific 1H-NMR assignments. J Protein Chem,1995,14:549-57.
    [88]. Shu, Q., Lu, S. Y, Gu, X. C., and Liang, S. P. The structure of spider toxin huwentoxin-Ⅱ with unique disulfide linkage:evidence for structural evolution. Protein Sci,2002,11: 245-52.
    [89]. Zhang, B., Liu, Q., Yin, W., Zhang, X., Huang, Y., Luo, Y, Qiu, P., Su, X., Yu, J., Hu, S., and Yan, G. Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC Genomics,2006,7:152.
    [90]. Junqueira-de-Azevedo Ide, L., and Ho, P. L. A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene,2002,299:279-91.
    [91]. Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T., and Goto, S. EGassembler:online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res,2006,34:W459-62.
    [92]. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. GenBank. Nucleic Acids Res,2005,33:D34-8.
    [93]. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol,2004,340:783-95.
    [94]. Kumar, S., Tamura, K., and Nei, M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform,2004,5: 150-63.
    [95]. de Figueiredo, S. G., de Lima, M. E., Nascimento Cordeiro, M., Diniz, C. R., Patten, D., Halliwell, R. F., Gilroy, J., and Richardson, M. Purification and amino acid sequence of a highly insecticidal toxin from the venom of the brazilian spider Phoneutria nigriventer which inhibits NMDA-evoked currents in rat hippocampal neurones. Toxicon,2001,39: 309-17.
    [96]. Skinner, W. S., Dennis, P. A., Li, J. P., and Quistad, G. B. Identification of insecticidal peptides from venom of the trap-door spider, Aptostichus schlingeri (Ctenizidae). Toxicon, 1992,30:1043-50.
    [97]. Liang, S. P., and Pan, X. A lectin-like peptide isolated from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon,1995,33:875-82.
    [98]. Johnson, J. H., Bloomquist, J. R., Krapcho, K. J., Kral, R. M., Jr., Trovato, R., Eppler, K. G., Morgan, T. K., and DelMar, E. G. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system. Arch Insect Biochem Physiol,1998,38:19-31.
    [99]. Francischetti, I. M., My-Pham, V., Harrison, J., Garfield, M. K., and Ribeiro, J. M. Bitis gabonica (Gaboon viper) snake venom gland:toward a catalog for the full-length transcripts (cDNA) and proteins. Gene,2004,337:55-69.
    [100]. Branton, W. D., Rudnick, M. S., Zhou, Y., Eccleston, E. D., Fields, G. B., and Bowers, L. D. Fatty acylated toxin structure. Nature,1993,365:496-7.
    [101]. Wang, X., Connor, M., Smith, R., Maciejewski, M. W., Howden, M. E., Nicholson, G. M., Christie, M. J., and King, G. F. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol,2000,7:505-13.
    [102]. Wullschleger, B., Kuhn-Nentwig, L., Tromp, J., Kampfer, U., Schaller, J., Schurch, S., and Nentwig, W. CSTX-13, a highly synergistically acting two-chain neurotoxic enhancer in the venom of the spider Cupiennius salei (Ctenidae). Proc Natl Acad Sci U S A,2004,101: 11251-6.
    [103]. Olivera, B. M., and Cruz, L. J. Conotoxins, in retrospect. Toxicon,2001,39:7-14.
    [104]. Li, J., Xu, X., Xu, C., Zhou, W., Zhang, K., Yu, H., Zhang, Y, Zheng, Y, Rees, H. H., Lai, R., Yang, D., and Wu, J. Anti-infection peptidomics of amphibian skin. Mol Cell Proteomics,2007,6:882-94.
    [105]. Guette, C., Legros, C., Tournois, G., Goyffon, M., and Celerier, M. L. Peptide profiling by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of the Lasiodora parahybana tarantula venom gland. Toxicon,2006,47:640-9.
    [106]. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., and Natale, D. A. The COG database:an updated version includes eukaryotes. BMC Bioinformatics,2003,4:41.
    [107]. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet,2000,25:25-9.
    [108]. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. Clustal W and Clustal X version 2.0. Bioinformatics,2007,23:2947-8.
