用户名: 密码: 验证码:
多发多收干涉合成孔径雷达高程测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉合成孔径雷达(InSAR)是一种全天时、全天候的微波遥感技术,能够提供高分辨率、高精度的地表数字高程图。在地质、地理和地球物理等许多学科有着广泛的应用。传统的单基线InSAR只能提供一个干涉相位,其相位展开的精度和可靠性较低,且难以应对大坡度、非连续以及高程重叠(Layover)等复杂地形。而多频和多基线InSAR这一类具有多个观测通道的模式由于能够提供多个独立干涉相位,大大提高了相位展开的可靠性和精度,并能够解决复杂地形条件下的高程测量问题。因此,多通道InSAR已成为目前国内、外的研究热点。近年来兴起的MIMO雷达技术能够在不增加真实观测通道的条件下通过多发多收形成更多的虚拟观测通道,为进一步提高多通道InSAR模式的高程测量性能提供了一条新的技术途径。本论文的研究工作将围绕多发多收干涉合成孔径雷达高程测量的关键技术展开,主要的研究工作包括以下几个方面:
     1)分析了多基线InSAR联合像素矢量的协方差矩阵特征谱随回波相干性和SAR图像配准误差的变化情况。分析结果指出:在去相关效应不可忽略和各SAR图像间的配准误差各不相等且不为整数的时候,联合像素矢量协方差矩阵的信号子空间将占据整个特征空间。此时,基于信号子空间向噪声子空间投影的联合子空间投影方法将会出现干涉信息损失,从而导致高程估计的稳健性和精度下降。针对这一问题,提出了一种基于联合像素矢量协方差矩阵拟合的多基线InSAR回波数据联合处理方法。该方法能够避免由于信号子空间占据整个特征空间而引起的干涉信息损失,具有更好的高程估计精度和稳健性。同时,该方法通过相关系数加权的方法抑制了采样协方差矩阵各元素中的误差项对高程估计的影响,保证了其在有限样本数条件下的可靠性。
     2)根据常规多发多收(MIMO)雷达中常用的两种信号分集方式,提出了基于频率编码和波形编码的两种MIMO InSAR高程测量模式,能以较小的代价换取高程测量性能的大幅提高。首先,由于MIMO技术带来了更多的独立观测通道,因此MIMO InSAR模式的高程估计精度将高于传统的多频或多基线InSAR模式。本论文分别推导了上述两种MIMO InSAR模式下的高程估计的克拉美罗界,证明了MIMO InSAR模式对高程估计精度的改善。同时,独立观测通道数量的增加也提高了系统的高程估计稳健性。通过组合不同的工作频率和观测基线,频率编码MIMO InSAR模式能够有效的扩展系统的高程估计模糊间隔,在系统各工作频率和各基线之间均不具有互质关系的条件下,该模式仍然能够得到稳健的高程估计结果;而通过虚拟阵列扩展,波形编码MIMO InSAR模式能够辨识数量多于真实观测阵元的Layover单元,极大地提高了InSAR系统在复杂地形条件下的高程测量能力。
     3)针对波形编码MIMO InSAR模式存在的调制波形正交性不足、缺乏高精度和大场景成像的算法等问题,提出了基于时间编码和空间编码的两种MIMO InSAR模式。时间编码模式通过各观测阵元交替发射信号的方式,等效形成多发多收的各观测通道,并且通过引入波束扫描技术,以牺牲方位向分辨率为代价实现宽域观测。而空间编码模式则通过将各观测阵元发射波束主瓣脚印在地面同一观测条带中彼此分离的方式等效形成了多发多收的各观测通道,并通过在接收端使用子天线阵空域滤波来实现无多普勒模糊的宽域观测。在以上两种模式下,各观测阵元发射信号回波间的可分离性不再依赖各发射信号间的正交性,可以利用线性调频信号作为各阵元的发射信号,从而可以利用各种基于线性调频信号的成熟算法完成高精度、大场景成像处理。
     4)针对MIMO雷达中由于回波数据维数的大幅增加而引起传统参数估计算法的运算量也随之大幅增加的问题,提出了一种基于ESPRIT算法和Kalman滤波的高精度、低复杂度的MIMO雷达波达方向估计方法。该方法将MIMO雷达经匹配滤波后形成的虚拟阵列分解为多个构形相同但空间位置不同的虚拟子阵,利用这些虚拟子阵间的旋转不变性得到了同一目标波达方向的多个估计值,并利用Kalman滤波对同一目标波达方向的多个估计值进行融合处理进一步提高了估计的高精度。该方法只需要对若干个维数较小的协方差矩阵进行特征分解且不需要进行谱峰搜索,故其运算量远小于传统的参数估计算法。同时,该方法对阵列构形没有要求,能够适用于MIMO模式下非均匀线阵以及二维阵列的波达方向估计问题。由于阵列波达方向估计与InSAR高程估计之间的相似性,本论文将该方法的基本思想应用于MIMO InSAR的高程估计问题,提出了一种低复杂度的MIMO InSAR高程估计算法,并且解决了由于MIMO InSAR虚拟观测阵元空间超稀疏分布而带来的近场阵列问题。不过,受到InSAR回波信号特有的乘性噪声的影响,在应用于高程估计时该方法的估计精度会因模型失配而出现一定程度的下降,本论文推导了乘性噪声背景下该方法的高程估计均方误差公式,对乘性噪声的影响进行了定量的分析。
Synthetic aperture radar Interferometry (InSAR) is a powerful remote sensing technique, which has been exploited for the generation of digital elevation model with high resolutions and has found many applications in the earth system science study. The accuracy and robustness of interferometric phase unwrapping of the traditionally single baseline InSAR suffers severely from the interferometric phase noises. And it is difficult for the single baseline InSAR to deal with the highly sloping, discontinuous and Layover scene. Recently, the multi-baseline/multi-frequency InSAR system, which would be referred as multi-channel InSAR in the following, has been widely investigated for its abilities to restore a unique solution to the terrain height and resolve the terrain mapping problem of the highly sloping, discontinuous and Layover scene. The newly emergent MIMO radar concept, depending on its ability to virtually extend the sensor array, provides a feasible way to improve the performance of multi-channel InSAR without extending the number of real sensors or frequencies. This dissertation would mainly focuses on the application of MIMO radar concept to the multi-channel InSAR. The research of this dissertation is summarized below:
     1. A new joint processing method is proposed, which carries out the height estimation through the joint covariance matrix fitting. The eigen-spectrum of the joint pixel vector is analyzed firstly, which shows that the joint noise subspace would exist only under some specific conditions. The original joint processing method based on joint subspace projection would suffer from the loss of interferometric information since, in this case, the absent joint noise subspace would be replace by the eigen-subspace which also contains some interferometric information. However, through the joint covariance matrix fitting, all the interferometric information embedded in the joint pixel vector would be exploited for the height estimation. Further more, the sample joint covariance matrix is tapered by the coherence matrix, which improves the robustness of the proposed method in the case of limited samples available.
     2. Two MIMO InSAR modes are proposed, which are based on the frequency diversity and the waveform diversity, respectively. The data models for these two modes are presented. And the performance of these two modes are analyzed theoretically, which indicates that MIMO InSAR is able to identify the laid over ground patches more than its real sensors and provided a more accurate estimation of the terrain profile than that of its SIMO counterpart. Hence, MIMO InSAR would exhibit a better identifiability in the areas of complex terrain profile such as mountains, buildings and other complex man made objects, especially when the number of real sensors is small.
     3. Since the orthogonality of the available orthogonal waveforms at present could not satisfy the requirement of the available SAR imaging technique, two substitutive MIMO InSAR modes based on spatial/temporal encoding are proposed, which remain the advantages of the waveform diversity based MIMO InSAR mode. Under the temporal encoding mode, the MIMO channels are obtained through transmitting signals alternately from the sensors. And the ScanSAR technique is employed to enlarge the swath width under such mode. While, under the spatial encoding mode, the MIMO channels are obtained through spreading the footprints of the mainlobes of the transmitting beams along the observing strip. And the antenna of each sensor is divided into multiple sub-antennae along the azimuth direction for the spatial filtering on receive, which makes it possible to avoid doppler ambiguity without increasing the PRF. The orthogonality of the transmitting signals is no more necessary under these two modes. Thus, the linear frequency modulated signal could be employed as the transmitting signal of every sensor, which would make it possible to complete the imaging processing via the ordinary SAR imaging algorithms.
     4. A computationally efficient method employing ESPRIT and Kalman filtering is proposed for the direction finding of MIMO radar. The property that the virtual array of MIMO radar is equivalent to multiple virtual subarrays with the same geometry but different displacements is exploited to provide multiple direction estimates for each target. And the multiple estimates of each target are fused through Kalman filtering to improve the accuracy of direction estimation. This method has no specific requirement on the geometry configuration of the MIMO array and can resolve the parameter estimation problem of array in the near-field, which make it applicable to the height estimation problem of MIMO InSAR. Therefore, computationally efficient method is presented for the height estimation of MIMO InSAR based on the basic concept of the method mentioned above. Furthermore, the impact of multiplicative noise on this method is analyzed theoretically when it is applied to the height estimation problem of MIMO InSAR.
引文
[1]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005.
    [2] Paul A. Rosen, Scott Hensley, and Ian R. Joughin, et al,“Synthetic Aperture Radar Interferometry”, Proc. IEEE, Vol.88, No.3, , pp. 333~381, March, 2000.
    [3] F Lombardini, J. Ender, L. Roessing, M. Galletto and L. Verrazzani,“Experiments of Interferometric Layover Solution with the Three-antenna Airborne AER-II SAR System”, IEEE IGARSS’2004, pp.3341-3344.
    [4] D. Massonnet,“Capabilities and Limitations of the interferometric Cartwheel”, IEEE Trans. on Geosci Remote Sensing, Vol.39, No.3, pp..506-520, 2001.
    [5] G. Krieger, H. Fiedler, J. Mittermayer, et al,“Analysis of Bistatic Configurations for Spaceborne SAR Interferometry”, EUSAR’2002, Germany, pp.29-33, 2002.
    [6] E. Fishler, et al,“MIMO Radar whose time has come”in Proc IEEE Radar Conf., pp.71-78, 2004.
    [7] E. Fishler, et al,“Spatial Diversity in Radars-Models and Detection Performance”, IEEE Trans. Signal Process., Vol.54, No.3, pp. 823–838, March, 2006.
    [8] N. H. Lehmann, et al,“Evaluation of Transmit Diversity in MIMO-Radar Direction Finding”IEEE Trans. Signal Processing, Vol.55, No.5, pp.2215~2225, 2007.
    [9] Bekkerman I. and Tabrikian J.,“Target Detection and Localization Using MIMO Radars and Sonars”. IEEE Trans. Signal Processing, Vol.54, No.10, pp.3873~3883, 2006.
    [10] Jian Li, Petre Stoica, Luzhou Xu, and William Roberts,“On Parameter Identifiability of MIMO Radar”IEEE Signal Processing Letters, Vol.14, No.12, pp. 968-971, Dec 2007.
    [11] Chun-Yang Chen and P. P. Vaidyanathan,“MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions”, IEEE Trans. Signal Process., Vol.56, No.2, pp.623-635. Feb, 2008.
    [12] H. Deng,“Polyphase code design for orthogonal netted radar systems,”IEEE Trans. Signal Process., Vol.52, No.11, pp. 3126–3135, Nov, 2004.
    [13] H. A. Khan, Y. Zhang, C. Ji, C. J. Stevens, D. J. Edwards, and D. O’Brien,“Optimizing polyphase sequences for orthogonal netted radar,”IEEE Signal Process. Lett., vol. 13, no. 10, pp. 589–592, Oct. 2006.
    [14] Yang Yang and Rick S. Blum,“Waveform Design for MIMO Radar Based on Mutual Information and Minimum Mean-Square Error Estimation”, IEEE Radar Conference’2006, pp.111-116, 2006.
    [15] C. Duofang, C. Baixiao and Q. Guodong,“Angle estimation using ESPRIT in MIMO radar”, Electronic Letters, Vol. 44 No. 12, June, 2008.
    [16] C. Jinli, G. Hong and S. Weimin,“Angle estimation using ESPRIT without pairing in MIMO radar”, Electronic Letters, Vol. 44 No. 24, Nov, 2008.
    [17]井伟,武其松,邢孟道,“保铮多子带并发的MIMO-SAR高分辨大测绘带成像”,系统仿真学报,Vol.20, No.16, pp 4373-4378, 2008.
    [18]武其松,井伟,邢孟道,保铮,“MIMO-SAR大测绘带成像”,电子与信息学报Vol.31, No.4, pp.772-775, 2009.
    [19]戴喜增,许稼,彭应宁,王永良,“MIMO-VSAR及其一种优化的阵列配置”,电子学报, Vol.36, No.12, pp.2394-2399, 2008.
    [20] Jung-Hyo Kim1, Alicja Ossowska2, Werner Wiesbeck,“Investigation of MIMO SAR for Interferometry”, European Radar Conf’2008, pp.51-54, 2008.
    [21] Jens Klare,“Digital Beamforming for A 3D MIMO SAR Improvements Through Frequency and Waveform diversity”, IEEE IGARSS’2008, pp.17-20, 2008.
    [22] Graham L. C.,“Synthetic Interferometry Radar For Topographic Mapping”, Proc IEEE, 62, pp.763-768, 1974.
    [23] Goldstein R. M., Zebker H. A. and Werner C. L.,“Satellite Radar Inteferometry: Two-dimensional Phase Unwrapping. Radio Science”, Vol.23, No.4, pp.713-720, July, 1988.
    [24] Goldstein R. M., Engelhardt H., Kamb B. and Frohlichenor R. M.,“Satellite Radar Interferometry For Monitoring Ice Sheet Motion: Application to An Antarctic Ice Stream”, Science, Vol.262, No.3, pp.1525-1530, 1993.