    [109]. Escoubas, P., Corzo, G., Whiteley, B. J., Celerier, M. L., and Nakajima, T. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-performance liquid chromatography study of quantitative and qualitative variation in tarantula spider venoms. Rapid Commun Mass Spectrom,2002,16:403-13.
    [110].von Heijne, G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem, 1983,133:17-21.
    [111]. St Pierre, L., Woods, R., Earl, S., Masci, P. P., and Lavin, M. F. Identification and analysis of venom gland-specific genes from the coastal taipan (Oxyuranus scutellatus) and related species. Cell Mol Life Sci,2005,62:2679-93.
    [112]. Junqueira-de-Azevedo Ide, L., Pertinhez, T., Spisni, A., Carreno, F. R., Farah, C. S., and Ho, P. L. Cloning and expression of calglandulin, a new EF-hand protein from the venom glands of Bothrops insularis snake in E. coli. Biochim Biophys Acta,2003,1648:90-8.
    [113]. Shim, J. K., Jung, D. O., Park, J. W., Kim, D. W., Ha, D. M., and Lee, K. Y. Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp Biochem Physiol B Biochem Mol Biol,2006,145:288-95.
    [114]. Pimenta, A. M., Rates, B., Bloch, C., Jr., Gomes, P. C., Santoro, M. M., de Lima, M, E., Richardson, M., and Cordeiro Mdo, N. Electrospray ionization quadrupole time-of-flight and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometric analyses to solve micro-heterogeneity in post-translationally modified peptides from Phoneutria nigriventer (Aranea, Ctenidae) venom. Rapid Commun Mass Spectrom,2005, 19:31-7.
    [115]. Bradbury, A. F., Finnie, M. D., and Smyth, D. G. Mechanism of C-terminal amide formation by pituitary enzymes. Nature,1982,298:686-8.
    [116]. Ostrow, K. L., Mammoser, A., Suchyna, T., Sachs, F., Oswald, R., Kubo, S., Chino, N., and Gottlieb, P. A. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon,2003,42:263-74.
    [117]. Devaux, C., Knibiehler, M., Defendini, M. L., Mabrouk, K., Rochat, H., Van Rietschoten, J., Baty, D., and Granier, C. Recombinant and chemical derivatives of apamin. Implication of post-transcriptional C-terminal amidation of apamin in biological activity. Eur J Biochem,1995,231:544-50.
    [118]. Huang, R. H., Liu, Z. H., and Liang, S. P. Purification and characterization of a neurotoxic peptide huwentoxin-Ⅲ and a natural inactive mutant from the venom of the spider Selenocosmia huwena Wang(Ornithoctonus huwena Wang). Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2003,35:976-80.
    [119]. Zhang, P. F., Chen, P., Hu, W. J., and Liang, S. P. Huwentoxin-Ⅴ, a novel insecticidal peptide toxin from the spider Selenocosmia huwena, and a natural mutant of the toxin: indicates the key amino acid residues related to the biological activity. Toxicon,2003,42: 15-20.
    [120]. Doley, R., Tram, N. N., Reza, M. A., and Kini, R. M. Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from Kangaroo island. BMC Evol Biol,2008,8:70.
    [121]. Krapcho, K. J., Kral, R. M., Jr., Vanwagenen, B. C., Eppler, K. G., and Morgan, T. K. Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguetia canities. Insect Biochem Mol Biol,1995,25:991-1000.
    [122]. Yuan, D. D., Han, Y. H., Wang, C. G., and Chi, C. W. From the identification of gene organization of alpha conotoxins to the cloning of novel toxins. Toxicon,2007,49: 1135-49.
    [123]. Zhu, S., and Gao, B. Molecular characterization of a possible progenitor sodium channel toxin from the Old World scorpion Mesobuthus martensii. FEBS Lett,2006,580: 5979-87.
    [124]. Danilevich, V. N., and Grishin, E. V. [The chromosomal genes for black widow spider neurotoxins do not contain introns]. Bioorg Khim,2000,26:933-9.