    [25] Gabriel A. K. and Goldstein R. M.,“Crossed Orbit Interferometry: Theory and Experiment Results From SIR-B”, Int. Journal Remote Sensing, Vol.9, No.5, pp.857-872, 1988.
    [26] Massonnet D. and Adragna F.,“A Full Scale Validation of Radar Interferometry with ERS-1: The Landers Earthquake”, Earth Obervation Quarterly, 41, pp.1-5, July,1993.
    [27] Pietro Guccione,“Interferometry with ENVISAT Wide Swath ScanSAR Data”, IEEE Geosci. Remote Sensing Letters, Vol.3, No.3, pp.377-381, 2006.
    [28] H. A. Zebker and J. Villasenor,“Decorrelation in interferometric radar echoes”, IEEE Trans. on Geoscience and Remote Sensing, Vol.31, No.1, pp.180-191, 1993.
    [29] F. Gatelli, A. M. Guarnieri, P. Francesco, et al,“The Wavenumber Shift in SAR Interferometry”, IEEE Trans. on Geoscience and Remote Sensing, Vol.32, No.4, pp.855-865, 1994.
    [30] A. Moreira, G. Krieger, I. Hajnsek,“TanDem-X: A TerraSAR-X Add-on Satellite for Single-Pass SAR Interferometry”, IEEE IGARSS’2004, pp.1000-1003, 2004.
    [31] Michael Bartusch,Hermann J. Berg,Oliver Siebertz,“The TanDem-X Mission”, In Proceeding of EuSAR’2008, 2008.
    [32] Ralph Girard,“The RADARSAT-2&3 Topographic Mission: An Overview”, In Proceeding of EuSAR’2008, pp.1477-1479, 2008.
    [33] R. Lanari, G. Fornaro, and D.Riccio, et al,“Generation of Digital Elevation Models by Using SIR-C/X-SAR Multifrequency Two-Pass Interferometry: The Etna Case Study”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.5, pp.1097-1114, 1996.
    [34] G. Fornaro, F. Scrafino and F. Soldoviei,“Three-dimensional Focusing With Multipass SAR Data”, IEEE Trans. on Geosci. Remote Sensing, Vol.41, No.3, pp.507-517, March, 2003.
    [35] A. Das, R. Cobb and M. Stallard,“TechSat 21: Revolutionary Concept in Distributed Space Based Sensing”, In Proc. AIAA Defense and Civil Sparse Programms Conf. Exhibit, Huntsville, AL, Oct, 1998,AIAA 98-5255.
    [36] M. Martin, P. Klupar, S Kiberg, et al,“Techsat 21 and Revolutionizing Space Missions using Microsatellites”, AIAA Conference on Small Satellites, Utah, USA, pp.4139-4145, 2001.
    [37] J. Mittermayer, G. Krieger, A. Moeria, et al,“Interferometric performance estimation for the interferometric Cartwheel in Combination with a Transmitting SAR-Satellite”, IEEE, IGARSS’2001, pp.2955-2957, 2001.
    [38] Schwabisch M. and Geudtner S.,“Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering: Examples From ERS-1 and X-SAR”, IEEE, IGARSS’95, Firenze, pp.205-207, 1995.
    [39] B. Zitova, J. Flusser,“Image Registration Methods: A Survey”, Image and Vision Computing, Vol.21, No.11, pp.977-1000, Oct, 2003.
    [40] Jordi Inglada and Alain Giros.“On the Possibility of Automatic Multisensor ImageRegistration”, IEEE Trans. on Geosci. Remote Sensing, Vol.42, No.10, pp.2104-2120, Oct, 2004.
    [41] Eichel P. H., Ghiglia D. C., et al,“Spotlight SAR Interferometry for Terrain Elevation Mapping and Interferometric Change Detection”, Sandia National Lab Tech. Report, SAND93, 1993, (12): 2539-2546, 1993.
    [42] Lee J. S, Papathanassion P., Ainsworth T. L., Grunes R., and Reigber A.,“A New Technique for Noise Filtering of SAR Interferometric Phase Images”, IEEE Trans. Geosci. Remote Sensing, Vol.36, No.5, pp.1456-1464, 1998.
    [43] Baran I., Stewart M. P., Kampes B. M., Perski Z., and Lilly P.,“A Modification to the Goldstein Radar Interferogram Filter”, IEEE Trans. on Geosci. Remote Sensing, Vol.41, No.9, pp.2114-2118, 2003.
    [44] Goldstein R. M., Zebker H. A. and Werner C. L.,“Satellite Radar Interferometry: Two-dimensional Phase Unwrapping”, Radio Science, Vol.23, No.4, pp.713-720, 1988.
    [45] Ghiglia D. C. and Romero L. A.,“Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods”, J. Opt. Soc. Amer A, Vol.11, No.1, pp.107-117, 1994.
    [46] Bamler R., Adam N. Davidson G. W. and Just D.,“Noise-induce Slpoe Distortion In 2-D Phase Unwrapping by Linear Estimators With Application to SAR Interferometry”, IEEE Trans. on Geosci. Remote Sensing, Vol.36, No.3, pp.913-921, 1998.
    [47] Otmar Loffeld, Holger Nies, Stefan Knedlik and Wang Yu,“Phase Unwrapping for SAR Interferometry-A Data Fusion Approach by Kalman Filtering”, IEEE Trans. on Geosci. Remote Sensing, Vol.46, No.1, pp.47-58, 2008.
    [48] Juan J. Martinez-Espla, Tomas Martinez-Marin, and Juan M. Lopez-Sanchez,“A Particle Filter Approach for InSAR Phase Filtering and Unwrapping”, IEEE Trans. on Geosci. Remote Sensing, Vol.47, No.4, pp.1197-1211, 2009.
    [49] Serren N. Madsen and Howard A. Zebker,“Automated Absolute Phase Retrieval in Across-track Interferometry”,IGARSS’92, Houston, TX, pp.1582-1584, May 1992.
    [50] Xu W, Chien E, and Kwoh L, et al,“Phase-unwrapping of SAR Interferogram with Multi-frequency or Multi-baseline”, IGARSS’94,Singapore, pp.730~732, 1994.
    [51] D. Massonnet, H. Vadon and M. Rossi,“Reduction of the need for phase unwraping in radar Interferometry”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.2, pp.489-497, 1996.
    [52] R. Lanari, G. Fornaro, and D.Riccio, et al,“Generation of Digital Elevation Modelsby Using SIR-C/X-SAR Multifrequency Two-Pass Interferometry: The Etna Case Study”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.5, pp.1097-1114, 1996.
    [53] D. G. Thompson, A. E. Robertson,“Multi-baseline Interferometric SAR for Iterative Height Estimation”, IGARSS’99, UT, USA, pp.251-253, 1999.
    [54] Jong-Sen Lee, Karl W. Hoppel, Stephen A. Mango, Allen R. Miller,“Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery”, IEEE Trans. Geosci. Remote Sensing, Vol.32, No.5, pp.1017-1027, September 1994.
    [55] D. Just and R. Bamler,“Phase Statistics of Interferometry with Applications to Synthetic Aperture Radar, Applied Optics”, Vol.33, No.20, pp.4361-4369, July, 1994.
    [56] M. G. Kim and H.D. Griffiths,“Phase Unwrapping of Multi-baseline Interferometry using Kalman Filtering”, IEE International Conference on Image Processing and Its applications, London, UK, pp.813-817,1999.
    [57] V. Pascazio and G. Schirinzi,“Mutifrequency InSAR Height Reconstruction Through Maximum Likelihood Estimation of Local Planes Parameters”, IEEE Trans. Image Processing, Vol .11, No.2, pp.1478-1489, December 2002.
    [58] G. Fornaro, A. Pauciullo and E. Sansosti,“Phase Difference-Based Multichannel Phase Unwrapping”, IEEE Trans. Image Processing, Vol.14, No.7, pp.960-972, July 2005.
    [59] G. Ferraiuolo, V. Pascazio and Gilda Schirinzi,“Maximum A Posteriori Estimation of Height Profiles in InSAR Imaging”, IEEE Geosci. Remote Sens. Lett., Vol.1, No.2, pp.66-70, April, 2004.
    [60] Li Z F, Bao Z and Suo Z Y,“A Joint Image Coregistration Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems”, IEEE Trans. Geosci. Remote Sensing, Vol.45, No.3, pp. 584-591, 2007.
    [61] F. Gini and F. Lombardini,“Multibaseline Cross-Track SAR Interferometry: A signal Processing Perspective”, IEEE A&E systems magazine, Vol.20, No.8, pp.71-93, August 2005.
    [62] F. Gini, F. Lombardini and Monica Montanari,“Layover Solution in Multibaseline SAR Interferometry”, IEEE Trans. Aerosp. Electron. Syst., Vol.38, No.4, pp.1344-1355, October 2002.
    [63] F. Lombardini, M. Montanari, F. Gini,“Reflectivity Estimation for Multibaseline Interferometry Radar Imaging of Layover Extended Sources”, IEEE Trans. Signal Processing, Vol.51, No.6, pp 1508-1519, June 2003.
    [64] F. Gini and F. Lombardini,“Model Order Selection in Multi-baseline Interferometric Radar Systems”, EURASIP Journal on Applied Signal Processing 2005:20, pp.3206-3219,2005.
    [65] Jiao Guo, Zhenfang Li, and Zheng Bao,“Using Multibaseline InSAR to Recover Lay- overed Terrain Considering Wideband Array Problem”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, N0. 4, pp.583-587, Oct 2008.
    [66]柳祥乐,宋岳鹏,杨汝良,“采用酉ESPRIT算法处理多基线InSAR层叠效应”,电子与信息学报, Vol.30, No.7, pp.1731~1735, 2008.
    [1] Paul A. Rosen, Scott Hensley, and Ian R. Joughin, et al.:“Synthetic Aperture Radar Interferometry”, Proc. IEEE, Vol.88, No.3, pp. 333~381, March, 2000.
    [2] A. K. Gabriel and A. M. Goldstein,“Cross Orbit Interferometry: Theory and Experimental Results From SIR-B”, Int Remote Sensing J., Vol.9, No.5, pp.857-872, 1988.
    [3] J. Moreira, M. Shipman, G. Fornaro, et al,“X-SAR Interferometry: First Results”, IEEE Trans on Geosci. Remote Sensing, Vol.32, No.3, pp.950-955, 1994.
    [4] H. A. Zebker, S. N. Madsen, J. Martin , et al,“The TOPSAR Interferometric radar topographic mapping Instruement”, IEEE Trans on Geosci. Remote Sensing, Vol.30, pp.933-940, 1992.
    [5] B. Zitova, J. Flusser,“Image Registration Methods: A Survey”, Image and Vision Computing, Vol.21, No.11, pp.977-1000, Oct, 2003.
    [6] G. Fornaro, and G. Franceschetti,“Image Registration in Interferometric SAR Processing”, Radar, Sonar and Navigation, IEE Proceedings, Vol.142, No.6, pp.313-320, 1995.
    [7] R. Scheiber A. Moereira,“Coregistration of Interferometric SAR Images Using Spectral Diversity”, IEEE Trans on Geosci. Remote Sensing, Vol.38, No.5, pp.2179-2191, Sep, 2000.
    [8]刘宝泉,干涉合成孔径雷达测量关键技术研究,西安电子科技大学博士学位论文,2008.
    [9]武楠,干涉合成孔径雷达信号处理技术研究,西安电子科技大学博士学位论文,2007.
    [10]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005:pp.286-287.
    [11] H. A. Zebker and J. Villasenor,“Decorrelation in interferometric radar echoes”, IEEE Trans. on Geoscience and Remote Sensing, Vol.31, No.1, pp.180-191, 1993.
    [12] F. Gatelli, A. M. Guarnieri, P. Francesco, et al,“The Wavenumber Shift in SAR Interferometry”, IEEE Trans. on Geoscience and Remote Sensing, Vol.32, No.4, pp.855-865, 1994.
    [13] M. Schwabisch and S. Geudtner,“Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering: Examples from ERS-1 and X-SAR”, IGARSS’95, Firenze, pp.205-207, 1995.
    [14] M. S. Seymour and I. G. Cumming,“Maximum Likelihood Estimation for SAR Interferometry”, IGARSS, pp.2272-2275,1994.
    [15] Jong-Sen Lee, P. Konstantinos, Papathanassiou, et al,“A New Technique for Noise Filtering of SAR Interferometric Phase Images”, IEEE Trans. on Geoscience and Remote Sensing, Vol.36, No.5, pp.1456-1465, 1998.
    [16] D. Massonnet,“Capabilities and Limitations of the Interferometric Cartwheel”, IEEE Trans. on Geoscience and Remote Sensing, Vol.39, No.3, pp.506-520, 2001.
    [17] Serren N. Madsen and Howard A. Zebker,“Automated Absolute Phase Retrieval in Across-track Interferometry”,IEEE IGARSS’92, Houston, TX, pp.1582-1584, May 1992.
    [18] Xu W, Chien E, and Kwoh L, et al,“Phase-unwrapping of SAR Interferogram with Multi-frequency or Multi-baseline”, IEEE IGARSS’94,Singapore, pp.730~732, 1994.
    [19]D. Massonnet, H. Vadon and M. Rossi,“Reduction of the need for phase unwraping in radar Interferometry”, IEEE Trans. Geosci. Remote Sensing, Vol.34, No.2, pp.489-497, 1996.
    [20] R. Lanari, G. Fornaro, and D.Riccio, et al,“Generation of Digital Elevation Models by Using SIR-C/X-SAR Multifrequency Two-Pass Interferometry: The Etna Case Study”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.5, pp.1097-1114, 1996.
    [21] D. G. Thompson, A. E. Robertson,“Multi-baseline Interferometric SAR for Iterative Height Estimation”, IEEE IGARSS’99, UT, USA, pp.251-253, 1999.