    [125]. Luo, F., Zeng, X. C., Hahin, R., Cao, Z. J., Liu, H., and Li, W. X. Genomic organization of four novel nondisulfide-bridged peptides from scorpion Mesobuthus martensii Karsch: gaining insight into evolutionary mechanism. Peptides,2005,26:2427-33.
    [126]. Alami, M., Ceard, B., Legros, C., Bougis, P. E., and Martin-Eauclaire, M. F. Genomic characterisation of the toxin Amm VIII from the scorpion Androctonus mauretanicus mauretanicus. Toxicon,2006,47:531-6.
    [127].Sollod, B. L., Wilson, D., Zhaxybayeva, O., Gogarten, J. P., Drinkwater, R., and King, G. F. Were arachnids the first to use combinatorial peptide libraries? Peptides,2005,26:131-9.
    [128]. Qiao, P., Zuo, X. P., Chai, Z. F., and Ji, Y. H. The cDNA and genomic DNA organization of a novel toxin SHT-Ⅰ from spider Ornithoctonus huwena. Acta Biochim Biophys Sin (Shanghai),2004,36:656-60.
    [129].Binford, G. J., Cordes, M. H., and Wells, M. A. Sphingomyelinase D from venoms of Loxosceles spiders:evolutionary insights from cDNA sequences and gene structure. Toxicon,2005,45:547-60.
    [130]. Adams, M. E., Bindokas, V. P., Hasegawa, L., and Venema, V. J. Omega-agatoxins:novel calcium channel antagonists of two subtypes from funnel web spider (Agelenopsis aperta) venom. J Biol Chem,1990,265:861-7.
    [131].Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1 gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Mol Phylogenet Evol,2007,42:394-409.
    [132]. Froy, O., and Gurevitz, M. Arthropod and mollusk defensins-evolution by exon-shuffling. Trends Genet,2003,19:684-7.
    [133].Hynes, W. L., Ceraul, S. M., Todd, S. M., Seguin, K. C., and Sonenshine, D. E. A defensin-like gene expressed in the black-legged tick, Ixodes scapularis. Med Vet Entomol, 2005,19:339-44.
    [134]. Patthy, L. Genome evolution and the evolution of exon-shuffling-a review. Gene,1999, 238:103-14.
    [135]. Crews, S. C., and Hedin, M. Studies of morphological and molecular phylogenetic divergence in spiders (Araneae:Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. Mol Phylogenet Evol,2006,38:470-87.
    [136]. Garb, J. E., and Hayashi, C. Y. Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci U S A,2005,102:11379-84.
    [137]. Silvestre, F. G., de Castro, C. S., de Moura, J. F., Giusta, M. S., De Maria, M., Alvares, E. S., Lobato, F. C., Assis, R. A., Goncalves, L. A., Gubert, I. C., Chavez-Olortegui, C., and Kalapothakis, E. Characterization of the venom from the Brazilian Brown Spider Loxosceles similis Moenkhaus,1898 (Araneae, Sicariidae). Toxicon,2005,46:927-36.
    [138]. Escoubas, P. Molecular diversification in spider venoms:a web of combinatorial peptide libraries. Mol Divers,2006,10:545-54.
    [139]. Chen, C., Hsu, C. H., Su, N. Y., Lin, Y. C., Chiou, S. H., and Wu, S. H. Solution structure of a Kunitz-type chymotrypsin inhibitor isolated from the elapid snake Bungarus fasciatus. J Biol Chem,2001,276:45079-87.
    [140]. Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J. M., Beress, L., and Lazdunski, M. Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage sensitive K+ channels. J Biol Chem,1995,270:25121-6.
    [141]. Wang, F. C., Bell, N., Reid, P., Smith, L. A., McIntosh, P., Robertson, B., and Dolly, J. O. Identification of residues in dendrotoxin K responsible for its discrimination between neuronal K+ channels containing Kv1.1 and 1.2 alpha subunits. Eur J Biochem,1999,263: 222-9.
    [142]. Harvey, A. L. Twenty years of dendrotoxins. Toxicon,2001,39:15-26.