    [22] D. C. Ghiglia and D. E. Wahl,“Interferometric Synthetic Aperture Radar Terrain Elevation Mapping from Multiple Observations”, IEEE Digital Signal ProcessingWiorkshop’94, pp.33-36, 1994.
    [23] Jong-Sen Lee, Karl W. Hoppel, Stephen A. Mango, Allen R. Miller,“Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery”, IEEE Trans. Geosci. Remote Sensing, Vol.32, No.5, pp.1017-1027, September 1994.
    [24] D. Just and R. Bamler,“Phase Statistics of Interferometry with Applications to Synthetic Aperture Radar”, Applied Optics, Vol.33, No.20, pp.4361-4369, July, 1994.
    [25] M. G. Kim and H.D. Griffiths,“Phase Unwrapping of Multi-baseline Interferometry using Kalman Filtering”, IEE International Conference on Image Processing and Its applications, London, UK, pp.813-817,1999.
    [26] V. Pascazio and G. Schirinzi,“Mutifrequency InSAR Height Reconstruction Through Maximum Likelihood Estimation of Local Planes Parameters”, IEEE Trans. Image Processing, Vol .11, No.2, pp.1478-1489, December 2002.
    [27] G. Fornaro, A. Pauciullo and E. Sansosti,“Phase Difference-Based Multichannel Phase Unwrapping”, IEEE Trans. Image Processing, Vol.14, No.7, pp.960-972, July 2005.
    [28] G. Ferraiuolo, V. Pascazio and Gilda Schirinzi,“Maximum A Posteriori Estimation of Height Profiles in InSAR Imaging”, IEEE Geosci. Remote Sens. Lett., Vol.1, No.2, pp.66-70, April 2004.
    [29] G. Poggi,P. R. Ragozini and D. Servadei,“A Bayesian Approach for SAR Interferometric Phase Restoration”, IEEE IGARSS2000, Naples, Italy, pp.3202-3205,2000.
    [30] F. Gini and F. Lombardini,“Multibaseline Cross-Track SAR Interferometry: A signal Processing Perspective”, IEEE A&E systems magazine, Vol.20, No.8, pp.71-93, August 2005.
    [31] F. Gini, F. Lombardini and Monica Montanari,“Layover Solution in Multibaseline SAR Interferometry”, IEEE Trans. Aerosp. Electron. Syst., Vol.38, No.4, pp.1344-1355, October 2002.
    [32] F. Lombardini, M. Montanari, F. Gini,“Reflectivity Estimation for Multibaseline Interferometry Radar Imaging of Layover Extended Sources”, IEEE Trans. Signal Processing, Vol.51, No.6, pp 1508-1519, June 2003.
    [33] F. Lombardini, J. Ender, L. R??ing, M. Galletto, L. Verrazzani,“Experiments of Interferometric Layover Solution with the Three-antenna Airborne AER-II SAR System”, IEEE IGARSS’2004, pp.3341-3344, 2004.
    [34] F. Gini and F. Lombardini,“Model Order Selection in Multi-baselineInterferometric Radar Systems”, EURASIP Journal on Applied Signal Processing 2005:20, pp.3206-3219,2005.
    [35] Li Z F, Bao Z, Li H., and Liao G.,“Image autocoregistration and InSAR interferogram estimation using joint subspace projection”, IEEE Trans. on Geosci. Remote Sens., vol. 44, no. 2, pp. 288-297, Feb. 2006.
    [36] Li Z F, Bao Z and Suo Z Y,“A Joint Image Coregistration Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems”, IEEE Trans. Geosci. Remote Sensing, Vol.45, No.3, pp. 584-591, 2007.
    [37] Jiao Guo, Zhenfang Li, and Zheng Bao,“Using Multibaseline InSAR to Recover Lay- overed Terrain Considering Wideband Array Problem”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, N0. 4, pp.583-587, Oct, 2008.
    [1] B. Zitova, J. Flusser,“Image Registration Methods: A Survey”, Image and Vision Computing, Vol.21, No.11, pp.977-1000, Oct, 2003.
    [2] G. Fornaro, and G. Franceschetti, I”mage Registration in Interferometric SAR Processing, Radar”, Sonar and Navigation, IEE Proceedings, Vol.142, No.6, pp.313-320, 1995.
    [3] R. Scheiber A. Moereira,“Coregistration of Interferometric SAR Images Using Spectral Diversity”, IEEE Trans on Geosci. Remote Sensing, Vol.38, No.5, pp.2179-2191, Sep, 2000.
    [4]刘宝泉,干涉合成孔径雷达测量关键技术研究,西安电子科技大学博士学位论文,2008.
    [5]武楠,干涉合成孔径雷达信号处理技术研究,西安电子科技大学博士学位论文,2007.
    [6]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005,pp.286.
    [7] Li Z F, Bao Z, Li H., and Liao G.,“Image autocoregistration and InSAR interferogram estimation using joint subspace projection”, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 288-297, Feb. 2006.
    [8] Li Z F, Bao Z and Suo Z Y,“A Joint Image Coregistration Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems”, IEEE Trans. Geosci. Remote Sensing, Vol.45, No.3, pp. 584-591, 2007.
    [9] Jiao Guo, Zhenfang Li, and Zheng Bao,“Using Multibaseline InSAR to Recover Lay- overed Terrain Considering Wideband Array Problem”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, N0. 4, pp.583-587, Oct, 2008.
    [10]王永良,陈辉,彭应宁,万群,空间谱估计理论与算法,北京:清华大学出版社,2004, pp.152-154.
    [11] N. Liu, L.-R. Zhang, X. Liu and Y. Zhou,“Multibaseline InSAR Height Estimation through Joint Covariance matrix Fitting”, IET Radar Sonar and Navigation, Accepted.
    [12] F. Gini, F. Lombardini and Monica Montanari,“Layover Solution in Multibaseline SAR Interferometry”, IEEE Trans. Aerosp. Electron. Syst., Vol.38, No.4, pp.1344-1355, October 2002.
    [13] F. Lombardini, M. Montanari, F. Gini,“Reflectivity Estimation for Multibaseline Interferometry Radar Imaging of Layover Extended Sources”, IEEE Trans. Signal Processing, Vol.51, No.6, pp 1508-1519, June 2003.
    [14]李真芳分布式小卫星SAR-InSAR-GMTI的处理方法,西安电子科技大学博士学位论文,2006,pp.72~75.
    [15] Mats Viberg and Bjorn Ottersten.:“Sensor Array Processing Based on Subspace Fitting”, IEEE Trans. Signal Processing, Vol.39, No.5, pp. 1110-1121, May 1991.
    [16] Mats Viberg, Bjorn Ottersten and Thomas Kailath.:“Detection and Estimation in Sensor Array Using Weighted Subspace Fitting”, IEEE Trans. Signal Processing, Vol.39, No.11, pp. 2436-2449, Nov 1991.
    [17]张贤达,矩阵分析与应用,北京:清华大学出版社,2004.
    [1] Xu W, Chien E, and Kwoh L, et al,“Phase-unwrapping of SAR Interferogram with Multi-frequency or Multi-baseline”, IEEE IGARSS’94,Singapore, pp.730~732, 1994.
    [2] R. Lanari, G. Fornaro, and D.Riccio, et al,“Generation of Digital Elevation Models by Using SIR-C/X-SAR Multifrequency Two-Pass Interferometry: The Etna Case Study”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.5, pp.1097-1114, 1996.
    [3] V. Pascazio and G. Schirinzi,“Estimation of Terrain Elevation by Multifrequency Interferometric Wide Band SAR Data”, IEEE Signal Processing Letter, Vol.8, pp.7-9, 2001.
    [4] Z. She, D. A. Gray. R. E. Bogner and J. Homer,“Three-dimensional SAR imaging via multiple pass processing”, IEEE IGARSS’99, Hamburg, Germany, pp., 1999.
    [5] A. Reigber and A. Moreira,“First Demonstration of Airborne SAR Tomography using Multibaseline L-band Data”, IEEE Trans. on Geosci. Remote Sensing, Vol.38, No.5, pp.2142-2152, 2000.
    [6] G. Fornaro and F. Serafino,“Three Dimensional Focusing with Multipass SAR data”, IEEE Trans. on Geosci. Remote Sensing, Vol.41, No.3, pp.507-517, 2003.
    [7] L. Roessing, J. Ender,“Advanced SAR Interferometry techniques with AER-II”, Proc. Int. Radar Symp. Munich, Germany, 1998.
    [8] F Lombardini, J. Ender, L. Roessing, M. Galletto and L. Verrazzani,“Experiments of Interferometric Layover Solution with the Three-antenna Airborne AER-II SAR System”, IEEE IGARSS’2004, pp.3341-3344, 2004.
    [9] F Lombardini, L. Roessing, J. Ender and F. Viviani,“Towards A Complete Processing Chain of Multibaseline Airborne InSAR Data for Layover Scatterers Separation”, IEEE urban Remote Sensing Joint Event, 2007.
    [10] M. Martin, P. Klupar, S Kiberg, et al,“Techsat 21 and Revolutionizing Space Missions using Microsatellites”, AIAA Conference on Small Satellites, Utah, USA, pp.4139-4145, 2001.
    [11] D. Massonnet,“Capabilities and Limitations of the interferometric Cartwheel”, IEEE Trans. on Geosci Remote Sensing, Vol.39, No.3, pp.506-520, 2001.
    [12] J. Mittermayer, G. Krieger, A. Moeria, et al,“Interferometric performance estimation for the interferometric Cartwheel in Combination with a Transmitting SAR-Satellite”, IEEE, IGARSS’2001, pp.2955-2957, 2001.
    [13] G. Krieger, H. Fiedler, J. Mittermayer, et al,“Analysis of Bistatic Configurations for Spaceborne SAR Interferometry”, EUSAR’2002, Cologne, Germany, pp.29-33, 2002.
    [14] Bekkerman I and Tabrikian J,“Target Detection and Localization Using MIMO Radars and Sonars”, IEEE Trans. Signal Processing, Vol.54, No.10, pp.3873~3883, 2006.
    [15] Nikolaus H. Lehmann, et al,“Evaluation of Transmit Diversity in MIMO-Radar Direction Finding”, IEEE Trans. Signal Processing, Vol.55, No.5, pp.2215~2225, 2007.
    [16] Jian Li, Petre Stoica, Luzhou Xu, and William Roberts,“On Parameter Identifiability of MIMO Radar”, IEEE Signal Processing Letters, Vol.14, No.12, pp. 968-971, Dec, 2007.
    [17] Luzhou Xu and Jian Li,“Iterative Generalized-Likelihood Ratio Test for MIMO Radar”, IEEE Signal Processing Letters, Vol.55, No.6, pp. 2375-2385, Jun, 2007.
    [18] Chun-Yang Chen and P. P. Vaidyanathan,“MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions”, IEEE Trans. Signal Process., Vol.56, No.2, pp.623-635. Feb, 2008.
    [19] Dai Xi-zeng, Xu Jia, and Peng Ying-ning.“High resolution frequency MIMO radar”, in Proc. of IEEE Conf. on Radar, Waltham, MA, USA, pp.693-697, 2007.
    [20] Dai Xi-zeng, Xu Jia, Ye Chun-mao, and Peng Ying-ning.“Low-sidelobe HRR profiling based on the FDLFM-MIMO radar”, IEEE Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, pp.132-135, 2007.
    [21]杨明磊,张守宏,陈伯孝,张焕颖,“多载频MIMO雷达的一种新的信号处理方法”,电子与信息学报,Vol.31, No.1, pp.147-151, 2009.
    [22] J. Garnham, R. Wainwright, R.Burns,“Enabling research and development for flight demonstration of sparse aperture sensing”. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, pp.4552-4561, 2001.
    [23] Mounir Ghogho, Oliver Besson and Ananthram Swami,“Estimation of Directions of Arrival of Multiple Scattered Sources”, IEEE Trans. on Signal Processing, Vol.49, No.11, pp.2467-2480,2001.
    [24] S. M. Kay, Fundmentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall,1993.
    [25] V. Pascazio and G. Schirinzi,“Mutifrequency InSAR Height Reconstruction Through Maximum Likelihood Estimation of Local Planes Parameters”, IEEE Trans. Image Processing, Vol .11, No.2, pp.1478-1489, December 2002.
    [26] F. Gini, F. Lombardini and Monica Montanari,“Layover Solution in Multibaseline SAR Interferometry”, IEEE Trans. Aerosp. Electron. Syst., Vol.38, No.4, pp.1344-1355, October, 2002.
    [27] Jian Li,Xiayu Zheng and Petre Stoica,“MIMO SAR Imaging: Signal Synthetic And Reciever Design”, IEEE CAMPSAP 2007. 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 12-14 Dec. 2007: pp.89-92.
    [28] Deng H.“Polyphase Code Design for Orthogonal Netted Radar Systems”, IEEE Trans. Signal Processing, Vol.52, No.11, pp. 3126-3135, 2004.
    [29] Deng H.“Discrete Frequency-Coding Waveform Design for Netted Radar Systms”, IEEE Signal Processing Letters, Vol.11, No.2, pp.179-182, 2004.
    [30] Deng H. Braham Himed and Michael C. Wicks,“Concurrent Extraction of Target Range and Doppler Information by Using Orthogonal Coding Waveforms”, IEEE Trans. Signal Processing, Vol.55, No.7, pp. 3294-3310, 2007.
    [31] Bo Liu, Zishu He and lun Li,“Mitigation of Autocorrelation Sidelobe Peaks of Orthogonal Discrete Frequency-Coding Waveform for MIMO Radar”, IEEE Radar Conf.’2008, pp.1-6, 2008.
    [32]黎薇萍,洪伟,陶海红,廖桂生,“用于分布式天基SAR系统低速运动目标检测的空时波形优化设计”,电子学报,Vol.36, No.12, pp.2383-2388, 2008.