    [143]. Shen, J. H., Liu, S. B., Zhang, Y. X., Jin, Y., Lee, W. H., and Zhang, Y. Cloning of novel bombesin precursor cDNAs from skin of Bombina maxima. Regul Pept,2005,132:102-6.
    [144]. Luo, S., Zhangsun, D., Zhang, B., Chen, X., and Feng, J. Direct cDNA cloning of novel conotoxins of the T-superfamily from Conus textile. Peptides,2006,27:2640-6.
    [145]. Kauferstein, S., Melaun, C., and Mebs, D. Direct cDNA cloning of novel conopeptide precursors of the O-superfamily. Peptides,2005,26:361-7.
    [146]. Harrison, R. A., Ibison, F., Wilbraham, D., and Wagstaff, S. C. Identification of cDNAs encoding viper venom hyaluronidases:cross-generic sequence conservation of full-length and unusually short variant transcripts. Gene,2007,392:22-33.
    [147]. Siigur, E., Aaspollu, A., and Siigur, J. Sequence diversity of Vipera lebetina snake venom gland serine proteinase homologs-result of alternative-splicing or genome alteration. Gene,2001,263:199-203.
    [148]. Gilbert, W., de Souza, S. J., and Long, M. Origin of genes. Proc Natl Acad Sci U S A, 1997,94:7698-703.
    [149]. Laskowski, M., and Qasim, M. A. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim Biophys Acta,2000, 1477:324-37.
    [150]. Helland, R., Otlewski, J., Sundheim, O., Dadlez, M., and Smalas, A. O. The crystal structures of the complexes between bovine beta-trypsin and ten P1 variants of BPTI. J Mol Biol,1999,287:923-42.
    [151]. Czapinska, H., Helland, R., Smalas, A. O., and Otlewski, J. Crystal structures of five bovine chymotrypsin complexes with PI BPTI variants. J Mol Biol,2004,344:1005-20.
    [152]. Vernet, T., Dignard, D., and Thomas, D. Y. A family of yeast expression vectors containing the phage fl intergenic region. Gene,1987,52:225-33.
    [153]. Cereghino, J. L., and Cregg, J. M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev,2000,24:45-66.
    [154]. Chen, X. M., Qian, Y. W., Chi, C. W., Gan, K. D., Zhang, M. F., and Chen, C. Q. Chemical synthesis, molecular cloning, and expression of the gene coding for the Trichosanthes trypsin inhibitor--a squash family inhibitor. J Biochem,1992,112:45-51.
    [155]. Campos, I. T., Amino, R., Sampaio, C. A., Auerswald, E. A., Friedrich, T., Lemaire, H. G., Schenkman, S., and Tanaka, A. S. Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas'disease vector:gene cloning, expression and characterization of the inhibitor. Insect Biochem Mol Biol,2002,32:991-7.
    [156]. Xie, Z. W., Luo, M. J., Xu, W. F., and Chi, C. W. Two reactive site locations and structure-function study of the arrowhead proteinase inhibitors, A and B, using mutagenesis. Biochemistry,1997,36:5846-52.
    [157]. Auerswald, E. A., Morenweiser, R., Sommerhoff, C. P., Piechottka, G. P., Eckerskorn, C., Gurtler, L. G., and Fritz, H. Recombinant leech-derived tryptase inhibitor:construction, production, protein chemical characterization and inhibition of HIV-1 replication. Biol Chem Hoppe Seyler,1994,375:695-703.
    [158].Lan, H. K., Feng, Z. C., Huang, J. S., Zheng, W. Y., Chen, L. S., Chunyu, L. J., and Ren, D. M. [Expression and characterization of human pulmonary surfactant-associated protein A1 in Saccharomyces cerevisiae]. Sheng Wu Gong Cheng Xue Bao,2001,17:410-3.
    [159]. Sun, Y. M., Liu, W., Zhu, R. H., Goudet, C., Tytgat, J., and Wang, D. C. Roles of disulfide bridges in scorpion toxin BmK M1 analyzed by mutagenesis. J Pept Res,2002,60: 247-56.