    [33]鲍昆超,陶海红,廖桂生,“多发射体制下分布式小卫星的波形设计”,电子与信息学报, Vol.29, No.9, pp.2117-2119, 2007.
    [34] Chun-Yang Chen and P. P. Vaidyanathan,“Minimum Redundancy MIMO Radars”, IEEE ISCAS’2008, pp.45-48, 2008.
    [1] Bekkerman I and Tabrikian J,“Target Detection and Localization Using MIMO Radars and Sonars”, IEEE Trans. Signal Processing, Vol.54, No.10, pp.3873~3883, 2006.
    [2] Nikolaus H. Lehmann, et al,“Evaluation of Transmit Diversity in MIMO-Radar Direction Finding”, IEEE Trans. Signal Processing, Vol.55, No.5, pp.2215~2225, 2007.
    [3] Jian Li, Petre Stoica, Luzhou Xu, and William Roberts,“On Parameter Identifiability of MIMO Radar”, IEEE Signal Processing Letters, Vol.14, No.12, pp. 968-971, Dec, 2007.
    [4] Chun-Yang Chen and P. P. Vaidyanathan,“MIMO Radar Space–Time AdaptiveProcessing Using Prolate Spheroidal Wave Functions”, IEEE Trans. Signal Process., Vol.56, No.2, pp.623-635. Feb, 2008.
    [5] Jens Klare,“Digital Beamforming For A 3D MIMO SAR Improvements Throgh Frequency and Waveform Diversity”, IEEE, IGARSS’2008, pp.17-20, 2008
    [6]井伟,武其松,邢孟道,保铮.“多子带并发的MIMO-SAR高分辨大测绘带成像”,系统仿真学报,2008,Vol.20, No. 16, pp.4373-4778, 2008.
    [7]武其松,井伟,邢孟道,保铮.“MIMO-SAR大测绘带成像”,电子与信息学报Vol.31,No.4,pp.772-775,2009.
    [8]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005:pp.112-118.
    [9] Deng H.“Polyphase Code Design for Orthogonal Netted Radar Systems”, IEEE Trans. Signal Processing, Vol.52, No.11, pp. 3126-3135, 2004.
    [10]黎薇萍,洪伟,陶海红,廖桂生,“用于分布式天基SAR系统低速运动目标检测的空时波形优化设计”,电子学报,Vol.36, No.12, pp.2383-2388, 2008.
    [11] Deng H.“Discrete Frequency-Coding Waveform Design for Netted Radar Systms”, IEEE Signal Processing Letters, Vol.11, No.2, pp.179-182, 2004.
    [12] Bo Liu, Zishu He and Lun Li,“Mitigation of Autocorrelation Sidelobe Peaks of Orthogonal Discrete Frequency-Coding Waveform for MIMO Radar”, IEEE Radar Conference, Rome, May, 2008, pp.1-6.
    [13] Jian Li Xiayu Zheng and Petre Stoica,“Signal Synthetic and Reciever Design for MIMO SAR Imaging”, IEEE Trans. on Signal Processing, Vol.56, No.8, pp.3959-3968, Aug, 2008.
    [14] Gerhard Krieger, Nicolas Geber, and Alberto Moreia,“Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing”, IEEE Trans. on Geosci. Remote Sensing, Vol.46, No.1, pp.31-46, 2008.
    [15] S. R. Cloude and K. P. Papathanassiou,“Polarimetric SAR Interferometry”, IEEE Trans. on Geosci. Remote Sensing, Vol.36, No.5, pp.1551-1565, 1998.
    [16]魏钟铨等,合成孔径雷达卫星,北京:科学出版社,2001,pp.73-74.
    [17]袁孝康,星载合成孔径雷达导论,北京:国防工业出版社,2003,pp.169-173.
    [18] Michael Bartusch,Hermann J. Berg,Oliver Siebertz,“The TanDem-X Mission”, in Proceeding of EuSAR’2008, 2008.
    [19] A. Currie and M. A. Brown,“Wide-swath SAR”, IEE Proc. Vol.39, No.2, pp.122-135, 1992.
    [20] G. D. Callaghan and I. D. Longstaff,“Wide-swath Space-borne SAR Using A Quad-element Array”, IEE Proc. Radar, Sonar Navig., Vol.146, No.3, pp.156-165,1999.
    [21] M. Suess, B. Grafmueller and R. Zahn,“A Novel High Resolution, Wide Swath SAR System”, IEEE IGARSS, Sydney, 2001, pp.1013-1015, 2001.
    [22] N. A. Goodman, S. C. Lin, D. Rajakrishan and J. M. Stiles,“Processing of Multiple-Receiver Spaceborne Arrays for Wide-Area SAR”, IEEE Trans. on Geosci. Remote Sensing, Vol.40, No.4, pp.841-852, 2002.
    [23] Gerhard Krieger, Nicolas Gebert and Alberto Moreia,“Unambiguous SAR Signal Reconstruction From Nonuniform Displaced Phase Center Sampling”, IEEE Geosci. Remote Sensing Letters, Vol.1, No.4, pp.260-264, 2004.
    [24] Zhenfang Li, Hongyang Wang, Tao Su and Zheng Bao,“Generation of Wide-Swath and High-Resolution SAR Images From Multichannel Small Spaceborne SAR Systems”, IEEE Geosci. Remote Sensing Letters, Vol.2, No.1, pp.82-86, 2005.
    [25] Alberto Moerira, Josef Mittermayer and Rolf Scheiber,“Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans. on Geoscience and Remote Sensing, Vol.34, No.5, pp.1123-1136, Sep, 1996.
    [26] G.W. Davidson, I. G. Cumming and M. R. Ito,“A Chirp Scaling Approach for Processing Squint Mode SAR Data”, IEEE Trans. on AES, Vol.32, No.1,pp. 121-133, 1996.
    [27] Josef Mittermayer, Alberto Moerira and Otmar Loffeld,“Spotlight SAR Data Processing Using the Frequency Scaling Algorithm”, IEEE Trans. on Geosci. Remote Sensing, Vol.37, No.5, pp.2198-2214, Sep, 1999.
    [28] Y. L. Neo , F. H. Wong, I. Cumming and M. R. Ito,“A Two-dimensional Spectrum for Bistatic SAR Processing Using Series Reversion”, IEEE Geosci. Remote Sensing Letters, Vol.4, No.1, pp.93-96, 2007.
    [29]张振华,双/多基SAR成像算法研究,西安电子科技大学博士学位论文,2007.
    [30]张光义,赵玉洁,相控阵雷达技术,北京:电子工业出版社,2006,pp.214-219.
    [31] Ralph Girard,“The RADARSAT-2&3 Topographic Mission: An Overview”, EUSAR, Friedrichshafen, Germany, 2008, pp.1477-1479, 2008.
    [1] Ilya Bekkerman and Joseph Tabrikian,“Target Detection and Localization Using MIMO Radars and Sonars”, IEEE Trans. on Signal Processing, Vol.54, No.10, pp.3873-3883, 2006.
    [2] Nikolaus H. Lehmann, Eran Fishler, Alexander M. Haimovich, et al.“Evaluation of Transmit Diversity in MIMO-Radar Direction Finding”, IEEE Trans. on Signal Processing, Vol.55, No.5, pp.2215-2225, 2007.
    [3] Richard Roy and Thomas Kailath,“ESPRIT-Estimation of Signal Parameters ViaRotation Invariance Techniques”, IEEE Trans. on Acoustics Speech And Signal Processing, Vol.37, No.7, pp.984-995, 1989.
    [4] C. Duofang, C. Biaoxiao and Q. Guodong,“Angle estimation using ESPRIT in MIMO radar”, IET Electronic Letters, Vol.44, No.12, 2008.
    [5] C. Jinli, G. Hong and S. Weimin,“Angle estimation using ESPRIT without pairing in MIMO radar”, IET Electronic Letters, Vol.44, No.24 , 2008.
    [6] Abramovich Y H, Gray D A, Gorokhov A Y,Spencer N K,“Comparsion of DOA Estimation Performance For Various Types of Sparse Antenna Array Geometries”, In Proc. EUSIPCO, Trieste, Italy, 1996, pp.915-918, 1996.
    [7] Abramovich Y H, Spencer N K, Gorokhov A Y,“Positive Define Toeplitz Completion in DOA Estimation for Nonuniform Linear Antenna Arrays-Part II: Partially-augmentabl Arrays”, IEEE Trans. on Signal Processing, Vol.47, No.6, pp.1502-1521 , 1999.
    [8] Sakarya F A, Hayes M H.“A Subspace rotation-based technique for estimation 2-D arrival angles using nonlinear array configurations”, IEEE Trans on Signal Processing, Vol.42, No.2, pp.409-412, 1994.
    [9] Jian Li and R. T. Compton, Jr.“Two-Dimensional Angle and Polarization Estimation Using the ESPRIT Algorithm”, IEEE Trans. on Antenna and Propagation, Vol.40, No.5, pp.550-555, 1992.
    [10] Petre Stoica and Arye Nehorai,“Performance Comparision of Subspace Rotation and MUSIC Methods for Direction Estimation”, IEEE Trans. on Signal Processing, Vol.39, No.10, pp.446-453, 1991.
    [11]赵树杰,赵建勋,信号检测与估计理论,北京:清华大学出版社,2004, pp.429-430.
    [12] F. Ayhan Sakarya and Monson H. Hayes.“Estimating 2-D DOA Angles Using Nonlinear Array Configurations”, IEEE Trans on Signal Processing, Vol.43, No.9, pp.2212-2216, 1995.
    [13]王永良,陈辉,彭应宁,万群,空间谱估计理论与算法,北京:清华大学出版社,2004,pp.465-476.
    [14] Petre Stoica and Arye Nehorai,“MUSIC, Maximum Likelihood, and Cramer-Rao Bound”, IEEE Transactions on. Acoustics. Speech. And Signal Processing. Vol.37, No.5, pp.720-741, May 1989.
    [15] Houcem Gazzah and Sylvie Marcos,“Cramer-Rao Bounds for Antenna Array Design”, IEEE Trans. on Signal Processing, Vol.54, No.1, pp.336-345, 2006.
    [1] V. Pascazio and G. Schirinzi,“Mutifrequency InSAR Height Reconstruction Through Maximum Likelihood Estimation of Local Planes Parameters”, IEEE Trans. on Image Processing, Vol .11, No.2, pp.1478-1489, December, 2002.
    [2] F. Gini, F. Lombardini and Monica Montanari,“Layover Solution in Multibaseline SAR Interferometry”, IEEE Trans. on Aerosp. Electron. Syst., Vol.38, No.4, pp.1344-1355, Oct, 2002.
    [3] F. Lombardini, M. Montanari, F. Gini,“Reflectivity Estimation for Multibaseline Interferometry Radar Imaging of Layover Extended Sources”, IEEE Trans. on Signal Processing, Vol.51, No.6, pp 1508-1519, June, 2003.
    [4] Li Z F, Bao Z and Suo Z Y,“A Joint Image Coregistration Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems”, IEEE Trans. on Geosci. Remote Sensing, Vol.45, No.3, pp.584-591, 2007.
    [5] N. Liu, L.-R. Zhang, X. Liu and Y. Zhou,“Multibaseline InSAR Height Estimation through Joint Covariance matrix Fitting”, IET Radar Sonar and Navigation, Accepted.
    [6] G. Ferraiuolo, V. Pascazio and Gilda Schirinzi,“Maximum A Posteriori Estimation of Height Profiles in InSAR Imaging”, IEEE Geosci. Remote Sens. Lett., Vol.1, No.2, pp.66-70, April, 2004.
    [7] G. Fornaro, A. Pauciullo and E. Sansosti,“Phase Difference-Based Multichannel Phase Unwrapping”, IEEE Trans. on Image Processing, Vol.14, No.7, pp.960-972, July, 2005.
    [8] Richard Roy and Thomas Kailath,“ESPRIT-Estimation of Signal Parameters Via Rotation Invariance Techniques”, IEEE Trans. on Acoustics Speech And Signal Processing, Vol.37, No.7, pp.984-995, 1989.
    [9]柳祥乐,宋岳鹏,杨汝良,“采用酉ESPRIT算法处理多基线InSAR层叠效应”,电子与信息学报, Vol.30, No.7, pp.1731~1735, 2008.
    [10] A. Das, R. Copp, M. Stallard.“TechSat21: A revolutionary concept in distributed space based sensing”, In Proceeding of AIAA Defense and Civil Space Programs Conference & Exhibit, Huntsville,Al ,1998, AIAA-98-5255.
    [11] D. Massonnet,“Capabilities and Limitations of the interferometric Cartwheel”, IEEE Trans. on Geosci Remote Sensing, Vol.39, No.3, pp.506-520, 2001.
    [12] Michael Bartusch,Hermann J. Berg,Oliver Siebertz,“The TanDem-X Mission”, in Proceeding of EuSAR’2008, 2008.
    [13] Xu W, Chien E, and Kwoh L, et al,“Phase-unwrapping of SAR Interferogram with Multi-frequency or Multi-baseline”, IEEE IGARSS’94,Singapore, pp.730~732, 1994.
    [14] F. Lombardini and F. Gini,“Model Order Selection in Multi-baseline Interferometric Radar Systems”, EURASIP Journal on Applied Signal Processing, 2005:20, 3206~3219.
    [15] P. Rosen, S. Hensley, Joughin R. I, et al,“Synthetic Aperture Radar Interferometry”, Proc.of IEEE Vol.88, No.3, pp.333~381, 2000.
    [16] P. Stoica and A. Nehorai“Performance Comparision of Subspace Rotation and MUSIC Methods for Direction Estimation”, IEEE Trans. on Signal Processing, Vol.39, No.10, pp.446~453, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700