    [160]. Wu, J. J., He, L. L., Zhou, Z., and Chi, C. W. Gene expression, mutation, and structure-function relationship of scorpion toxin BmP05 active on SK(Ca) channels. Biochemistry,2002,41:2844-9.
    [161]. Tedford, H. W., Fletcher, J. I., and King, G. F. Functional significance of the beta hairpin in the insecticidal neurotoxin omega-atracotoxin-Hvla. J Biol Chem,2001,276: 26568-76.
    [162]. Tedford, H. W., Gilles, N., Menez, A., Doering, C. J., Zamponi, G. W., and King, G. F. Scanning mutagenesis of omega-atracotoxin-Hvla reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J Biol Chem,2004,279: 44133-40.
    [163]. Bernard, C., Corzo, G., Mosbah, A., Nakajima, T., and Darbon, H. Solution structure of Ptul, a toxin from the assassin bug Peirates turpis that blocks the voltage-sensitive calcium channel N-type. Biochemistry,2001,40:12795-800.
    [164].Cantrell, A. R., Tibbs, V. C., Yu, F. H., Murphy, B. J., Sharp, E. M., Qu, Y., Catterall, W. A., and Scheuer, T. Molecular mechanism of convergent regulation of brain Na(+) channels by protein kinase C and protein kinase A anchored to AKAP-15. Mol Cell Neurosci,2002, 21:63-80.
    [165]. Catterall, W. A. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels. Neuron,2000,26:13-25.
    [166]. Catterall, W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev,1992,72:S15-48.
    [167].Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., Kallen, R. G., Mandel, G., Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G., Wood, J. N., and Catterall, W. A. Nomenclature of voltage-gated sodium channels. Neuron,2000,28:365-8.
    [168].Numa, S., and Noda, M. Molecular structure of sodium channels. Ann N Y Acad Sci,1986, 479:338-55.
    [169]. Akopian, A. N., Sivilotti, L., and Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature,1996,379:257-62.
    [170]. Gold, M. S., Weinreich, D., Kim, C. S., Wang, R., Treanor, J., Porreca, F., and Lai, J. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci,2003, 23:158-66.
    [171]. Lai, J., Gold, M. S., Kim, C. S., Bian, D., Ossipov, M. H., Hunter, J. C., and Porreca, F. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain,2002,95:143-52.
    [172]. Khasar, S. G., Gold, M. S., and Levine, J. D. A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett,1998,256:17-20.
    [173]. Roza, C., Laird, J. M., Souslova, V., Wood, J. N., and Cervero, F. The tetrodotoxin-resistant Na+ channel Navl.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol,2003,550:921-6.
    [174]. Fields, S., and Song, O. A novel genetic system to detect protein-protein interactions. Nature,1989,340:245-6.
    [175]. Malik-Hall, M., Poon, W. Y., Baker, M. D., Wood, J. N., and Okuse, K. Sensory neuron proteins interact with the intracellular domains of sodium channel NaV1.8. Brain Res Mol Brain Res,2003,110:298-304.
    [176]. Hendron, E., Patel, P., Hausenfluke, M., Gamper, N., Shapiro, M. S., Booth, R. E., and Stockand, J. D. Identification of cytoplasmic domains within the epithelial Na+ channel reactive at the plasma membrane. J Biol Chem,2002,277:34480-8.
    [177]. Xiao, Y, Luo, X., Kuang, F., Deng, M., Wang, M., Zeng, X., and Liang, S. Synthesis and characterization of huwentoxin-IV, a neurotoxin inhibiting central neuronal sodium channels. Toxicon,2008,51:230-9.
    [178].刁建波.蜘蛛毒素的基因克隆、表达及结构与功能研究[博士学位论文].北京大学,2003.
    [179].袁春华.虎纹捕鸟蛛毒素组学分析与几种蜘蛛多肽毒素的结构功能关系研究[博士学位论文].湖南师范大学,2007.
    [180].肖玉成.作用于电压门控钠通道的蜘蛛毒素的结构与功能研究[博士学位论文].湖南师范大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700